Complex Analysis

Final Exam
June 2001
Ali Nesin

Open book. (You don’t have to!)
Justify your answers. (You have to!)

1. Find the Taylor series of
 \[f(z) = z^3 + 2z - 1 \]
 \[f(z) = 1/z \]
around \(z_0 = 1 \).

2. Find the first four terms of the Laurent series of \(f(z) = 1/\sin z \) around 0.

3. Find \(\int_{|z|=1} \frac{e^z - e^{-z}}{z^4} dz \).

4. Suppose \(f \) is analytic in a domain \(\Omega \), \(\gamma \) is a circle in \(\Omega \) and \(f \) has no zeroes on \(\gamma \). In terms of the zeroes of \(f \) inside \(\gamma \) what is the value of \(\int_{\gamma} \frac{f'}{f} dz \) ?

5. Suppose that \(\Omega \) is a region containing a disc \(D \), \(f \) is a nonconstant analytic function in \(\Omega \) such that \(|f| \) is constant on \(\partial D \). Show that \(f \) has at least one zero inside \(D \).

6. Suppose \(f \) and \(g \) are analytic in a region \(D \). Suppose also that \(f(z)^2 = g(z)^2 \) for \(z \) \in \(D \). What can you say about \(f \) and \(g \)?

7. Suppose \(f \) and \(g \) are entire functions such that \(|f(z)| \leq |g(z)| \) for all \(z \). What can you say about the relationship of \(f \) and \(g \)?

8. Suppose \(f \) is analytic in a domain \(\Omega \) containing the unit disc and \(|f(z)| > 2 \) for all \(|z| = 1 \) and also \(f(0) = 1 \). Show that \(f \) must be equal to zero for some point in the unit disc.

9. Suppose \(f \) is any analytic function in the open unit disc. Show that there must be a sequence \((z_n)_n \) with \(|z_n| \to 1 \) such that \(f(z_n) \) is bounded.

10. Suppose \(P(z, w) \) is a polynomial in two complex variables. Suppose \(w_0 \) is such that \(P(z, w_0) \) has only simple zeroes (as a polynomial in one variable). Show that the same property holds for all \(w \) near \(w_0 \). Hint: Recall the following weaker version of Rouché’s Theorem: Suppose \(f \) and \(g \) are meromorphic in a neighborhood of \(\overline{B(a; R)} \) with no zeroes or poles on the circle \(C(a; R) \). If \(Z_f, Z_g, P_f \) and \(P_g \) denote the number of zeroes and poles of \(f \) and \(g \) inside \(\gamma \) counted according to their multiplicities and if \(|f(z) + g(z)| < |f(z)| \) on \(\gamma \), then \(Z_f - P_f = Z_g - P_g \). Also use the fact that the polynomial function \(f(z, w) \) is uniformly continuous on any compact subset of \(\mathbb{C}^2 \).