Complex Analysis

Final Exam June 2001 Ali Nesin

Open book. (You don't have to!) Justify your answers. (You have to!)

1. Find the Taylor series of

$$f(z) = z3 + 2z - 1$$
$$f(z) = 1/z$$

around $z_0 = 1$.

- 2. Find the first four terms of the Laurent series of $f(z) = 1/\sin z$ around 0.
- 3. Find $\int_{|z|=1} \frac{e^z e^{-z}}{z^4} dz$.
- 4. Suppose f is analytic in a domain Ω , γ is a circle in Ω and f has no zeroes on γ . In terms of the zeroes of f inside γ what is the value of $\int_{\gamma} \frac{f'}{f} z^p dz$?
- 5. Suppose that Ω is a region containing a disc D, f is a nonconstant analytic function in Ω such that |f| is constant on ∂D . Show that f has at least one zero inside D.
- 6. Suppose f and g are analytic in a region D. Suppose also that $f(z)^2 = g(z)^2$ for $z \in D$. What can you say about f and g?
- 7. Suppose f and g are entire functions such that $|f(z)| \le |g(z)|$ for all z. What can you say about the relationship of f and g?
- 8. Suppose f is analytic in a domain Ω containing the unit disc and |f(z)| > 2 for all |z| = 1 and also f(0) = 1. Show that f must be equal to zero for some point in the unit disc.
- 9. Suppose *f* is any analytic function in the open unit disc. Show that there must be a sequence $(z_n)_n$ with $|z_n| \rightarrow 1$ such that $f(z_n)$ is bounded.
- 10. Suppose P(z, w) is a polynomial in two complex variables. Suppose w_0 is such that $P(z, w_0)$ has only simple zeroes (as a polynomial in one variable). Show that the same property holds for all w near w_0 . **Hint:** Recall the following weaker version of Rouché's Theorem: Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a; R)$ with no zeroes or poles on the circle C(a; R). If Z_f , Z_g , P_f and P_g denote the number of zeroes and poles of f and g inside γ counted according to their multiplicities and if |f(z) + g(z)| < |f(z)| on γ , then $Z_f P_f = Z_g P_g$. Also use the fact that the polynomial function P(z, w) is uniformly continuous on any compact subset of \mathbb{C}^2 .