Math 111 Complex Numbers

Ali Nesin
November 23, 2005

Part I.

1. Show that if $a x^{2}+b x+c=0$ and $a \neq 0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. (Here, you can treat a, b, c and x as real numbers.)
2. Show that for any complex number α there is a complex number β such that β^{2} $=\alpha$.
3. Let α, β, γ be three complex numbers with $\alpha \neq 0$. Let δ be a complex number such that $\delta^{2}=\beta^{2}-4 \alpha \gamma$. Show that if $x=(-\beta \pm \delta) / 2 \alpha$ then $\alpha x^{2}+\beta x+\gamma=0$.
4. Conclude from the questions above that any polynomial $\alpha X^{2}+\beta X+\gamma$ with α, β, $\delta \in \mathbb{C}$ has a root in \mathbb{C}.
5. Let $a, b, c \in \mathbb{R}$. Suppose that $\alpha \in \mathbb{C}$ is a root of the polynomial $a X^{2}+b X+c$. Find the other root of $a X^{2}+b X+c$.
6. Let $n \in \mathbb{N} \backslash\{0\}$ and $\alpha \in \mathbb{C}$. Show that there is a $\beta \in \mathbb{C}$ such that $\beta^{n}=\alpha$.

Part II.

7. Show that $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$.
8. Find a formula for $\sin 4 \theta$ in terms of $\cos \theta$ and $\sin \theta$.

Part III.

Let $\zeta=\cos 72^{\circ}+i \sin 72^{\circ}$ and $a=\zeta+\zeta^{4}$.
9. Show that $\zeta^{5}=1$.
10. Show that $1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}$ are all the roots of the polynomial $X^{5}-1$.
11. Draw $\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}$ on the complex plane, i.e. show their geometric representation on the plane \mathbb{R}^{2}.
12. Show that $1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=0$.
13. Show that ζ^{4} is the conjugate of ζ.
14. Conclude from above that $a=2 \cos 72^{\circ}$.
15. Show that $a^{2}+a-1=0$.
16. Find $\cos 72^{\circ}$.

