Math 111 Complex Numbers Ali Nesin November 23, 2005

Part I.

- Show that if $ax^2 + bx + c = 0$ and $a \neq 0$ then $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$. (Here, you 1. can treat a, b, c and x as real numbers.) Show that for any complex number α there is a complex number β such that β^2 2. $= \alpha$. Let α , β , γ be three complex numbers with $\alpha \neq 0$. Let δ be a complex number 3. such that $\delta^2 = \beta^2 - 4\alpha\gamma$. Show that if $x = (-\beta \pm \delta)/2\alpha$ then $\alpha x^2 + \beta x + \gamma = 0$. Conclude from the questions above that any polynomial $\alpha X^2 + \beta X + \gamma$ with α , β , 4. $\delta \in \mathbb{C}$ has a root in \mathbb{C} .
- Let $a, b, c \in \mathbb{R}$. Suppose that $\alpha \in \mathbb{C}$ is a root of the polynomial $aX^2 + bX + c$. Find the other root of $aX^2 + bX + c$. 5.
- Let $n \in \mathbb{N} \setminus \{0\}$ and $\alpha \in \mathbb{C}$. Show that there is a $\beta \in \mathbb{C}$ such that $\beta^n = \alpha$. 6.

Part II.

- Show that $\cos 3\theta = \cos^3 \theta 3\cos \theta \sin^2 \theta$. 7.
- Find a formula for sin 4θ in terms of $\cos \theta$ and $\sin \theta$. 8.

Part III.

Let $\zeta = \cos 72^\circ + i \sin 72^\circ$ and $a = \zeta + \zeta^4$.

- Show that $\zeta^5 = 1$. 9.
- 10.
- Show that $\zeta_{1} = 1$. Show that 1, $\zeta_{1} \zeta_{2}^{2}, \zeta_{3}^{3}, \zeta_{4}^{4}$ are all the roots of the polynomial $X^{5} 1$. Draw $\zeta_{1}, \zeta_{2}^{2}, \zeta_{3}^{3}, \zeta_{4}^{4}$ on the complex plane, i.e. show their geometric representation 11. on the plane \mathbb{R}^2 .
- Show that $1 + \zeta + \zeta^2 + \zeta^3 + \zeta^4 = 0$. 12.
- Show that ζ^4 is the conjugate of ζ . 13.
- Conclude from above that $a = 2\cos 72^\circ$. 14.
- Show that $a^2 + a 1 = 0$. 15.
- Find cos 72°. 16.