Before starting the exam, review the convergence of power series.
No books, no notes and no discussions are allowed after you start the exam.
There will be a more theoretical second part exam later on.

1. Describe the sets
 1a. \(A = \{ z \in \mathbb{C} : \frac{|z| - 1}{|z| + 1} = 1 \} \)
 1b. \(B = \{ z \in \mathbb{C} : |z|^2 = \text{Im}(z) \} \)
 1c. \(C = \{ z \in \mathbb{C} : |z^2 - 1| < 1 \} \)

2. For this question do not use any known results.
 2a. Let \(X \) and \(Y \) be a metric space and let \((f_n) \) be a set of continuous functions from \(X \) into \(Y \).
 Show that if the sequence \(f_n \) converges uniformly to \(f \) then \(f \) is continuous.
 2b. Let \(D \subseteq \mathbb{C} \) be an open subset and let \(f_i : D \rightarrow \mathbb{C} \) be continuous. Suppose \(|f_i(z)| \leq M_i \) for \(z \in D \) and that \(\sum_{i=0}^{\infty} M_i \) converges. Show that for each \(z \in D \), \(\sum_{i=0}^{\infty} f_i(z) \) converges and that the function \(f : D \rightarrow \mathbb{C} \) defined by \(f(z) = \sum_{i=0}^{\infty} f_i(z) \) is continuous on \(D \). (Hint: Use 2a.)
 2c. Show that the series \(\sum_{i=0}^{\infty} i z^i \) converges uniformly for \(|z| < \alpha \) and is continuous in \(B(0, 1) \). (Hint: Use 2b.)

3. Discuss the convergence of the series (\(z \in \mathbb{C} \)):
 3a. \(\sum_{i=0}^{\infty} i z^i \)
 3b. \(\sum_{i=1}^{\infty} i z^i / i^2 \)
 3c. \(\sum_{i=1}^{\infty} (1 + (-1)^i) i z^i \)
 3d. \(\sum_{i=0}^{\infty} z^n \)
 3e. \(\sum_{i=0}^{\infty} (i + 2^i) z^i \)

4. Suppose \(\sum c_n z^n \) has radius of convergence \(R \). Find the radius of convergence of
 \(\sum n^p c_n z^n \)
 \(\sum f_n |z^n | \)
 \(\sum c_n^2 z^n \)

5. Which of the following polynomials are analytic?
 \(P(x + iy) = x^3 - 3xy^2 - x + i(3x^2y - y^3 - y) \)
\[P(x + iy) = x^2 + iy^2 \]
\[P(x + iy) = 2xy + i(y^2 - x^2) \]
Express the analytic ones as a function of \(z \) and show that for these we have \(P'(z) = P_x(z). \)

6. By using Cauchy-Riemann equations, show that a nonconstant analytic functions cannot take only imaginary values.

7. Show that \(\sum_{i=1}^{\infty} z^n / n \) converges at all points of the unit circle except \(z = 1 \).

8. Suppose that \(\sum a_k = A \) and \(\sum b_k = B \) converge absolutely.

8a. Show that \(\sum d_k \) where \(d_k = \sum_{i=0}^{k} |a_i||b_{k-i}| \) converges.

8b. Let
\[
A_n = a_0 + \ldots + a_n, \\
B_n = b_0 + \ldots + b_n, \\
C_n = c_0 + \ldots + c_n
\]
where \(c_k = \sum_{i=0}^{k} a_i b_{k-i} \). Show that \(A_nB_n = C_n + R_n \) where \(|R_n| \leq d_{n+1} + \ldots + d_{2n} \)

8c. Show that \(\sum c_k = AB. \)

9. The Cauchy product of \(\sum a_n z^n \) and \(\sum b_n z^n \) is defined as \(\sum c_n z^n \) where \(c_n = \sum_{k=0}^{n} a_k b_{n-k} \). Show that if \(\sum a_n z^n \) and \(\sum b_n z^n \) have radii of convergence \(R_1 \) and \(R_2 \) respectively, then \(\sum c_n z^n \) converges to \((\sum a_n z^n)(\sum b_n z^n) \) for \(|z| < \min(R_1, R_2) \).

10. What is the Cauchy product of \(\sum_{n=0}^{\infty} z^n \) with itself?