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Before starting the exam, review the convergence of power series. 

No books, no notes and no discussions are allowed after you start the exam. 

There will be a more theoretical second part exam later on. 

 

1. Describe the sets  

1a. A = {z ∈ � : 1
1

1
=

+
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z

z
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1b. B = {z ∈ � : |z|
2
 = Im(z)}. 

1c. C = {z ∈ � : |z
2
 − 1| < 1}. 

 

2. For this question do not use any known results. 

2a. Let X and Y be a metric space and let (fn)n be a set of continuous functions from X into 

Y. 

Show that if the the sequence fn converges uniformly to f then f is continuous. 

2b. Let D ⊆ � be an open subset and let fi : D → � be continuous. Suppose |fi(z)| ≤ Mi for 

z ∈ D and that ∑
∞

=0i iM  converges. Show that for each z ∈ D, ∑
∞

=0
)(

i i zf  converges and 

that the function f : D → � defined by f(z) = ∑
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=0
)(

i i zf  is continuous on D. (Hint: Use 2a.) 

2c. Show that the series ∑
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=0i

iiz converges uniformly for |z| < α < 1 and is continuous in 

B(0, 1). (Hint: Use 2b.) 

 

3. Discuss the convergence of the series (z ∈ C): 
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4. Suppose ∑
n

n zc has radius of convergence R. Find the radius of convergence of  
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5. Which of the following polynomials are analytic? 

P(x + iy) = x
3
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P(x + iy) = 2xy + i(y
2 

– x
2
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Express the analytic ones as a function of z and show that for these we have P′(z) = Px(z). 

 

6. By using Cauchy-Riemann equations, show that a nonconstant analytic functions 

cannot take only imaginary values. 

 

7. Show that ∑
∞

=1
/

i

n nz  converges at all points of the unit circle except z = 1. 

 

8. Suppose that ∑ ka = A and ∑ kb = B converge absolutely.  

8a. Show that  ∑ kd where dk = ∑ = −
k

i iki ba
0

 converges. 

8b. Let  

An = ao + ... + an 

Bn = bo + ... + bn 

Cn = co + ... + cn 

where ck =∑ = −
k

i ikiba
0

. Show that AnBn = Cn + Rn where |Rn| ≤ dn+1 + ... + d2n 

8c. Show that ∑ kc = AB. 

 

9. The Cauchy product of ∑
n

nza and ∑
n

n zb is defined as ∑
n

nzc where cn = 

∑ = −
n

k knkba
0

. Show that if ∑
n

nza and ∑
n

n zb have radii of convergence R1 and R2 

respectively, then ∑
n

nzc converges to (∑
n

nza )(∑
n

n zb ) for |z| < min(R1, R2). 

10. What is the Cauchy product of ∑
∞

=0n

nz with itself? 

 


