Complex Analysis II
 Midterm (Take Home, First Part)

April-May 2001
Ali Nesin
Before starting the exam, review the convergence of power series.
No books, no notes and no discussions are allowed after you start the exam.
There will be a more theoretical second part exam later on.

1. Describe the sets

1a. $A=\left\{z \in \mathbb{C}: \frac{|z-1|}{|z+1|}=1\right\}$
1b. $B=\left\{z \in \mathbb{C}:|z|^{2}=\operatorname{Im}(z)\right\}$.
1c. $C=\left\{z \in \mathbb{C}:\left|z^{2}-1\right|<1\right\}$.
2. For this question do not use any known results.

2a. Let X and Y be a metric space and let $\left(f_{n}\right)_{n}$ be a set of continuous functions from X into Y.

Show that if the the sequence f_{n} converges uniformly to f then f is continuous.
2b. Let $D \subseteq \mathbb{C}$ be an open subset and let $f_{i}: D \rightarrow \mathbb{C}$ be continuous. Suppose $\left|f_{i}(z)\right| \leq M_{i}$ for $z \in D$ and that $\sum_{i=0}^{\infty} M_{i}$ converges. Show that for each $z \in D, \sum_{i=0}^{\infty} f_{i}(z)$ converges and that the function $f: D \rightarrow \mathbb{C}$ defined by $f(z)=\sum_{i=0}^{\infty} f_{i}(z)$ is continuous on D. (Hint: Use 2 a.)

2c. Show that the series $\sum_{i=0}^{\infty} i z^{i}$ converges uniformly for $|z|<\alpha<1$ and is continuous in $\mathrm{B}(0,1)$. (Hint: Use 2b.)
3. Discuss the convergence of the series $(z \in \mathbf{C})$:

3a. $\sum_{i=0}^{\infty} i z^{i}$
3b. $\sum_{i=1}^{\infty} z^{i} / i^{2}$
3c. $\sum_{i=0}^{\infty}\left(1+(-1)^{i}\right)^{i} z^{i}$
3d. $\sum_{i=0}^{\infty} z^{i!}$
3e. $\sum_{i=0}^{\infty}\left(i+2^{i}\right) z^{i}$
4. Suppose $\sum c_{n} z^{n}$ has radius of convergence R. Find the radius of convergence of

$$
\begin{aligned}
& \sum n^{p} c_{n} z^{n} \\
& \sum\left|c_{n}\right| z^{n} \\
& \sum c_{n}^{2} z^{n}
\end{aligned}
$$

5. Which of the following polynomials are analytic?

$$
P(x+i y)=x^{3}-3 x y^{2}-x+i\left(3 x^{2} y-y^{3}-y\right)
$$

$$
\begin{aligned}
& P(x+i y)=x^{2}+i y^{2} \\
& P(x+i y)=2 x y+i\left(y^{2}-x^{2}\right)
\end{aligned}
$$

Express the analytic ones as a function of z and show that for these we have $P^{\prime}(z)=P_{x}(z)$.
6. By using Cauchy-Riemann equations, show that a nonconstant analytic functions cannot take only imaginary values.
7. Show that $\sum_{i=1}^{\infty} z^{n} / n$ converges at all points of the unit circle except $z=1$.
8. Suppose that $\sum a_{k}=A$ and $\sum b_{k}=B$ converge absolutely.

8a. Show that $\sum d_{k}$ where $d_{k}=\sum_{i=0}^{k}\left|a_{i} \| b_{k-i}\right|$ converges.
8b. Let

$$
\begin{aligned}
& A_{n}=a_{0}+\ldots+a_{n} \\
& B_{n}=b_{0}+\ldots+b_{n} \\
& C_{n}=c_{0}+\ldots+c_{n}
\end{aligned}
$$

where $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$. Show that $A_{n} B_{n}=C_{n}+R_{n}$ where $\left|R_{n}\right| \leq d_{n+1}+\ldots+d_{2 n}$
8c. Show that $\sum c_{k}=A B$.
9. The Cauchy product of $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ is defined as $\sum c_{n} z^{n}$ where $c_{n}=$ $\sum_{k=0}^{n} a_{k} b_{n-k}$. Show that if $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ have radii of convergence R_{1} and R_{2} respectively, then $\sum c_{n} z^{n}$ converges to $\left(\sum a_{n} z^{n}\right)\left(\sum b_{n} z^{n}\right)$ for $|z|<\min \left(R_{1}, R_{2}\right)$.
10. What is the Cauchy product of $\sum_{n=0}^{\infty} z^{n}$ with itself?

