Complex (and Real) Analysis Final

Math 331
Ali Nesin
26 Ocak 2000

1. Let $f(x)=x^{3}-3 x+5$. Show that $f(\ln a)=6$ for some $a>1$.
2. Find $\cos \left(15^{\circ}\right)$.
3. Express $\sin (4 \mathrm{x})$ and $\cos (4 x)$ in terms of $\sin x$ and $\cos x$. (Prove your formula).
4. Draw with as much care as possible the graph of

$$
f(x)=\frac{x^{2}}{(x-1)(x+2)}
$$

5. Show that $\lim _{x \rightarrow 5}\left(x^{2}-3 x+5\right)=15$ by using the definition of limits.
6. By using the definition of continuity, show that the function $f(x)=\frac{x}{x-1}$ is continuous in its domain of definition.
7. Is the function

$$
f(x)= \begin{cases}e^{-1 / x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

continuous at 0 ? (Justify your answer).
8. Prove that if $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$ then $\lim _{n \rightarrow \infty} a_{n} b_{n}=a b$.
9. Let $f_{n}(x)=\frac{1}{1+x^{n}}$.

9a. Find the set $A=\left\{x \in \mathbb{R}:\left(f_{n}(x)\right)_{n}\right.$ converges $\}$.
For $x \in A$, let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.
9b. What is f ?
9c. Is the convergence uniform? Justify your answer.
9d. Discuss the uniform convergence of $\left(f_{n}\right)_{n}$ in the (open or closed) intervals contained in A.
10. Discuss the convergence and absolute convergence of the alternating series

$$
1-1 / 2^{\alpha}+1 / 3^{\alpha}-1 / 4^{\alpha}+\ldots
$$

for various values of α.
11. Given two continuous numerical functions f and g, show that $\max \{f(x), g(x)\}$ is also continuous.
12. Let f be a continuous numerical function on $[a, b]$. Let x_{1}, \ldots, x_{n} be arbitrary points in $[a$, $b]$. Show that $f\left(x_{0}\right)=\frac{1}{n}\left(f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)\right)$ for some $x_{0} \in[a, b]$.

13a. What is the Taylor series of e^{x} ?
13b. Estimate the error made in replacing the function e^{x} on the interval $[0,1]$ by its Taylor polynomial of degree 10 .

13c. On what interval $[0, h]$ does the function e^{x} differ from its Taylor polynomial of degree 10 by no more than 10^{-7} ?
13d. For what value of n does the function e^{x} differ from its Taylor polynomial of degree n by no more than 10^{-7} on the interval $[0,1]$?

