Complex (and Real) Analysis Final Math 331 Ali Nesin 26 Ocak 2000

1. Let $f(x) = x^3 - 3x + 5$. Show that $f(\ln a) = 6$ for some a > 1.

2. Find $\cos(15^{\circ})$.

3. Express sin(4x) and cos(4x) in terms of sin x and cos x. (Prove your formula).

4. Draw with as much care as possible the graph of

$$f(x) = \frac{x^2}{(x-1)(x+2)}$$

5. Show that $\lim_{x \to 5} (x^2 - 3x + 5) = 15$ by using the definition of limits.

6. By using the definition of continuity, show that the function $f(x) = \frac{x}{x-1}$ is continuous in its domain of definition.

7. Is the function

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

continuous at 0? (Justify your answer).

8. Prove that if $\lim_{n \to \infty} a_n = a$ and $\lim_{n \to \infty} b_n = b$ then $\lim_{n \to \infty} a_n b_n = ab$.

9. Let
$$f_n(x) = \frac{1}{1+x^n}$$
.

9a. Find the set A = {x ∈ ℝ : (f_n(x))_n converges}. For x ∈ A, let f(x) = lim_{n→∞}f_n(x).
9b. What is f?
9c. Is the convergence uniform? Justify your answer.
9d. Discuss the uniform convergence of (f_n)_n in the (open or closed) intervals contained in A.

10. Discuss the convergence and absolute convergence of the alternating series $1 - 1/2^{\alpha} + 1/3^{\alpha} - 1/4^{\alpha} + ...$

for various values of α .

11. Given two continuous numerical functions f and g, show that $\max\{f(x), g(x)\}\$ is also continuous.

12. Let *f* be a continuous numerical function on [*a*, *b*]. Let $x_1, ..., x_n$ be arbitrary points in [*a*, *b*]. Show that $f(x_0) = \frac{1}{n} (f(x_1) + ... + f(x_n))$ for some $x_0 \in [a, b]$.

13a. What is the Taylor series of e^x ?

13b. Estimate the error made in replacing the function e^x on the interval [0, 1] by its Taylor polynomial of degree 10.

13c. On what interval [0, *h*] does the function e^x differ from its Taylor polynomial of degree 10 by no more than 10^{-7} ?

13d. For what value of *n* does the function e^x differ from its Taylor polynomial of degree *n* by no more than 10^{-7} on the interval [0, 1]?