1. Going back to the definitions, find all the complex numbers \(z \) where the function \(f(z) = |z|^2 \) is differentiable.

2. Prove the Cauchy-Riemann equations for an analytic function \(f \).

3. Let \(f = u + iv \) be an entire function where \(u \) and \(v \) are real valued functions on \(\mathbb{C} \). Find all functions \(w : \mathbb{C} \to \mathbb{R} \) such that the function \(u + iw \) is entire.

4. Is there a function \(v : \mathbb{C} \to \mathbb{R} \) such that the function \(f(x + iy) = \sin(x) + iv(x + iy) \) is entire? If so find it, otherwise disprove the existence.

5. Find the Laurent series of \(f(z) = \frac{(z^2 - 1)}{z} \) around \(z_0 = 0 \).

6. Prove that \(\cos^2 z + \sin^2 z = 1 \) for all \(z \in \mathbb{C} \).

7. Find the first four terms of the Laurent series of \(f(z) = e^z / \sin z \) around 0.

8. Find \(\int_{|z|=1/2} \frac{e^z - e^{-z}}{z^3} \, dz \).

9. Suppose \(f \) and \(g \) are analytic in a region \(D \). Suppose also that \(f(z)^2 = g(z)^2 \) for \(z \in D \). What can you say about \(f \) and \(g \)?

10. Suppose \(f \) and \(g \) are entire functions such that \(|f(z)| \leq |g(z)| \) for all \(z \). What can you say about the relationship of \(f \) and \(g \)?

11. Suppose \(f \) is analytic in a domain \(\Omega \) containing the unit disc and \(|f(z)| > 2 \) for all \(|z| = 1 \) and also \(f(0) = 1 \). Show that \(f \) must be equal to zero for some point in the unit disc.

12. Suppose \(f \) is any analytic function in the open unit disc. Show that there must be a sequence \((z_n)_n \) with \(|z_n| \to 1 \) such that \(f(z_n) \) is bounded.