Complex Analysis

Resit
September 2001
Ali Nesin

1. Going back to the definitions, find all the complex numbers z where the function $f(z)=$ $|z|^{2}$ is differentiable.
2. Prove the Cauchy-Riemann equations for an analytic function f.
3. Let $f=u+i v$ be an entire function where u and v are real valued functions on \mathbf{C}. Find all functions $w: \mathbb{C} \rightarrow \mathbb{R}$ such that the function $u+i w$ is entire.
4. Is there a function $v: \mathbb{C} \rightarrow \mathbb{R}$ such that the function $f(x+i y)=\sin (x)+i v(x+i y)$ is entire? If so find $i t$, otherwise disprove the existence.
5. Find the Laurent series of

$$
f(z)=\left(z^{2}-1\right) / z
$$

around $z_{0}=0$.
6. Prove that $\cos ^{2} z+\sin ^{2} z=1$ for all $z \in \mathbb{C}$.
7. Find the first four terms of the Laurent series of $f(z)=e^{z} / \sin z$ around 0 .
8. Find $\int_{|z|=1 / 2} \frac{e^{z}-e^{-z}}{z^{3}} d z$.
9. Suppose f and g are analytic in a region D. Suppose also that $f(z)^{2}=g(z)^{2}$ for $z \in D$. What can you say about f and g ?
10. Suppose f and g are entire functions such that $|f(z)| \leq|g(z)|$ for all z. What can you say about the relationship of f and g ?
11. Suppose f is analytic in a domain Ω containing the unit disc and $|f(z)|>2$ for all $|z|=1$ and also $f(0)=1$. Show that f must be equal to zero for some point in the unit disc.
12. Suppose f is any analytic function in the open unit disc. Show that there must be a sequence $\left(z_{n}\right)_{n}$ with $\left|z_{n}\right| \rightarrow 1$ such that $f\left(z_{n}\right)$ is bounded.

