Math 331 Real and Complex Analysis Midterm 1 November 24, 2000 Ali Nesin

1a. Starting from the axioms for real numbers, show that for any real number A > 0 there is an integer n > 0 such that A < n. (Archimedean Property)

1b. Show that for any $\varepsilon > 0$ there is an integer n > 0 such that $1/n < \varepsilon$.

1c. By using the definition of limit of a sequence, show that $\lim_{n \to \infty} 1/n = 0$.

2a. Show that any increasing and bounded sequence of real numbers has a limit, namely the least upper bound of the sequence.

Let $(a_n)_n$ be a sequence of real numbers. We say that $\sum_{i=0}^{\infty} a_i$ converges to the real number ℓ

if the sequence of "partial sums" $\left(\sum_{i=0}^{n} a_i\right)_n$ converges to ℓ . Let $r \in (0, 1)$ be a real number. **2b.** Show that the sequence $\left(\sum_{i=0}^{n} r^n\right)_n$ is increasing and bounded by $\frac{1}{1-r}$. **2c.** Show that $\sum_{i=0}^{\infty} r^n$ converges to the real number $\frac{1}{1-r}$.

2d. Let $(a_n)_n$ be a sequence of strictly positive real numbers. Show that if $a_{n+1}/a_n \le r$ for some $r \in (0, 1)$ then $\sum_{i=0}^{\infty} a_i$ converges.

2e. Let *x* be a positive real number. Show that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges.

2f. Let $(a_n)_n$ be a sequence of strictly positive real numbers. Assume that $\lim_{n \to \infty} a_{n+1}/a_n$ exists and is < 1. Show that $\sum_{i=0}^{\infty} a_i$ converges.

3. Let $f: [a, b] \to \mathbb{R}$ be continuous and increasing on a closed interval [a, b]. Let A = f(a) and B = f(b). Show that $f: [a, b] \to [A, B]$ is a bijection which has a continuous and increasing inverse.