Homework *p*-Adic Numbers 26th of July, 1999 Ali Nesin

Hensel's Lemma. Let $f(X) \in \mathbb{Z}_p[X]$ and assume that there is an $\alpha \in \mathbb{Z}_p$ such that $f(\alpha) \equiv 0 \pmod{p}$ and $f'(\alpha) \neq 0 \pmod{p}$. Then there is $a \beta \in \mathbb{Z}_p$ such that $f(\beta) = 0$ and $\beta \equiv \alpha \pmod{p}$.

0. Prove Hensel's Lemma.

1. For what values of *p* does $x^2 + 1$ has a solution in \mathbb{Q}_p ?

2. Show that an element $x \in \mathbb{Q}_p^*$ is a square if and only if it can be written as $x = p^{2n}y^2$ with $y \in \mathbb{Z}_p^*$. Conclude that $|\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2| = 2|\mathbb{Z}_p^*/(\mathbb{Z}_p^*)^2|$ and that if *A* is a set of representatives of $\mathbb{Z}_p^*/(\mathbb{Z}_p^*)^2$, then $A \cup pA$ is a set of representatives of $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$.

3. Let *p* be a prime $\neq 2$.

3a. Show that there is an integer *a* such that

a) *a* is not a square in \mathbb{Q} , b) *p* does not divide *a*, c) $x^2 \equiv a \pmod{p}$ has a solution.

3b. Construct a sequence $(x_n)_{n \in \mathbb{N}}$ such that

a) $x_n \equiv x_{n-1} \pmod{p^n}$ b) $x_n^2 \equiv a \pmod{p^{n+1}}$

3c. Conclude that \mathbb{Q} is not a complete field with respect to the *p*-adic valuation.

4. Show that a finite multiplicative subgroup of a field is cyclic. (**Hint:** We may suppose that the group is a *p*-group for some *p*).

5. Let *p* be a prime and *m* a nonzero integer.

5a. Let $1 \neq x \in 1 + p\mathbb{Z}_p$. Show that if $x^m = 1$ then p divides m.

5b. Let *m* not divisible by *p*. Let $A = \{x \in \mathbb{Q}_p : x^m = 1\}$. Show

that $A \subseteq \mathbb{Z}_p$ and that the canonical map $\varphi : A \to \mathbb{Z}_p / p\mathbb{Z}_p$ is one-to-one.

5c. Conclude that if p does not divide m and if \mathbf{Q}_p has a primitive m^{th} root of unity then, m divides p - 1.

5d. Conclude that \mathbb{Q}_p is not an algebraically closed field.

6. Let *p* be a prime and *m* a nonzero integer that divides p - 1. Show that \mathbb{Q}_p has a primitive m^{th} root of unity.

7a. Let $p \neq 2$ be a prime and let $a \in \mathbb{Z}_p^*$. Show that if there exists an element $b \in \mathbb{Z}_p$ such that $b^2 \equiv a \pmod{p\mathbb{Z}_p}$, then *a* is the square of an element in \mathbb{Z}_p .

7b. Conclude that if $p \neq 2$, then $\mathbf{Q}_p^* / (\mathbf{Q}_p^*)^2 \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and if $c \in \mathbb{Z}_p^*$ is any element which is not a square modulo p, then the set $\{1, p, c, cp\}$ is a complete set of representatives of $\mathbb{Q}_p^* / (\mathbb{Q}_p^*)^2$.

7c. Let *a* ∈ \mathbb{Z}_2^* . Show that *a* is a square in \mathbb{Z}_2 iff *a* ≡ 1 (mod 8). Conclude that $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2 \approx (\mathbb{Z}/2\mathbb{Z})^3$ and {1, -1, 5, -5, 2, -2, 10, -10} is a complete set of representatives of $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^2$. (**Hint:** One needs a stronger version of Hensel's Lemma).