Homework p-Adic Numbers

26th of July, 1999

Ali Nesin

Hensel's Lemma. Let $f(X) \in \mathbb{Z}_{p}[\mathrm{X}]$ and assume that there is an $\alpha \in \mathbb{Z}_{p}$ such that $f(\alpha) \equiv 0(\bmod p)$ and $f^{\prime}(\alpha) \neq 0(\bmod p)$. Then there is $a \beta \in \mathbb{Z}_{p}$ such that $f(\beta)=0$ and $\beta \equiv \alpha(\bmod p)$.
0. Prove Hensel's Lemma.

1. For what values of p does $x^{2}+1$ has a solution in \mathbb{Q}_{p} ?
2. Show that an element $x \in \mathbb{Q}_{p}{ }^{*}$ is a square if and only if it can be written as $x=p^{2 n} y^{2}$ with $y \in \mathbb{Z}_{p} *$. Conclude that $\left|\mathbb{Q}_{p} * /\left(\mathbb{Q}_{p} *\right)^{2}\right|=$ $2\left|\mathbb{Z}_{p} * /\left(\mathbb{Z}_{p}^{*}\right)^{2}\right|$ and that if A is a set of representatives of $\mathbb{Z}_{p} * /\left(\mathbb{Z}_{p}^{*}\right)^{2}$, then $A \cup p A$ is a set of representatives of $\mathbb{Q}_{p}{ }^{*} /\left(\mathbb{Q}_{p}{ }^{*}\right)^{2}$.
3. Let p be a prime $\neq 2$.

3a. Show that there is an integer a such that
a) a is not a square in \mathbb{Q},
b) p does not divide a,
c) $x^{2} \equiv a(\bmod p)$ has a solution.

3b. Construct a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that
a) $x_{n} \equiv x_{n-1}\left(\bmod p^{n}\right)$
b) $x_{n}{ }^{2} \equiv a\left(\bmod p^{n+1}\right)$

3c. Conclude that \mathbb{Q} is not a complete field with respect to the p-adic valuation.
4. Show that a finite multiplicative subgroup of a field is cyclic. (Hint: We may suppose that the group is a p-group for some p).
5. Let p be a prime and m a nonzero integer.

5a. Let $1 \neq x \in 1+p \mathbb{Z}_{p}$. Show that if $x^{m}=1$ then p divides m.
5b. Let m not divisible by p. Let $A=\left\{x \in \mathbb{Q}_{p}: x^{m}=1\right\}$. Show that $A \subseteq \mathbb{Z}_{p}$ and that the canonical map $\varphi: A \rightarrow \mathbb{Z}_{p} / p \mathbb{Z}_{p}$ is one-to-one.

5c. Conclude that if p does not divide m and if \mathbf{Q}_{p} has a primitive $m^{\text {th }}$ root of unity then, m divides $p-1$.

5d. Conclude that \mathbb{Q}_{p} is not an algebraically closed field.
6. Let p be a prime and m a nonzero integer that divides $p-1$. Show that \mathbb{Q}_{p} has a primitive $m^{\text {th }}$ root of unity.

7a. Let $p \neq 2$ be a prime and let $a \in \mathbb{Z}_{p}{ }^{*}$. Show that if there exists an element $b \in \mathbb{Z}_{p}$ such that $b^{2} \equiv a\left(\bmod p \mathbb{Z}_{p}\right)$, then a is the square of an element in \mathbb{Z}_{p}.

7b. Conclude that if $p \neq 2$, then $\mathbf{Q}_{p}{ }^{*} /\left(\mathbf{Q}_{p}{ }^{*}\right)^{2} \approx \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and if $c \in \mathbb{Z}_{p}{ }^{*}$ is any element which is not a square modulo p, then the set $\{1, p, c, c p\}$ is a complete set of representatives of $\mathbb{Q}_{p}{ }^{* /}\left(\mathbb{Q}_{p}\right)^{2}$.

7c. Let $a \in \mathbb{Z}_{2}{ }^{*}$. Show that a is a square in \mathbb{Z}_{2} iff $a \equiv 1(\bmod 8)$. Conclude that $\mathbb{Q}_{2} * /\left(\mathbb{Q}_{2} *\right)^{2} \approx(\mathbb{Z} / 2 \mathbb{Z})^{3}$ and $\{1,-1,5,-5,2,-2,10$, $-10\}$ is a complete set of representatives of $\mathbb{Q}_{p}{ }^{* /}\left(\mathbb{Q}_{p}{ }^{*}\right)^{2}$. (Hint: One needs a stronger version of Hensel's Lemma).

