Complex Analysis

Final Exam June 2001 Ali Nesin

Open book. (You don't have to!) Justify your answers. (You have to!)

1. Find the Taylor series of $f(z) = z^{3} + 2z - 1$ g(z) = 1/z

around $z_0 = 1$.

Answer: For *f* analytic around *a*, we know that the Taylor series of *f* is given by $f(z) = \frac{1}{2}(u)$

 $\sum_{n \in \mathbb{N}} \frac{f^{(n)}(a)}{n!} (z-a)^n$. We can apply this formula to find the coefficients of the Taylor

series. For the first one this works well:

$$f^{(0)}(1) = f(1) = 2,$$

$$f^{(1)}(1) = (3z^{2} + 2)(z = 1) = 5$$

$$f^{(2)}(1) = 6z(z = 1) = 6$$

$$f^{(3)}(1) = 6$$

$$f^{(4)}(z) = 0$$

Thus $f(z) = 2 + 5(z-1) + 3(z-1)^2 + (z-1)^3$.

One can check the equality $z^3 + 2z - 1 = 2 + 5(z-1) + 3(z-1)^2 + (z-1)^3$ to be sure that there is no mistake.

For the second, a second method works better:

$$g(z) = \frac{1}{z} = \frac{1}{1 - (1 - z)} = \sum_{n} (1 - z)^{n} = \sum_{n} (-1)^{n} (z - 1)^{n}$$

2. Find the first four terms of the Laurent series of $f(z) = 1/\sin z$ around 0.

Answer: Since $\lim_{z\to 0} zf(z) = 1$, f(z) has a pole of order 1 at 0. (At this point we can apply the Taylor series formula to the analytic function $z/\sin z$). Hence the Laurent series of f(z) around 0 is given by $f(z) = a_{-1}/z + a_0 + a_1z + a_2z^2 + ...$ Clearly $a_{-1} = \lim_{z\to 0} zf(z) = \lim_{z\to 0} z/\sin z = 1$. Thus $f(z) = 1/z + a_0 + a_1z + a_2z^2 + ...$ (At this point we can apply the Taylor series formula to the function f(z) - 1/z). Thus $a_0 = \lim_{z\to 0} (f(z) - 1/z) = \lim_{z\to 0} (1/\sin z - 1/z) = \lim_{z\to 0} (z - \sin z)/z\sin z = \lim_{z\to 0} (1 - \cos z)/(\sin z + z\cos z) = \lim_{z\to 0} \sin z/(2\cos z - z\sin z) = 0$ by applying L'Hospital's Rule twice. Hence $a_0 = 0$ and $f(z) = 1/z + a_1z + a_2z^2 + ...$ Hence $a_1 = \lim_{z\to 0} (f(z) - 1/z)/z = \lim_{z\to 0} (z - \sin z)/z^2\sin z = \lim_{z\to 0} (1 - \cos z)/(2z\sin z + z^2\cos z) = \lim_{z\to 0} \sin z/(2z\sin z + 4z\cos z - z^2\sin z) = \lim_{z\to 0} \cos z/(6\cos z - 6z\sin z - z^2\cos z) = 1/6$. Thus $f(z) = 1/z + z/6 + a_2z^2 + ...$ and $a_2 = \lim_{z\to 0} (f(z) - 1/z - z/6)/z^2$. Applying L'Hospital's Rule as many times at it is needed, one easily finds a_2 . (This short answer was enough to get the highest score).

3. Find $\int_{|z|=1} \frac{e^z - e^{-z}}{z^4} dz$.

Answer: Apply one of the versions of Cauchy's Integral Formula that states the following: Let U be an open set and f analytic in U. If γ is a closed rectifiable curve in U such that $n(\gamma, w) = 0$ for all $w \in \mathbb{C} \setminus U$ then, for all $a \in U \setminus {\gamma}$, $f^{(k)}(a)n(\gamma, a) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{k+1}} dz$. Take U to be the plane C, f to be $e^z - e^{-z}$, γ to be the unit circle

positively oriented, a = 0 and k = 3. The hypothesis are satisfied. Thus the integral is equal to $2\pi i f^{(k)}(a)n(\gamma, a)/k! = 2\pi i f^{(3)}(0)n(\gamma, 0)/3! = 2\pi i f^{(3)}(0)/3! = 2\pi i \times 2/3! = 2\pi i/3.$

Another Solution: Since $e^z = 1 + z + z^2/2! + z^3/3! + ...$ and $e^{-z} = 1 - z + z^2/2! - z^3/3! + ...$ (Taylor series around 0), $e^z - e^{-z} = 2z + 2z^3/3! + 2z^5/5!$ (Taylor series around 0). Thus $(e^z - e^{-z})/z^4 = 2/z^3 + 2/3!z + 2z/5! + ...$ (Laurent series around 0). Now apply the theorem about the Laurent series that states the following: Let *f* be analytic in the open annulus ann(*a*; *R*₁, *R*₂).

Then $f(z) = \sum_{n=-\infty}^{n=\infty} a_n (z-a)^n$ and the coefficients are given by $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$ where γ is any circle inside the annulus. Take a = 0, $R_1 = 2$, $R_2 = 1/2$, $f(z) = (e^z - e^{-z})/z^4$, n = -1, γ the unit circle. Since $a_{-1} = 2/3! = 1/3$, we get the same answer, namely $2\pi i/3$.

Another Solution: We apply the Residue Theorem to $f(z) = (e^z - e^{-z})/z^4$. Recall the Residue Theorem: If f is analytic in the connected open set U except for the isolated singularities at $a_1, ..., a_n$, if γ is a closed rectifiable curve in U which does not pass through any of the points a_k and if $\gamma \approx 0$ in U then $\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^n n(\gamma; a_k) \operatorname{Res}(f; a_k)$. Take U to be the unit disk, $f(z) = (e^z - e^{-z})/z^4$, n = 1, $a_1 = 0$, γ the unit circle oriented positively. The hypothesis are satisfied. Since $\operatorname{Res}(f; 0) = a_{-1} = 2/3! = 1/3$ and $n(\gamma; 0) = 1$, we again obtain $2\pi i/3$.

4. Suppose *f* is analytic in a simply connected region Ω , γ is a circle in Ω and *f* has no zeroes on γ . In terms of the zeroes of *f* inside γ what is the value of $\int_{\gamma} \frac{f'}{f} z^p dz$?

Answer: We apply the generalization of the Argument Principle: Let f be meromorphic in the connected open set Ω with zeroes $z_1, ..., z_n$ and poles $p_1, ..., p_m$ counted according to multiplicity. If g is analytic in Ω and γ is any closed rectifiable curve in Ω with $\gamma \approx 0$ and not passing through any z_k or p_k , then $\frac{1}{2\pi i} \int_{\gamma} g \frac{f'}{f} = \sum_{k=1}^n g(z_k) n(\gamma; z_k) - \sum_{i=1}^n g(p_k) n(\gamma; p_k)$. We take $g(z) = z^p$. Since f is analytic in Ω , f has no poles in Ω . Let $z_1, ..., z_n$ be the zeroes of fin Ω counted according to multiplicity. Then the theorem says $\int_{\gamma} \frac{f'}{f} z^p dz = 2\pi i \sum_{k=1}^n z_i^p$.

5. Suppose that Ω is a region containing the disc D, f is a nonconstant analytic function in Ω such that |f| is constant on ∂D . Show that f has at least one zero inside D.

Note that f cannot be 0 on ∂D , because otherwise the zeroes of f would have an accumulation point and f would be zero, hence a constant. Assume f has no zero in D and consider g(z) = 1/f(z) defined on D. Then g is analytic in D

6. Suppose f and g are analytic in a region D. Suppose also that $f(z)^2 = g(z)^2$ for $z \in D$. What can you say about f and g?

We will show that f = g or f = -g on D. Since D is connected, it is enough to show that this is so on any open and bounded disk of D. Hence we may assume that D is an open and bounded disk. If f = 0 on D we are done. Otherwise, D being bounded, f has finitely many zeroes in D. The set $E = D \setminus \{z : f(z) = 0\}$ is still connected. Now $E_+ = \{z \in E : f(z) = g(z)\}$ and $E_- = \{z \in E : f(z) = -g(z)\}$ disconnect E. Hence $E = E_+$ or $E = E_-$.

7. Suppose f and g are entire functions such that $|f(z)| \le |g(z)|$ for all z. What can you say about the relationship of f and g?

8. Suppose *f* is analytic in a domain Ω containing the unit disc and |f(z)| > 2 for all |z| = 1 and also f(0) = 1. Show that *f* must be equal to zero for some point in the unit disc.

9. Suppose *f* is any analytic function in the open unit disc. Show that there must be a sequence $(z_n)_n$ with $|z_n| \rightarrow 1$ such that $f(z_n)$ is bounded.

10. Suppose P(z, w) is a polynomial in two complex variables. Suppose w_0 is such that $P(z, w_0)$ has only simple zeroes (as a polynomial in one variable). Show that the same property holds for all w near w_0 . **Hint:** Recall the following weaker version of Rouché's Theorem: Suppose f and g are meromorphic in a neighborhood of $\overline{B}(a;R)$ with no zeroes or poles on the circle C(a; R). If Z_f , Z_g , P_f and P_g denote the number of zeroes and poles of f and g inside γ counted according to their multiplicities and if |f(z) + g(z)| < |f(z)| on γ , then $Z_f - P_f = Z_g - P_g$. Also use the fact that the polynomial function P(z, w) is uniformly continuous on any compact subset of \mathbb{C}^2 .