Complex Analysis

Final Exam
June 2001
Ali Nesin

Open book. (You don’t have to!)
Justify your answers. (You have to!)

1. Find the Taylor series of
=2 +2z-1
g(@)=1/z
around 7, = 1.
Answer: For f analytic around a, we know that the Taylor series of fis given by f(z) =

(n)
z ne N J |(a) (z—a)" . We can apply this formula to find the coefficients of the Taylor
n.

series. For the first one this works well:
£ =f1)=2,
=G +2)E@=1)=5
ffi(l) =62z=1)=6
?4)(1) =6
(=0
Thus f(z) =2 + 5(z—1) + 3(z=1)* + (z=1)’.
One can check the equality 2+27-1=2+ 5(z-1) + 3(z—1)2 + (z—l)3 to be sure that there
1s no mistake.
For the second, a second method works better:

1 1 n_ N\, _1\I
g(Z)———m—%“(l—z) —zn( D" (z-1)

4

2. Find the first four terms of the Laurent series of f(z) = 1/sin z around 0.

Answer: Since lim, 7f(z) = 1, f(z) has a pole of order 1 at 0. (At this point we can apply
the Taylor series formula to the analytic function z/sin z). Hence the Laurent series of f(z)
around 0 is given by f(z) = a_1/z + ap + a1z + a2z2 + ... Clearly a_; = lim,,0 zf(z) = lim,_,o z/sin
z = 1. Thus fiz) = 1/z + ap + a1z + axz" + ... (At this point we can apply the Taylor series
formula to the function f(z) — 1/z). Thus ag = lim,o (f(z) — 1/z) = lim,o (1/sin z — 1/7) =
lim,_,y (z — sin z)/zsin z = lim,_,o (1 — cos z)/(sin z + zcos z) = lim,_, sin z/(2cos z — zsin z) = 0
by applying L’Hospital’s Rule twice. Hence ap = 0 and f(z) = 1/z + a1z + a»z> + ... . Hence a; =
lim._o ((z) — 1/2)/z = lim._yo (z — sin z)/z°sin z = lim,_y (1 — cosz)/(2zsinz + z°cosz) = lim,_y
sin z/(2sin z + 4zcos z — Z’sin z) = lim,_ g cos z/(6cos z — 6zsin z — 7°cos z) = 1/6. Thus f(z) =
1z + 216 + axz* + ... and a» = lim, _ (f(z) — 1/z — 2/6)/z*. Applying L’Hospital’s Rule as many
times at it is needed, one easily finds a,. (This short answer was enough to get the highest
score).



. et —e *
3. Find J‘Z=1Z—4dz'

Answer: Apply one of the versions of Cauchy’s Integral Formula that states the
following: Let U be an open set and f analytic in U. If Yy is a closed rectifiable curve in U such
that n(y, w) = 0 for all w € C \ U then, for all a € U \ {y}, fPan(y, a) =
k! J' f(z)
277 (7—a)kt!

positively oriented, a = 0 and k = 3. The hypothesis are satisfied. Thus the integral is equal to
21t (@)n(y, aylk! = 2mif P O)n(y, 0)/3! = 2mifP(0) /3! = 2mix2 /3! = 2mi/3.

Another Solution: Since ¢* =1 + 7+ /2! + /3! + ...and ¢ *= 1 — 7+ 2/2! = 2/3! + ...
(Taylor series around 0), e — e = 2z + 27°/3! + 22°/5! (Taylor series around 0). Thus (e° —
¢ 97t =217 + 2/31z + 22/5! + ... (Laurent series around 0). Now apply the theorem about the
Laurent series that states the following: Let f be analytic in the open annulus ann(a; R, R»).

dz. Take U to be the plane C, f to be ¢ — ¢, 7 to be the unit circle

Then f(z) = ano_oooan(z—a)n and the coefficients are given by a, =

1 J- f(z)
27i%Y (7—a)*t!

dz where 7y is any circle inside the annulus. Take a =0, Ry =2, R, = 1/2, f(z)

= (e — e_z)/z4, n =—1, vy the unit circle. Since a_; = 2/3! = 1/3, we get the same answer, namely
2mi/3.

Another Solution: We apply the Residue Theorem to f(z) = (¢° — e “)/z". Recall the
Residue Theorem: If f is analytic in the connected open set U except for the isolated
singularities at ay, ..., a, if Y is a closed rectifiable curve in U which does not pass through

any of the points ay and if Y= 0 in U then %J}/f = zz_ln(y;ak)Res(f;ak). Take U to be
i =
the unit disk, f(z) = (¢ — e, n=1,a =0, Y the unit circle oriented positively. The
hypothesis are satisfied. Since Res(f; 0) = a_; = 2/3! = 1/3 and n(y; 0) = 1, we again obtain
2mi/3.
4. Suppose f is analytic in a simply connected region €2, 7y is a circle in Q and f has no

zeroes on . In terms of the zeroes of finside y what is the value of L/%zp dz?

Answer: We apply the generalization of the Argument Principle: Let f be meromorphic in
the connected open set Q with zeroes zi, ..., z, and poles pi, ..., pm counted according to
multiplicity. If g is analytic in Q and 7 is any closed rectifiable curve in Q with 'y = 0 and not

. 1 [ oon ] n ]
passing through any zi or pi, then — [ g<= 3 8(con(riz) =L 8PN i)
We take g(z) = 7. Since fis analytic in , f has no poles in Q. Let zy, ..., z, be the zeroes of f

in Q counted according to multiplicity. Then the theorem says L/?zp dz=2mi zzzlzlp .

5. Suppose that Q is a region containing the disc D, f is a nonconstant analytic function
in Q such that |f] is constant on 0D. Show that f has at least one zero inside D.

Note that f cannot be 0 on dD, because otherwise the zeroes of f would have an
accumulation point and f would be zero, hence a constant. Assume f has no zero in D and
consider g(z) = 1/f(z) defined on D. Then g is analytic in D



6. Suppose f and g are analytic in a region D. Suppose also that f(z)* = g(z)* for z € D.
What can you say about f and g?

We will show that f = g or f = —g on D. Since D is connected, it is enough to show that
this is so on any open and bounded disk of D. Hence we may assume that D is an open and
bounded disk. If f = 0 on D we are done. Otherwise, D being bounded, f has finitely many
zeroes in D. The set E =D\ {z: f(z) =0} is still connected. Now E, = {z € E: f(z) = g(z)} and
E_={z€ E:f(z) =—g(z)} disconnect E. Hence E=E,or E=E_.

7. Suppose fand g are entire functions such that |f(z)| < |g(z)| for all z. What can you say
about the relationship of fand g?

8. Suppose fis analytic in a domain € containing the unit disc and |f(z)| > 2 for all |z] = 1
and also f(0) = 1. Show that f must be equal to zero for some point in the unit disc.

9. Suppose f is any analytic function in the open unit disc. Show that there must be a
sequence (z,), with |z,| — 1 such that f(z,) is bounded.

10. Suppose P(z, w) is a polynomial in two complex variables. Suppose w, is such that
P(z, w,) has only simple zeroes (as a polynomial in one variable). Show that the same
property holds for all w near w,. Hint: Recall the following weaker version of Rouché’s

Theorem: Suppose f and g are meromorphic in a neighborhood of B(a;R) with no zeroes or
poles on the circle C(a; R). If Z; Z,, Prand P, denote the number of zeroes and poles of f and
g inside 'y counted according to their multiplicities and if |f(z) + g(2)| < |f(z)| on v, then Zy — Py

= Z, — P,. Also use the fact that the polynomial function P(z, w) is uniformly continuous on
any compact subset of C”.



