
 

 

 

Complex Analysis 
 

Final Exam 

June 2001 

Ali Nesin 

 

Open book. (You don’t have to!) 

Justify your answers. (You have to!) 

 

1. Find the Taylor series of  

f(z) = z
3
 + 2z − 1 

g(z) = 1/z 

around zo = 1. 

Answer: For f analytic around a, we know that the Taylor series of f is given by f(z) = 
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. We can apply this formula to find the coefficients of the Taylor 

series. For the first one this works well:  

f
(0)

(1) = f(1) = 2, 

f
(1)

(1) = (3z
2
 + 2)(z = 1) = 5 

f
(2)

(1) = 6z(z = 1) = 6 

f
(3)

(1) = 6 

f
(4)

(z) = 0 

Thus f(z) = 2 + 5(z−1) + 3(z−1)
2
 + (z−1)

3
. 

One can check the equality z
3
 + 2z − 1 = 2 + 5(z−1) + 3(z−1)

2
 + (z−1)

3
 to be sure that there 

is no mistake. 

For the second, a second method works better:  
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2. Find the first four terms of the Laurent series of f(z) = 1/sin z around 0. 

Answer: Since limz→0 zf(z) = 1, f(z) has a pole of order 1 at 0. (At this point we can apply 

the Taylor series formula to the analytic function z/sin z). Hence the Laurent series of f(z) 

around 0 is given by f(z) = a−1/z + a0 + a1z + a2z
2
 + ... Clearly a−1 = limz→0 zf(z) = limz→0 z/sin 

z = 1. Thus f(z) = 1/z + a0 + a1z + a2z
2
 + ... (At this point we can apply the Taylor series 

formula to the function f(z) − 1/z). Thus a0 = limz→0 (f(z) − 1/z) = limz→0 (1/sin z − 1/z) = 

limz→0 (z − sin z)/zsin z = limz→0 (1 − cos z)/(sin z + zcos z) = limz→0 sin z/(2cos z − zsin z) = 0 

by applying L’Hospital’s Rule twice. Hence a0 = 0 and f(z) = 1/z + a1z + a2z
2
 + ... . Hence a1 = 

limz→0 (f(z) − 1/z)/z = limz→0 (z − sin z)/z
2
sin z = limz→0 (1 − cosz)/(2zsinz + z

2
cosz) = limz→0 

sin z/(2sin z + 4zcos z − z
2
sin z) = limz→0 cos z/(6cos z − 6zsin z − z

2
cos z) = 1/6. Thus f(z) = 

1/z + z/6 + a2z
2
 + ... and a2 = limz →0 (f(z) − 1/z − z/6)/z

2
. Applying L’Hospital’s Rule as many 

times at it is needed, one easily finds a2. (This short answer was enough to get the highest 

score). 
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Answer: Apply one of the versions of Cauchy’s Integral Formula that states the 

following: Let U be an open set and f analytic in U. If γ is a closed rectifiable curve in U such 

that n(γ; w) = 0 for all w ∈ C \ U then, for all a ∈ U \ {γ}, f
(k)

(a)n(γ, a) = 

∫ +−γπ
dz
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. Take U to be the plane C, f to be e

z
 − e

−z
, γ to be the unit circle 

positively oriented, a = 0 and k = 3. The hypothesis are satisfied. Thus the integral is equal to 

2πif
(k)

(a)n(γ, a)/k! = 2πif
(3)

(0)n(γ, 0)/3! = 2πif
(3)

(0) /3! = 2πi×2 /3! = 2πi/3. 

Another Solution: Since e
z
 = 1 + z + z

2
/2! + z

3
/3! + ... and e

−z
 = 1 − z + z

2
/2! − z

3
/3! + ... 

(Taylor series around 0), e
z
 − e

−z
 = 2z + 2z

3
/3! + 2z

5
/5! (Taylor series around 0). Thus (e

z
 − 

e
−z

)/z
4
 = 2/z

3
 + 2/3!z + 2z/5! + ... (Laurent series around 0). Now apply the theorem about the 

Laurent series that states the following: Let f be analytic in the open annulus ann(a; R1, R2). 

Then f(z) = ∑
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where γ is any circle inside the annulus. Take a = 0, R1 = 2, R2 = 1/2, f(z) 

= (e
z
 − e

−z
)/z

4
, n = −1, γ the unit circle. Since a−1 = 2/3! = 1/3, we get the same answer, namely 

2πi/3. 

Another Solution: We apply the Residue Theorem to f(z) = (e
z
 − e

−z
)/z

4
. Recall the 

Residue Theorem: If f is analytic in the connected open set U except for the isolated 

singularities at a1, ..., an, if γ is a closed rectifiable curve in U which does not pass through 

any of the points ak and if γ ≈ 0 in U then ∑∫ =
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π γ
. Take U to be 

the unit disk, f(z) = (e
z
 − e

−z
)/z

4
, n = 1, a1 = 0, γ the unit circle oriented positively. The 

hypothesis are satisfied. Since Res(f; 0) = a−1 = 2/3! = 1/3 and n(γ; 0) = 1, we again obtain 

2πi/3. 

 

4. Suppose f is analytic in a simply connected region Ω, γ is a circle in Ω and f has no 

zeroes on γ. In terms of the zeroes of f inside γ what is the value of dzz
f

f p
∫γ

'
? 

Answer: We apply the generalization of the Argument Principle: Let f be meromorphic in 

the connected open set Ω with zeroes z1, ..., zn and poles p1, ..., pm counted according to 

multiplicity. If g is analytic in Ω and γ is any closed rectifiable curve in Ω with γ ≈ 0 and not 

passing through any zk or pk, then ∫ ∑∑ ==
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We take g(z) = z
p
. Since f is analytic in Ω, f has no poles in Ω. Let z1, ..., zn be the zeroes of f 

in Ω counted according to multiplicity. Then the theorem says dzz
f

f p
∫γ

'
= 2πi∑ =
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5. Suppose that Ω is a region containing the disc D, f is a nonconstant analytic function 

in Ω such that |f| is constant on ∂D. Show that f has at least one zero inside D. 

Note that f cannot be 0 on ∂D, because otherwise the zeroes of f would have an 

accumulation point and f would be zero, hence a constant. Assume f has no zero in D and 

consider g(z) = 1/f(z) defined on D. Then g is analytic in D 

 



6. Suppose f and g are analytic in a region D. Suppose also that f(z)
2
 = g(z)

2
 for z ∈ D. 

What can you say about f and g? 

We will show that f = g or f  = −g on D. Since D is connected, it is enough to show that 

this is so on any open and bounded disk of D. Hence we may assume that D is an open and 

bounded disk. If f = 0 on D we are done. Otherwise, D being bounded, f has finitely many 

zeroes in D. The set E = D \ {z : f(z) = 0} is still connected. Now E+ = {z ∈ E : f(z) = g(z)} and 

E− = {z ∈ E : f(z) = −g(z)} disconnect E. Hence E = E+ or E = E−. 

7. Suppose f and g are entire functions such that |f(z)| ≤ |g(z)| for all z. What can you say 

about the relationship of f and g? 

8. Suppose f is analytic in a domain Ω containing the unit disc and |f(z)| > 2 for all |z| = 1 

and also f(0) = 1. Show that f must be equal to zero for some point in the unit disc. 

9. Suppose f is any analytic function in the open unit disc. Show that there must be a 

sequence (zn)n with |zn| → 1 such that f(zn) is bounded. 

10. Suppose P(z, w) is a polynomial in two complex variables. Suppose wo is such that 

P(z, wo) has only simple zeroes (as a polynomial in one variable). Show that the same 

property holds for all w near wo. Hint: Recall the following weaker version of Rouché’s 

Theorem: Suppose f and g are meromorphic in a neighborhood of );( RaB with no zeroes or 

poles on the circle C(a; R). If Zf, Zg, Pf and Pg denote the number of zeroes and poles of f and 

g inside γ counted according to their multiplicities and if |f(z) + g(z)| < |f(z)| on γ, then Zf − Pf 

= Zg − Pg. Also use the fact that the polynomial function P(z, w) is uniformly continuous on 

any compact subset of C
2
. 


