Complex Analysis

Final Exam

June 2001
Ali Nesin
Open book. (You don't have to!)
Justify your answers. (You have to!)

1. Find the Taylor series of

$$
\begin{aligned}
& f(z)=z^{3}+2 z-1 \\
& g(z)=1 / z
\end{aligned}
$$

around $z_{0}=1$.
Answer: For f analytic around a, we know that the Taylor series of f is given by $f(z)=$ $\sum_{n \in N} \frac{f^{(n)}(a)}{n!}(z-a)^{n}$. We can apply this formula to find the coefficients of the Taylor series. For the first one this works well:

$$
\begin{aligned}
f^{(0)}(1) & =f(1)=2, \\
f^{(1)}(1) & =\left(3 z^{2}+2\right)(z=1)=5 \\
f^{(2)}(1) & =6 z(z=1)=6 \\
f^{(3)}(1) & =6 \\
f^{(4)}(z) & =0
\end{aligned}
$$

Thus $f(z)=2+5(z-1)+3(z-1)^{2}+(z-1)^{3}$.
One can check the equality $z^{3}+2 z-1=2+5(z-1)+3(z-1)^{2}+(z-1)^{3}$ to be sure that there is no mistake.

For the second, a second method works better:

$$
g(z)=\frac{1}{z}=\frac{1}{1-(1-z)}=\sum_{n}(1-z)^{n}=\sum_{n}(-1)^{n}(z-1)^{n}
$$

2. Find the first four terms of the Laurent series of $f(z)=1 / \sin z$ around 0 .

Answer: Since $\lim _{z \rightarrow 0} z f(z)=1, f(z)$ has a pole of order 1 at 0 . (At this point we can apply the Taylor series formula to the analytic function $z / \sin z$). Hence the Laurent series of $f(z)$ around 0 is given by $f(z)=a_{-1} / z+a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ Clearly $a_{-1}=\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} \mathrm{z} / \sin$ $\mathrm{z}=1$. Thus $f(z)=1 / z+a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ (At this point we can apply the Taylor series formula to the function $f(z)-1 / z)$. Thus $a_{0}=\lim _{z \rightarrow 0}(f(z)-1 / z)=\lim _{z \rightarrow 0}(1 / \sin z-1 / z)=$ $\lim _{z \rightarrow 0}(z-\sin z) / z \sin z=\lim _{z \rightarrow 0}(1-\cos z) /(\sin z+z \cos z)=\lim _{z \rightarrow 0} \sin z /(2 \cos z-z \sin z)=0$ by applying L'Hospital's Rule twice. Hence $a_{0}=0$ and $f(z)=1 / z+a_{1} z+a_{2} z^{2}+\ldots$. Hence $a_{1}=$ $\lim _{z \rightarrow 0}(f(z)-1 / z) / z=\lim _{z \rightarrow 0}(z-\sin z) / z^{2} \sin z=\lim _{z \rightarrow 0}(1-\cos z) /\left(2 z \sin z+z^{2} \cos z\right)=\lim _{z \rightarrow 0}$ $\sin z /\left(2 \sin z+4 z \cos z-z^{2} \sin z\right)=\lim _{z \rightarrow 0} \cos z /\left(6 \cos z-6 z \sin z-z^{2} \cos z\right)=1 / 6$. Thus $f(z)=$ $1 / z+z / 6+a_{2} z^{2}+\ldots$ and $a_{2}=\lim _{z \rightarrow 0}(f(z)-1 / z-z / 6) / z^{2}$. Applying L'Hospital's Rule as many times at it is needed, one easily finds a_{2}. (This short answer was enough to get the highest score).
3. Find $\int_{|z|=1} \frac{e^{z}-e^{-z}}{z^{4}} d z$.

Answer: Apply one of the versions of Cauchy's Integral Formula that states the following: Let U be an open set and f analytic in U. If γ is a closed rectifiable curve in U such that $n(\gamma ; w)=0$ for all $w \in \mathbf{C} \backslash U$ then, for all $a \in U \backslash\{\gamma\}, f^{(k)}(a) n(\gamma, a)=$ $\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{k+1}} d z$. Take U to be the plane \mathbf{C}, f to be $e^{z}-e^{-z}, \gamma$ to be the unit circle positively oriented, $a=0$ and $k=3$. The hypothesis are satisfied. Thus the integral is equal to $2 \pi i f^{(k)}(a) n(\gamma, a) / k!=2 \pi i f^{(3)}(0) n(\gamma, 0) / 3!=2 \pi i f^{(3)}(0) / 3!=2 \pi i \times 2 / 3!=2 \pi i / 3$.

Another Solution: Since $e^{z}=1+z+z^{2} / 2!+z^{3} / 3!+\ldots$ and $e^{-z}=1-z+z^{2} / 2!-z^{3} / 3!+\ldots$ (Taylor series around 0), $e^{z}-e^{-z}=2 z+2 z^{3} / 3!+2 z^{5} / 5$! (Taylor series around 0). Thus $\left(e^{z}-\right.$ $\left.e^{-z}\right) / z^{4}=2 / z^{3}+2 / 3!z+2 z / 5!+\ldots$ (Laurent series around 0$)$. Now apply the theorem about the Laurent series that states the following: Let f be analytic in the open annulus ann $\left(a ; R_{1}, R_{2}\right)$.
Then $f(z)=\sum_{n=-\infty}^{n=\infty} a_{n}(z-a)^{n}$ and the coefficients are given by $a_{n}=$ $\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} d z$ where γ is any circle inside the annulus. Take $a=0, R_{1}=2, R_{2}=1 / 2, f(z)$ $=\left(e^{z}-e^{-z}\right) / z^{4}, n=-1, \gamma$ the unit circle. Since $a_{-1}=2 / 3!=1 / 3$, we get the same answer, namely $2 \pi i / 3$.

Another Solution: We apply the Residue Theorem to $f(z)=\left(e^{z}-e^{-z}\right) / z^{4}$. Recall the Residue Theorem: If f is analytic in the connected open set U except for the isolated singularities at a_{1}, \ldots, a_{n}, if γ is a closed rectifiable curve in U which does not pass through any of the points a_{k} and if $\gamma \approx 0$ in U then $\frac{1}{2 \pi i} \int_{\gamma} f=\sum_{k=1}^{n} n\left(\gamma ; a_{k}\right) \operatorname{Re} s\left(f ; a_{k}\right)$. Take U to be the unit disk, $f(z)=\left(e^{z}-e^{-z}\right) / z^{4}, n=1, a_{1}=0, \gamma$ the unit circle oriented positively. The hypothesis are satisfied. Since $\operatorname{Res}(f ; 0)=a_{-1}=2 / 3!=1 / 3$ and $n(\gamma ; 0)=1$, we again obtain $2 \pi i / 3$.
4. Suppose f is analytic in a simply connected region Ω, γ is a circle in Ω and f has no zeroes on γ. In terms of the zeroes of f inside γ what is the value of $\int_{\gamma} \frac{f^{\prime}}{f} z^{p} d z$?

Answer: We apply the generalization of the Argument Principle: Let f be meromorphic in the connected open set Ω with zeroes z_{1}, \ldots, z_{n} and poles p_{1}, \ldots, p_{m} counted according to multiplicity. If g is analytic in Ω and γ is any closed rectifiable curve in Ω with $\gamma \approx 0$ and not passing through any z_{k} or p_{k}, then $\frac{1}{2 \pi i} \int_{\gamma} g \frac{f^{\prime}}{f}=\sum_{k=1}^{n} g\left(z_{k}\right) n\left(\gamma ; z_{k}\right)-\sum_{i=1}^{n} g\left(p_{k}\right) n\left(\gamma ; p_{k}\right)$. We take $g(z)=z^{p}$. Since f is analytic in Ω, f has no poles in Ω. Let z_{1}, \ldots, z_{n} be the zeroes of f in Ω counted according to multiplicity. Then the theorem says $\int_{\gamma} \frac{f^{\prime}}{f} z^{p} d z=2 \pi i \sum_{k=1}^{n} z_{i}^{p}$.
5. Suppose that Ω is a region containing the disc D, f is a nonconstant analytic function in Ω such that $|f|$ is constant on ∂D. Show that f has at least one zero inside D.

Note that f cannot be 0 on ∂D, because otherwise the zeroes of f would have an accumulation point and f would be zero, hence a constant. Assume f has no zero in D and consider $g(z)=1 / f(z)$ defined on D. Then g is analytic in D
6. Suppose f and g are analytic in a region D. Suppose also that $f(z)^{2}=g(z)^{2}$ for $z \in D$. What can you say about f and g ?

We will show that $f=g$ or $f=-g$ on D. Since D is connected, it is enough to show that this is so on any open and bounded disk of D. Hence we may assume that D is an open and bounded disk. If $f=0$ on D we are done. Otherwise, D being bounded, f has finitely many zeroes in D. The set $E=D \backslash\{z: f(z)=0\}$ is still connected. Now $E_{+}=\{z \in E: f(z)=g(z)\}$ and $E_{-}=\{z \in E: f(z)=-g(z)\}$ disconnect E. Hence $E=E_{+}$or $E=E_{-}$.
7. Suppose f and g are entire functions such that $|f(z)| \leq|g(z)|$ for all z. What can you say about the relationship of f and g ?
8. Suppose f is analytic in a domain Ω containing the unit disc and $|f(z)|>2$ for all $|z|=1$ and also $f(0)=1$. Show that f must be equal to zero for some point in the unit disc.
9. Suppose f is any analytic function in the open unit disc. Show that there must be a sequence $\left(z_{n}\right)_{n}$ with $\left|z_{n}\right| \rightarrow 1$ such that $f\left(z_{n}\right)$ is bounded.

10 . Suppose $P(z, w)$ is a polynomial in two complex variables. Suppose w_{o} is such that $P\left(z, w_{\mathrm{o}}\right)$ has only simple zeroes (as a polynomial in one variable). Show that the same property holds for all w near w_{0}. Hint: Recall the following weaker version of Rouché's Theorem: Suppose f and g are meromorphic in a neighborhood of $\bar{B}(a ; R)$ with no zeroes or poles on the circle $C(a ; R)$. If Z_{f}, Z_{g}, P_{f} and P_{g} denote the number of zeroes and poles of f and g inside γ counted according to their multiplicities and if $|f(z)+g(z)|<|f(z)|$ on γ, then $Z_{f}-P_{f}$ $=Z_{g}-P_{g}$. Also use the fact that the polynomial function $P(z, w)$ is uniformly continuous on any compact subset of \mathbf{C}^{2}.

