## Math 152

MT on Continuity
Ali Nesin
April 6, 2008

Let $a \in X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ a function. $f$ is called continuous at $a$ if for all $\varepsilon>0$ there is a $\delta>0$ such that for all $x \in(a-\delta, a+\delta)$, we have $|f(x)-f(a)|<\varepsilon$.

1. Let $X \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. Assume that there is a $\alpha>0$ such that $(a-\alpha, a+\alpha) \cap X=$ $\{a\}$. Show that any function $f: X \rightarrow \mathbb{R}$ is continuous at $a$. ( 3 pts .)
2. Let $X$ be a finite subset of $\mathbb{R}$. Show that any function $f: X \rightarrow \mathbb{R}$ is continuous at any point of $X$. (3 pts.)
3. Let $X=\{1 / n: n=1,2, \ldots\}$. Find all continuous functions from $X$ into $\mathbb{R}$. ( 5 pts.)
4. Show that the function defined by

$$
f(x)=\frac{1-x^{2}}{3-2 x+x^{3}}
$$

is continuous at any point $a \in \mathbb{R}$ where $3-2 a+a^{3} \neq 0$. ( 10 pts.)
5. Show that the function $\exp$ is continuous everywhere. ( 15 pts .)
6. Let $a \in X \subseteq \mathbb{R}$ and $f, g: X \rightarrow \mathbb{R}$ be continuous at $a$. Show that $f+g$ and $f g$ is continuous at $a$. ( $3+4$ pts.)
7. Let $a \in X, Y \subseteq \mathbb{R}, f: X \rightarrow Y$ be continuous at $a$ and $g: Y \rightarrow \mathbb{R}$ be continuous at $f(a)$. Show that $g \circ f$ is continuous at $a$. ( 10 pts .)
8. Let $a \in X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ be continuous at $a$. Show that there is a $\alpha>0$ such that $f$ is bounded on $[a-\alpha, a+\alpha]$. ( 8 pts .)
9. Let $a \in X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R} \backslash\{0\}$ be continuous at $a$. Show that $1 / f$ is continuous at $a$. ( 7 pts .)
10. Show that the function $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{ } x$ is continuous at 0 . (7 pts.)
11. Let $a \in X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$. Show that $f$ is continuous at $a$ if and only if for any open interval $I$ containing $f(a)$ there is an open interval $J$ containing $a$ such that $J \cap$ $X \subseteq f^{-1}(I)$. ( 10 pts .)
12. Let $X \subseteq \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$. Show that $f$ is continuous everywhere if and only if for any union $U$ of open intervals, $f^{-1}(U)$ is also a union of open intervals. ( 15 pts .)

