Math 152 MT on Continuity Ali Nesin April 6, 2008

Let $a \in X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$ a function. *f* is called *continuous at a* if for all $\varepsilon > 0$ there is a $\delta > 0$ such that for all $x \in (a - \delta, a + \delta)$, we have $|f(x) - f(a)| < \varepsilon$.

- **1.** Let $X \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. Assume that there is a $\alpha > 0$ such that $(a \alpha, a + \alpha) \cap X = \{a\}$. Show that any function $f: X \to \mathbb{R}$ is continuous at *a*. (3 pts.)
- **2.** Let *X* be a finite subset of \mathbb{R} . Show that any function $f: X \to \mathbb{R}$ is continuous at any point of *X*. (3 pts.)
- 3. Let $X = \{1/n : n = 1, 2, ...\}$. Find all continuous functions from X into \mathbb{R} . (5 pts.)
- 4. Show that the function defined by

$$f(x) = \frac{1 - x^2}{3 - 2x + x^3}$$

is continuous at any point $a \in \mathbb{R}$ where $3 - 2a + a^3 \neq 0$. (10 pts.)

- 5. Show that the function exp is continuous everywhere. (15 pts.)
- 6. Let $a \in X \subseteq \mathbb{R}$ and $f, g : X \to \mathbb{R}$ be continuous at a. Show that f + g and fg is continuous at a. (3 + 4 pts.)
- 7. Let $a \in X, Y \subseteq \mathbb{R}, f : X \to Y$ be continuous at *a* and $g : Y \to \mathbb{R}$ be continuous at f(a). Show that $g \circ f$ is continuous at *a*. (10 pts.)
- 8. Let $a \in X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$ be continuous at *a*. Show that there is a $\alpha > 0$ such that *f* is bounded on $[a \alpha, a + \alpha]$. (8 pts.)
- 9. Let $a \in X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R} \setminus \{0\}$ be continuous at *a*. Show that 1/f is continuous at *a*. (7 pts.)
- **10.** Show that the function $f : \mathbb{R}^{\ge 0} \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is continuous at 0. (7 pts.)
- 11. Let $a \in X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$. Show that *f* is continuous at *a* if and only if for any open interval *I* containing f(a) there is an open interval *J* containing *a* such that $J \cap X \subseteq f^{-1}(I)$. (10 pts.)
- 12. Let $X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$. Show that *f* is continuous everywhere if and only if for any union *U* of open intervals, $f^{-1}(U)$ is also a union of open intervals. (15 pts.)