Math 152 Final June 2006 Ali Nesin

- 1. Let $f(x) = x^3 + 3/x^2 4x + \sqrt{x}$. Show that there is an $a \in [1, 2]$ such that for any $x \in [1, 2]$, $f(x) \ge f(a)$. (4 pts.)
- 2. Let $f(x) = x^3 3/x^2 + 4x + \sqrt{x}$. Show that there is an $a \in (0, 1]$ such that f(a) = 2. (4 pts.)

3. Let *A* and *B* be two subsets of \mathbb{R} which are bounded above. Let $A + B = \{a + b : a \in A, b \in B\}.$ Show that $\sup(A + B) = \sup A + \sup B$. (7 pts.)

- 4. Let (X, d) be a metric space. Show that $|d(x, z)| \ge |d(x, y) d(y, z)|$ for all $x, y, z \in X$. (6 pts.)
- 5. Let $A \subseteq \mathbb{R}$ be a closed subset of \mathbb{R} which is bounded above. Is it true that sup $A \in A$? Prove or disprove. (5 pts.)
- 6. Let (X, d) be a metric space and $A \subseteq X$. Show that A is closed if and only if any convergent sequence $(a_n)_n$ of A converges to an element of A. (10 pts.)
- 7. Let (X_1, d_1) and (X_2, d_2) be two metric spaces. Let $d : X_1 \times X_2 \to \mathbb{R}$ be defined by $d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}.$
 - a) Show that *d* is a metric on $X_1 \times X_2$. (4 pts.)
 - b) Show that a sequence $((x_n, y_n))_n$ coverges to a point (a, b) of $X_1 \times X_2$ if and only if the sequences $(x_n)_n$ and $(y_n)_n$ of X_1 and X_2 converge to the points a and b respectively. (6 pts.)
 - c) Show that the topology induced by the metric d on $X_1 \times X_2$ is the product topology. (8 pts.)
- 8. Let X be a compact space, Y a topological space and $f: X \to Y$ a continuous bijection. Show that f^{-1} is continuous. (5 pts.)
- Let (X, d) and (Y, d) be two metric spaces and let f: X → Y be a function. f is said to be locally constant if for any x ∈ X there is an ε > 0 such that f is constant on the ball B(x, ε).
 - a) Find an example of a locally constant function which is not a constant. (5 pts.)
 - b) Show that a locally constant function is continuous. (6 pts.)
 - c) Suppose *f* is locally constant function and $c \in Y$. Show that $\{x \in X : f(x) = c\}$ is both open and closed. (6 pts.)
 - d) Show that if X is connected and f is locally constant then f is a constant. (6 pts.)
- 10. Let X be a topological space. Suppose that for any continuous function $f : X \to \mathbb{R}$ and any real numbers c < d < e if there are $x, y \in X$ such that f(x) = c and f(y) = d, then there is a $z \in X$ such that f(z) = d. Show that X is connected. (8 pts.)