Math 152 Final

June 2006
Ali Nesin

1. Let $f(x)=x^{3}+3 / x^{2}-4 x+\sqrt{ } x$. Show that there is an $a \in[1,2]$ such that for any $x \in[1$, 2], $f(x) \geq f(a)$. (4 pts.)
2. Let $f(x)=x^{3}-3 / x^{2}+4 x+\sqrt{ } x$. Show that there is an $a \in(0,1]$ such that $f(a)=2$. (4 pts.)
3. Let A and B be two subsets of \mathbb{R} which are bounded above. Let

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Show that $\sup (A+B)=\sup A+\sup B .(7$ pts. $)$
4. Let (X, d) be a metric space. Show that $|d(x, z)| \geq|d(x, y)-d(y, z)|$ for all $x, y, z \in$ X. (6 pts.)
5. Let $A \subseteq \mathbb{R}$ be a closed subset of \mathbb{R} which is bounded above. Is it true that $\sup A \in A$? Prove or disprove. (5 pts.)
6. Let (X, d) be a metric space and $A \subseteq X$. Show that A is closed if and only if any convergent sequence $\left(a_{n}\right)_{n}$ of A converges to an element of A. (10 pts.)
7. Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be two metric spaces. Let $d: X_{1} \times X_{2} \rightarrow \mathbb{R}$ be defined by $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}$.
a) Show that d is a metric on $X_{1} \times X_{2}$. (4 pts.)
b) Show that a sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n}$ coverges to a point (a, b) of $X_{1} \times X_{2}$ if and only if the sequences $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ of X_{1} and X_{2} converge to the points a and b respectively. (6 pts.)
c) Show that the topology induced by the metric d on $X_{1} \times X_{2}$ is the product topology. (8 pts.)
8. Let X be a compact space, Y a topological space and $f: X \rightarrow Y$ a continuous bijection. Show that f^{-1} is continuous. (5 pts.)
9. Let (X, d) and (Y, d) be two metric spaces and let $f: X \rightarrow Y$ be a function. f is said to be locally constant if for any $x \in X$ there is an $\varepsilon>0$ such that f is constant on the ball $B(x, \varepsilon)$.
a) Find an example of a locally constant function which is not a constant. (5 pts.)
b) Show that a locally constant function is continuous. (6 pts.)
c) Suppose f is locally constant function and $c \in Y$. Show that $\{x \in X: f(x)=c\}$ is both open and closed. (6 pts.)
d) Show that if X is connected and f is locally constant then f is a constant. (6 pts.)
10. Let X be a topological space. Suppose that for any continuous function $f: X \rightarrow \mathbb{R}$ and any real numbers $c<d<e$ if there are $x, y \in X$ such that $f(x)=c$ and $f(y)=d$, then there is a $z \in X$ such that $f(z)=d$. Show that X is connected. (8 pts.)

