1. Let \(f(x) = x^3 + 3x^2 - 4x + \sqrt{x} \). Show that there is an \(a \in [1, 2] \) such that for any \(x \in [1, 2] \), \(f(x) \geq f(a) \). (4 pts.)

2. Let \(f(x) = x^3 - 3x^2 + 4x + \sqrt{x} \). Show that there is an \(a \in (0, 1] \) such that \(f(a) = 2 \). (4 pts.)

3. Let \(A \) and \(B \) be two subsets of \(\mathbb{R} \) which are bounded above. Let \(A + B = \{a + b : a \in A, b \in B\} \).
Show that \(\sup(A + B) = \sup A + \sup B \). (7 pts.)

4. Let \((X, d)\) be a metric space. Show that \(|d(x, z)| \geq |d(x, y) - d(y, z)| \) for all \(x, y, z \in X \). (6 pts.)

5. Let \(A \subseteq \mathbb{R} \) be a closed subset of \(\mathbb{R} \) which is bounded above. Is it true that \(\sup A \in A \)? Prove or disprove. (5 pts.)

6. Let \((X, d)\) be a metric space and \(A \subseteq X \). Show that \(A \) is closed if and only if any convergent sequence \((a_n)\) of \(A \) converges to an element of \(A \). (10 pts.)

7. Let \((X_1, d_1)\) and \((X_2, d_2)\) be two metric spaces. Let \(d : X_1 \times X_2 \to \mathbb{R} \) be defined by \(d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\} \).
 a) Show that \(d \) is a metric on \(X_1 \times X_2 \). (4 pts.)
 b) Show that a sequence \((x_n, y_n)\) converges to a point \((a, b)\) of \(X_1 \times X_2 \) if and only if the sequences \((x_n)\) and \((y_n)\) of \(X_1 \) and \(X_2 \) converge to the points \(a \) and \(b \) respectively. (6 pts.)
 c) Show that the topology induced by the metric \(d \) on \(X_1 \times X_2 \) is the product topology. (8 pts.)

8. Let \(X \) be a compact space, \(Y \) a topological space and \(f : X \to Y \) a continuous bijection. Show that \(f^{-1} \) is continuous. (5 pts.)

9. Let \((X, d)\) and \((Y, d)\) be two metric spaces and let \(f : X \to Y \) be a function. \(f \) is said to be locally constant if for any \(x \in X \) there is an \(\varepsilon > 0 \) such that \(f \) is constant on the ball \(B(x, \varepsilon) \).
 a) Find an example of a locally constant function which is not a constant. (5 pts.)
 b) Show that a locally constant function is continuous. (6 pts.)
 c) Suppose \(f \) is locally constant function and \(c \in Y \). Show that \(\{x \in X : f(x) = c\} \) is both open and closed. (6 pts.)
 d) Show that if \(X \) is connected and \(f \) is locally constant then \(f \) is a constant. (6 pts.)

10. Let \(X \) be a topological space. Suppose that for any continuous function \(f : X \to \mathbb{R} \) and any real numbers \(c < d < e \) if there are \(x, y \in X \) such that \(f(x) = c \) and \(f(y) = d \), then there is a \(z \in X \) such that \(f(z) = d \). Show that \(X \) is connected. (8 pts.)