Math 112 Midterm

Ali Nesin

9 Nisan 2006

1. Let $X=(0,1)$. Let $C=\{(1 / n, 1): n=1,2, \ldots\}$. Show that any infinite subset of C covers X but that no finite subset of C covers X.

Proof: Let C^{\prime} be a finite subset of $C, n=\max \left\{n:(1 / n, 1) \in C^{\prime}\right\}$ and $x \in(0,1 / n)$. Then x $\notin \cup C^{\prime}$.
2. Let $T=[0,1)$ and $0<\varepsilon<1$. Let $C=\{(1 / n, 1): n=1,2, \ldots\} \cup\{(-\varepsilon, \varepsilon)\}$. Does C have a finite subcover of T ?
3. Let $S \subseteq \mathbb{R}$ and C any cover of S. Show that C has a countable subcover of S.
4. Let $\left(x_{n}\right)_{n}$ be a converging sequence of a metric space. Let $x=\lim _{n \rightarrow \infty} x_{n}$. Show that

$$
\left\{x_{n}: n \in \mathbb{N}\right\} \cup\{x\}
$$

is compact.
5. Let X be a metric space. Show that the following are equivalent:
a) X is compact.
b) For any set C of closed subsets of X if $\cap C=\varnothing$ then there are $F(1), \ldots, F(n) \in C$ such that $F(1) \cap \ldots \cap F(n)=\varnothing$.

Proof: $(\mathrm{a} \Rightarrow \mathrm{b})$. For $F \in C$, let $U_{F}=F^{c}$. Then $\cup_{F \in C} U_{F}=\cup_{F \in C} F^{c}=\left(\cap_{F \in C} F\right)^{c}=\varnothing^{c}=X$. Thus $\left(U_{F}\right)_{F \in C}$ is an open cover of X. Since X is compacts, there are $F(1), \ldots, F(n)$ such that $U_{F(1)} \cup \ldots \cup U_{F(n)}=X$. By taking the complements, we see that $F(1) \cap \ldots \cap F(n)=\varnothing$.
$(\mathrm{b} \Rightarrow \mathrm{a})$. Let $U=\left(U_{i}\right)_{i}$ be an open cover of X. Then $\cap_{i} U_{i}^{c}=\left(\cup_{i} U_{i}\right)^{c}=X^{c}=\varnothing$. Thus there $i(1), \ldots, i(n) \in I$ such that $U_{i(1)}{ }^{c} \cap \ldots U_{i(n)}{ }^{c}=\varnothing$. By taking the compelements, we see that
5. Let $X \subseteq \mathbb{R}$. Show that the following are equivalent:
a) X is compact.
b) For any set C of closed subsets of X if $\cap C=\varnothing$ then there are $F(1), \ldots, F(n) \in C$ such that $F(1) \cap \ldots \cap F(n)=\varnothing$.
c) If $(F(n))_{n \in \mathbb{N}}$ is a sequence of nonempty closed subsets of X such that $F(n+1) \subseteq F(n)$ for all $n \in \mathbb{N}$ then $\cap_{n} F(n) \neq \varnothing$.
$(\mathrm{b} \Rightarrow \mathrm{c})$. Assume $\cap_{n} F(n)=\varnothing$. Then by hypothesis there are m_{1}, \ldots, m_{k} such that $F\left(m_{1}\right) \cap$.. $\cap F\left(m_{k}\right)=\varnothing$. Let $n=\max \left\{m_{1}, \ldots, m_{k}\right\}$. Then $F(n)=F(1) \cap . . \cap F(n)=\varnothing$, a contradiction.
$(\mathrm{c} \Rightarrow \mathrm{a})$. Let $U=\left(U_{i}\right)_{i}$ be an open cover of X. Assume it has no finite subcover. Let $U_{1} \in$ U be one of the open subsets of the cover. Suppose $U_{n} \in U$ is chosen so that $U_{n} \not \subset U_{1} \cup \ldots \cup$ U_{n-1}. Since $U_{1} \cup \ldots \cup U_{n-1} \cup U_{n} \neq X$, there is a $U_{n+1} \in U$ so that $U_{n+1} \not \subset U_{1} \cup \ldots \cup U_{n-1} \cup U_{n}$. This gives us, for each $n \in \mathbb{N}, U_{n} \in U$ such that $U_{n} \not \subset U_{1} \cup \ldots \cup U_{n-1}$. Let $F_{n}=\left(U_{1} \cup \ldots \cup\right.$ $\left.U_{n}\right)^{c}$. Then each F_{n} is closed, nonempty and $F_{n+1} \subseteq F_{n}$. Then $\cap_{n} F_{n} \neq \varnothing$. By taking
6. Recall that a subset X of a topological space is connected if for any two disjoint open subsets U and V of X, if $X \subseteq U \cup V$ then either $X \subseteq U$ or $X \subseteq V$. Show that a connected subset of \mathbb{R} is an interval (of any sort).
7. Show that if $\left(C_{i}\right)_{i}$ is a family of connected subsets such that $C_{i} \cap C_{j} \neq \varnothing$ for all i and j, then $\cup_{i} C_{i}$ is also connected.

Proof: Assume U and V are two open disjoint subsets uch that $\cup_{i} C_{i} \subseteq U \cup V$. Then for each i, either $C_{i} \subseteq U$ or $C_{i} \subseteq V$. If $U_{i} \subseteq U$ and $U_{j} \subseteq V$ for i and j then $U_{i} \cap U_{j}=\varnothing$, a contradiction. Therefore either all the U_{i} 's are in U or they are all in V. Hence either $\cup_{i} C_{i} \subseteq U$ or $\cup_{i} C_{i} V$.
8. Let $S \subseteq \mathbb{R}$ be a disconnected subset such that $S \cup\{1\}$ is connected. Show that 1 is a limit point of S. (Recall that an element a is a limit point of a subset S of a topological space if any open subset containing a contains an element of S different from a.)

Proof: It is enough to show that for any $\varepsilon>0,(1-\varepsilon, 1+\varepsilon) \cap S \neq \varnothing$. Assume this is not the case. Let $\varepsilon>0$ be such a number. Then $(-\infty, 1-\varepsilon)$ and $(1-\varepsilon / 2, \infty)$ disconects $S \cup\{1\}$.
9. Let X be a topological space. Let S be a subset of X. An element $a \in S$ is called isolated if there is an open subset U such that $U \cap S=\{a\}$. We let $I(S)$ denote the set of isolated points of S. Find an example of a topological space X and a subset $S \subseteq X$ with $I(S \backslash I(S)) \neq \varnothing$.
10. Show that the product of two compact topological spaces is compact.

