20.03.2006-24.03.2006 HW 152

1. Show that X and Y are connected topological spaces if and only if $X \times Y$ is connected.

2. If *X* is a topological space and $Y \subseteq X$, then we can define a topology on *Y* as follows: Open subsets of *Y* are the intersection of open subsets of *X* with *Y*. Check that this really defines a topology on *Y*.

3. Show that open subsets of \mathbb{Q} are unions of open intervals (a, b) for $a, b \in \mathbb{Q}$.

4. Let *X* be a topological space. Let $Y \subseteq X$. Show that if *Y* is connected then so is \overline{Y} .

5. Let *X* be a topological space. $(A_i)_{i \in I}$ is connected space of *X*. Suppose that for all *i*, *j*

 $Ai \cap Aj \neq \emptyset$. Show that $\cup Ai$ is connected.