Math 151 Final Exam Ali Nesin January 19, 2006

1. A metric space (*X*, *d*) is called **discrete** if there is an $\alpha > 0$ such that for all distinct *x*, *y* $\in X$, $d(x, y) > \alpha$.

1a. Show that any finite metric space is discrete.

1b. Give an example of an infinite discrete metric space.

1c. Show that any Cauchy sequence in a discrete metric space is eventually constant.

1d. Show that any Cauchy sequence in a discrete metric space has a limit.

2. Consider \mathbb{R} with its natural metric space structure.

- a) Show that if s > -1 then for all natural numbers n, $(1 + s)^n \ge 1 + ns$.
- b) Show that if $r \in (-1, 1)$ then the sequence $(r^n)_n$ converges to 0.
- c) Show that if $r \notin (-1, 1]$ then the sequence $(r^n)_n$ diverges.

d) Find $\lim_{n \to \infty} (1/n)^n$.

e) Find $\lim_{n \to \infty} (1/2 + 1/n)^n$.

3. Find
$$\lim_{n \to \infty} \left(\sqrt{n^2 - n} - n \right)$$

4. Find
$$\lim_{n\to\infty} \left(\frac{n-2}{n^2-5}\right)^{\frac{n-1}{3n+5}}$$

5. Show that if a, b > 0 then $\lim_{n\to\infty} (a^n + b^n)^{1/n} = \max\{a, b\}$.

6. Let $(x_n)_n$ be a convergent sequence of real numbers. Let

$$y_n = \frac{x_1 + \dots + x_n}{n}.$$

Show that $\lim_{n\to\infty} y_n$ exists and is equal to $\lim_{n\to\infty} x_n$.

- 7. Let $x_1 = 1$, $x_2 = 2$ and $x_n = (x_{n-1} + x_{n-2})/2$ for n > 2.
- a. Show that $1 \le x_n \le 2$ for all *n*.
- b. Show that $|x_n x_{n+1}| = 1/2^{n-1}$ for all *n*.
- c. Show that if m > n then $x_n x_m < 1/2^{n-2}$ for all n.
- d. Show that $(x_n)_n$ is a Cauchy sequence.
- e. Find its $\lim_{n\to\infty} x_n$.

8. We say that a sequence $(x_n)_n$ is **contractive** if there is a constant c, 0 < c < 1 such that $|x_{n+2} - x_{n+1} \le c|x_{n+1} - x_n|$ for all n. Show that every contractive sequence is convergent.

- 9. Let $x_n = 1/1^2 + 1/2^2 + 1/3^2 + \dots + 1/n^2$.
- a. Show that for all integers $n \ge 1$, $x_n \le 2 1/n$.
- b. Conclude that the sequence $(x_n)_n$ converges.
- c. Show that for an integer *n* large enough, $n^2 \leq 2^n$.
- d. Conclude that the sequence $(x_n)_n$ is bounded above by 1 + 1/4 + 1/9 + 1/8 = 107/72.

10. For a natural number *n* define $v(n) = \max\{m : 2^m < n\}$. Show that $\lim_{n \to \infty} v(n)/n = 0$.