Math 151
 Resit

Fall 2005
Ali Nesin
February 20, 2006

Justify all your answers. A nonjustified answer will not receive any grade whatsoever, even if the answer is correct. DO NOT use symbols such as \forall, \exists, \Rightarrow. Make full sentences with correct punctuation.

1. Show that the sum of the reciprocals of natural numbers whose decimal expansion contains at least a zero $1 / 10+\ldots+1 / 90+1 / 100+1 / 101+$ $\ldots+1 / 109+1 / 110+1 / 120+\ldots$ diverges.
2. Show that if $\sum_{i=0}^{\infty} a_{i}$ converges then $\lim _{i \rightarrow \infty} a_{i}=0$.
3. Show that a sequence $\sum_{i=0}^{\infty} a_{i}$ converges if and only if for all $\epsilon>0$, there exists an N such that for all $n>m>N,\left|\sum_{i=m}^{n} a_{i}\right|<\epsilon$.
4. Suppose that $u_{n}, v_{n}>0$ and $u_{n+1} / u_{n} \leq v_{n+1} / v_{n}$ eventually. If $\sum_{n} v_{n}$ converges then $\sum_{n} u_{n}$ converges.
5. Let $a_{n}>0, b_{n}>0$. Show that if $\lim _{i \rightarrow \infty} b_{i} / a_{i}=0$ and $\sum_{i=0}^{\infty} a_{i}$ converges then $\sum_{i=0}^{\infty} b_{i}$ converges as well.
6. Show that an absolutely convergent series is convergent.
7. Let $\sum_{i=0}^{\infty} a_{i}$ be an absolutely convergent series. Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be a bijection. Let $b_{i}=a_{f(i)}$. Show that $\sum_{i=0}^{\infty} b_{i}$ is also absolutely convergent and its sum is equal to $\sum_{i=0}^{\infty} a_{i}$.
8. Let us partition the terms $\left(a_{i}\right)_{i}$ of an absolutely convergent series $\sum_{i=0}^{\infty} a_{i}$ in two disjoint and infinite subsets $\left(b_{i}\right)_{i}$ and $\left(c_{i}\right)_{i}$. Show that $\sum_{i=0}^{\infty} b_{i}$ and $\sum_{i=0}^{\infty} c_{i}$ are absolutely convergent series and $\sum_{i=0}^{\infty} a_{i}=\sum_{i=0}^{\infty} b_{i}+\sum_{i=0}^{\infty} c_{i}$.
9. Show that the sum of the reciprocals of natural numbers whose decimal expansion does not contain a zero $1 / 1+\ldots+1 / 9+1 / 11++\ldots+1 / 19+$ $1 / 21+\ldots$ converges.
