Local Fields

Summer Midterm I 15th of June, 1999 Ali Nesin

Throughout, | | is a nonarchimedean valuation on a field *k*. Let $o(k) = o = \{x \in k : |x| \le 1\}$.

1. Show that o is a subring of *k* (called the **ring of integers** of the valuation). (2 pts.)

2. Show that the set o* of invertible elements of 0 is $\{x \in k : |x| = 1\}$. (2 pts.)

3. Show that $\wp(k) = \wp = \{x \in k : |x| < 1\}$ is an ideal of 0. (2 pts.)

4. Show that the ring $0/\wp$ is in fact a field (called the **residue field** of the valuation). (15 pts.)

5. Let <u>k</u> be the completion of k. Denote by <u>o</u> and <u> \wp </u> the ring of integers and the corresponding ideal of the field <u>k</u>. Show that $o = \underline{o} \cap k$ and $\wp = \underline{\wp} \cap k$. Deduce that there is a natural one-to-one field homomorphism from o/\wp into \underline{o}/\wp . (2 + 2 + 5 pts.)

6. Show that the above natural map is an isomorphism of fields. (**Hint:** k is dense in \underline{k}). (10 pts.)

7. The set $G(k) = G = \{ |x| : x \in k^* \}$ is called the **valuation group**. It is clearly a subgroup of \mathbb{R}^* . Show that $G(k) = G(\underline{k})$. (10 pts.)

8. We say that the valuation is **discrete** if the valuation group is discrete in the real topology, i.e. if there exists a $\delta > 0$ such that for all $a \in k^*$, if $1 - \delta < |a| < 1 + \delta$ then |a| = 1. Show that the valuation is discrete if and only if the ideal $\wp(k)$ is a principal ideal. (15 pts.)

9. Let $k = \mathbb{Q}$ together with the *p*-adic topology for some prime integer *p*. Find o, \wp and o/\wp explicitely. (15 pts.)

10. Let $k = \mathbb{Q}(T)$ together with the *T*-adic topology. Find o, \wp , o, $\underline{\wp}$, o/\wp and $o/\underline{\wp}$ explicitly. (20 pts.)