Math 151 Final June 15, 2005 Ali Nesin

- 1. Show that a differentiable function $f : \mathbb{R} \to \mathbb{R}$ is continuous. (5 pts.)
- 2. Let *K* be a compact metric space. Show that if $f: K \to \mathbb{R}$ is continuous and one to one, then its inverse $f^{-1}: f(K) \to K$ is continuous as well. (10 pts.)
- 3. A metric space *M* is said to be **connected** if whenever *M* is a disjoint union of two open sets, one of the open sets must be empty. Let *M* and *N* be two metric spaces and let $f: M \to N$ be a continuous map. Assume that *M* is connected. Show that f(M) is connected. (10 pts.)
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and let $a \in \mathbb{R}$. Let $f^{s}(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$. Show that if f'(a) exists then $f^{s}(a)$ exists as well. Is the converse true? (5 pts.)
- 5. Show that if the function $g : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 and if $g(x_0) \neq 0$ then the function 1/g is differentiable at x_0 . (15 pts.)
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Let $a \in \mathbb{R}$. Show that $\lim_{x \to a} f(x) = c$ iff for any sequence $(x_n)_n$ that converges to a, $\lim_{n \to \infty} f(x_n) = c$. (10 pts.)
- 7. Show that $\lim_{x\to 0} \sin(1/x)$ does not exist. (5 pts.)
- 8. Let $(q_n)_n$ be an enumeration of all the rattional numbers. Let $f(q_n) = 1/n$ and f(x) = 0 for all $x \in \mathbb{R} \setminus \mathbb{Q}$. Show that *f* is continuous at all $a \in \mathbb{R} \setminus \mathbb{Q}$. (10 pts.)
- 9. Let $f : [a, b] \to \mathbb{R}$ be continuous and one to one. Let $c \in (a, b)$ be such that f is differentiable at c and that $f'(c) \neq 0$. Show that $f^{-1} : f([a, b]) \to [a, b]$ is differentiable at c and that $(f^{-1})'(c) = 1/f'(c)$. (**Hint:** You may use #2 and #6). (20 pts.)
- 10. Integrate $\int_0^{\pi/2} x^2 \sin x dx$, $\int \ln(\sin^2 x) \cos x dx$, $\int \frac{x dx}{1+x^2}$, $\int \frac{x dx}{(1+x)^2}$. (2+2+2+3)

pts.)

11. Differentiate $\int_{x}^{\pi/2} \sin t \, dt \int_{0}^{x^3} \sin t \, dt$ and $\int_{x^2}^{x^3} \sin t \, dt$ with respect to x. (2 + 3 + 4 pts.)