Analysis Final Exam (Math 212) Spring 2005
 Ali Nesin

1. Find a sequences $\left(a_{n}\right)_{n}$ of real numbers such that any real number is the limit of one of its subsequences.

Recall that given a sequence $\left(a_{n}\right)_{n}$ of real numbers limsup a_{n} is defined as

$$
\limsup a_{n}=\lim _{n \rightarrow \infty} \sup \left\{a_{m}: m>n\right\} .
$$

(Here $\sup \left\{a_{m}: m>n\right\}$ can be ∞ and in this case $\lim _{n \rightarrow \infty} \infty$ is defined to be ∞). Note that $\limsup a_{n}$ can be a real number as well as one of ∞ and $-\infty$.

2a. Show that limsup $a_{n}=\infty$ if and only if $\left(a_{n}\right)_{n}$ is unbounded.
$\mathbf{2 b}$. Show that $\limsup a_{n}=-\infty$ if and only if $\lim a_{n}=-\infty$.
Proof: Since the sequence $\left(\sup \left\{a_{m}: m>n\right\}\right)_{n}$ is nonincreasing limsup $a_{n}=\infty$ if and only if $\sup \left\{a_{m}: m>n\right\}=\infty$ for all n. This means that given any $r \in \mathbb{R}$, there is an m such that $r<a_{m}$. Hence the sequence $\left(a_{n}\right)_{n}$ is unbounded. The converse is easy.

Extending the previous definition of convergence, if $\lim _{n \rightarrow \infty} a_{n}=\infty$, we will say that the sequences $\left(a_{n}\right)_{n}$ converges to ∞. Similarly if $\lim _{n \rightarrow \infty} a_{n}=-\infty$, we will say that the sequences $\left(a_{n}\right)_{n}$ converges to $-\infty$.
3. Show that limsup a_{n} is the supremum of the set of limits of convergent subsequences of $\left(a_{n}\right)_{n}$.

Proof: Note that limsup $a_{n}=\infty$ if and only if the sequence $\left(a_{n}\right)_{n}$ is unbounded. Also, the sequence $\left(a_{n}\right)_{n}$ is unbounded if and only if $\left(a_{n}\right)_{n}$ has a subsequence converging to ∞. This proves the result in case limsup $a_{n}=\infty$.

Assume now limsup $a_{n}=-\infty$. Then for any $r \in \mathbb{R}$ there is an integer N such that for all $n>$ $N, a_{n}<r$. It follows that no subsequence of $\left(a_{n}\right)_{n}$ can converge to $r+1$ or to ∞. Therefore no subsequence of $\left(a_{n}\right)_{n}$ can converge to a real number or to ∞. Also, given a $k \in \mathbb{N}$, choose an integer n_{k} such that $n_{k}>n_{k-1}$ and $a_{n_{k}}<-k$. Then the subsequence $\left(a_{n_{k}}\right)_{k}$ converges to $-\infty$.

Conversely suppose that no subsequence of $\left(a_{n}\right)_{n}$ can converge to a real number or to ∞. Then the sequence $\left(a_{n}\right)_{n}$ is bounded above (otherwise one of its subsequences will converge to ∞), say by M. It follows that given an $r \in \mathbb{R},\left\{n: a_{n} \in[r, \infty)\right\}$ is finite (otherwise for infinitely many n, a_{n} will be in the closed interval $[r, M]$ and there will be a convergent subsequence), thus there is an N such that for all $n>N, a_{n}<r$. Thus the sequence

Let $\left(b_{n}\right)_{n}$ subsequence of $\left(a_{n}\right)_{n}$ converging to $r \in \mathbb{R} \cup\{ \pm \infty\}$.
If $r=\infty$, then the terms of the subsequence $\left(b_{n}\right)_{n}$ are unbounded, therefore the terms of the sequence $\left(a_{n}\right)_{n}$ are unbounded as well. Therefore
7. Let $\Sigma_{n} a_{n} x^{n}$ be a power series. Let $R=1 /$ limsup $\left|a_{n}\right|^{1 / n}$. Show that $\Sigma_{n} a_{n} x^{n}$ converges absolutely for $|x|<R$ and diverges for $|x|>R$. (Recall that if $b_{n} \geq 0$ for all n then limsup b_{n} is defined as the limit of the nonincreasing sequence $\sup \left\{b_{i}: i>n\right\} \in \mathbb{R}^{\geq 0} \cup\{\infty\}$ and $1 / \infty$ and $1 / 0$ are defined to be 0 and ∞ respectively. R is called the radius of convergence of the series $\left.\sum_{n} a_{n} x^{n}\right)$.

Proof: Let $r=\limsup \left|a_{n}\right|^{1 / n}<1$. Let $\varepsilon=(1-r) / 2$ and $\rho=r+\varepsilon$. Then $\rho=r+\varepsilon=r+$ $(1-r) / 2=(1+r) / 2<1$. Since $\varepsilon>0$, the nonincreasing sequence $\sup \left\{\left|a_{n}\right|^{1 / n}: i>n\right\}<r+\varepsilon$ after a while. i.e. $\left|a_{n}\right|^{1 / n} \in[r, r+\varepsilon)$
8. Let $0 \leq S<R$. Show that $\sum_{n} a_{n} x^{n}$ converges uniformly on $\{x:|x| \leq S\}$.
9. Show that the radius of convergence of the power series $\Sigma_{n \geq 0} a_{n} x^{n}$ and $\Sigma_{n>0} n a_{n} x^{n-1}$ are the same.
10. Let $\Sigma_{n} a_{n} x^{n}$ be a power series and R its radius of convergence. Show that the series is differentiable at any x such that $|x|<R$.

