Math 152 Midterm Ali Nesin March 2005

1. By using the definition of continuity, show that the function $f(x) = \frac{x+4}{x^2-1}$ is continuous in

its domain of definition.

2. Given two continuous real valued functions f and g from a metric space X show that $\max{f(x), g(x)}$ is also continuous.

A sequence of functions $(f_n)_n$ from a set *X* into a metric space *Y* is said to *converge* uniformly to a function $f: X \to Y$ if for any $\varepsilon > 0$ there is an *N* such that for all n > N and all $x \in X$, $d(f_n(x), f(x)) < \varepsilon$. A sequence of functions $(f_n)_n$ from a set *X* into a metric space *Y* is said to *converge pointwise* to a function $f: X \to Y$ if for any $x \in X$ and $\varepsilon > 0$ there is an *N* such that for all n > N, $d(f_n(x), f(x)) < \varepsilon$.

3a. Show that uniform convergence implies pointwise convergence.

3b. Let X = [0, 1], $Y = \mathbb{R}$ and $f_n(x) = x^n$. Show that $(f_n)_n$ converges pointwise but not uniformly.

3c. Let X = [0, a] where $0 \le a < 1$, $Y = \mathbb{R}$ and $f_n(x) = x^n$. Show that $(f_n)_n$ converges uniformly.

4. Let $X = \mathbb{R} \setminus \{-1\}$ $Y = \mathbb{R}$ and $f_n(x) = \frac{1}{1 + x^n}$.

4a. Find the set $A = \{x \in \mathbf{R} : (f_n(x))_n \text{ converges}\}$. For $x \in A$, let $f(x) = \lim_{n \to \infty} f_n(x)$. **4b.** What is f?

4c. Discuss the uniform convergence of $(f_n)_n$ in the (open or closed) intervals contained in A.

5. Let X = [0, 1], $Y = \mathbb{R}$ and $f_n(x) = \frac{nx}{x+n}$ for n > 1. Show that the sequence $(f_n)_n$ converges

uniformly to some function.

6. Let *X* be a set and *Y* a metric space. Let *B* be the set of bounded functions from *X* into *Y*, i.e., $B = \{f : X \to Y : f(X) \text{ is bounded}\}$. Find a metric on *B* such that the uniform convergence corresponds exactly to the convergence in this metric.

7. Let *X* be a set and *Y* a metric space. Let $(f_n)_n$ converge uniformly to some *f*. Assume that *a* $\in X$ is such that each f_n is continuous at *a*. Show that *f* is continuous at *a*.