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A function f : � → � is called continuous at a point a ∈ R, if for all ε > 0 (real 

or rational, it does not matter) there is a δ > 0 such that for all x ∈ R, if x − a< δ 

then f(x) − f(a) < ε. 

A function f : � → � is called continuous  if it is continuous at every point a ∈ �. 

 

1. Show that a constant function is continuous. (3 pts.) 

Proof. Let f be a constant function, say f(x) = c for all x ∈ �. Let a ∈ �. We will 

show that f is continuous at a. Let ε > 0. Choose δ = 1 (or any positive real number). 

Assume x ∈ � is such that |x − a| < δ. Then |f(x) − f(a)| = |c – c| = 0 < ε. Hence f is 

continuous at a. Since this holds for all a ∈ �, f is continuous. 

 

2. Show that the identity function is continuous. (3 pts.) 

Proof. Let a ∈ �. We will show that Id is continuous at a. Let ε > 0. Choose δ = 

ε (or any positive number less than ε). Assume x ∈ � is such that |x − a| < δ. Then 

|f(x) − f(a)| = |x – a| < δ = ε. Hence f is continuous at a. Since this holds for all a ∈ �, 

f is continuous. 

 

3. Is the function f defined by 
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continuous? Justify your answer. (4 pts.) 

Answer: This function is continuous everywhere except at a = 0. Indeed let ε = 1 

(or any positive real number less than 2). Let δ > 0 be any positive real number. 

Choose x = −δ/2. Then |x − a| = |x| = |−δ/2| = δ/2 < δ but |f(x) − f(a)| = |f(x) − f(0)| = 

|f(x) − 1| = |f(−δ/2) − 1| = |−1 − 1| = 2 > 1 = ε. 

 

4. Let f be defined as follows: 
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Is f continuous at some point? Justify your answer. (5 pts.) 

 Proof: No, f is not continuous anywhere. Indeed let a ∈ � be any real number. 

Let ε = 1 (or any positive real number less than 1). Let δ > 0 be any. Choose x ∈ (a − 

δ, a + δ) such that x is rational if a is irrational and x is irrational if a is rational. 

(Since  is dense in �, there is such an x). Now |f(x) − f(a)| = 1 = ε ≥ ε. Thus f is not 

continuous at a. 

 

5. Show that if f and g are continuous, then so is their sum f + g. (6 pts.) 



Proof. Let a ∈ �. Let ε > 0. Since f is continuous, there is a δ1 > 0 such that for 

all x ∈ �, if |x − a| < δ1 then |f(x) − f(a)| < ε/2.  Similarly, snce g is continuous, there is 

a δ2 > 0 such that for all x ∈ �, if |x − a| < δ1 then |g(x) − g(a)| < ε/2. Now let δ = 

min(δ1, δ2). For any x ∈ � such that |x − a| < δ, we have, |(f+g)(x) − (f+g)(a)| = |(f(x) + 

g(x)) − (f(a) + g(a))| = |(f(x) − f(a)) + (g(x) + g(a))| ≤ |f(x) − f(a)| + |g(x) + g(a)| < ε/2 + 

ε/2 = ε. 

 

6. Show that if f and g are continuous, then so is their product f • g. (7 pts.) 

Proof. Let a ∈ �. Let ε > 0. 

Since f is continuous at a, there is a δ1 such that if |x − a| < δ1 then |f(x) − f(a)| < 1, 

i.e. f(a) − 1 < f(x) < f(a) + 1. Let M = max(|f(a) − 1|, | f(a) + 1|). Then for all x ∈ � for 

which |x − a| < δ1, we have |f(x)| < M. 

Let N be such that |g(a)| < N. 

Since f is continuous at a there is a δ2 > 0 such that for all x ∈ � for which |x − a| 

< δ2, we have |f(x) − f(a)| < ε/2N. 

Since g is continuous at a there is a δ3 > 0 such that for all x ∈ � for which |x − a| 

< δ3, we have |g(x) − g(a)| < ε/2M. 

Now let δ = max(δ1, δ2, δ3). Then for all x ∈ � for which |x − a| < δ2, we have: 

|(fg)(x) − (fg)(a)| = |f(x)g(x) − f(a)g(a)| = |f(x)g(x) −  f(x)g(a) + f(x)g(a) − f(a)g(a)| ≤ 

|f(x)g(x) −  f(x)g(a)| + |f(x)g(a) − f(a)g(a)| = |f(x)||g(x) −  g(a)| + |f(x) − f(a)||g(a)| < 

M(ε/2M) + (ε/2N)N = ε. 

 

7. By applying the previous questions show that the function defined by  

f(x) = x
2
 − 4x + √2 

is continuous. (5 pts.) 

 Proof: The identity function is continuous by Q2. The squaring function g(x) = x
2
 

is continuous from this and Q6. By multiplying the constant −4 function with Id, by 

Q1 and Q6, we see that h(x) = −4x is continuous as well. The constant function k(x) = 

√2 being also continıous, by Q5, f = g + h + k is continuous as well. 

 

8. By using directly the definition of continuity show that the function defined by 

f(x) = x
2
 − 4x + √2 is continuous. (7 pts.) 

Proof: Let a ∈ �, ε > 0, M = max(|a − 1|, |a + 1|) and δ = min(1, ε/(M + a + 4)). 

Then if x ∈ � is such that |x − a| < δ, then −δ < x − a < δ and a − 1 ≤ a − δ < x < a + δ 

≤ a + 1, and so |x| < M. Hence  

|( x
2
 − 4x + √2) − (a

2
 − 4a + √2)|  = |( x
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2 
+ (4a − 4x)| = |x − a||x + a − 4| 

 < |x − a|(|x| + |a| + 4) < |x − a|(M + a + 4) < ε. 

 

9. Let f and g be two functions. Assume that f is continuous at a and that g is 

continuous at f(a). Show that  g ◦ f is continuous at a. (10 pts.) 

Proof. Let a ∈ � and ε > 0. Since g is continuous at f(a), there is a δ1 > 0 such 

that for all x ∈ �, if |x − f(a)| < δ1 then |g(f(x)) − g(f(a))| < ε. Since f is continuous at a 

there is a δ > 0 such that if |x − a| < δ then |f(x) − f(a)| < δ1. Now for x ∈ � that 

satisfies |x − a| < δ, we have first |f(x) − f(a)| < δ1 and then then |g(f(x)) − g(f(a))| < ε. 



 

10. Show that exp x defined by ∑n≥0 x
n
/n! is continuous. (15 pts.) 

Proof. We know that exp x exists (i.e. the series converges for all x). Let a ∈ � 

and ε > 0. Let M = max(|a − 1|, |a + 1|) and δ = min(1, ε/exp M). Now assume x ∈ � 

satisfies |x − a| < δ. We have, first of all |x| < M as in Q8. It is easy to show that |a| < 

M as well. Finally, 
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 ≤ |x − a| ∑n≥1 nM
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/n! = |x − a| ∑n≥1 M
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 = |x − a| exp M < ε 

 

11. Let f be continuous at a and assume that f(a) > 0. Show that there is an 

interval around a where f is strictly positive. (15 pts.) 

Proof. Since f is continuous, by choosing ε = f(a)/2 > 0, we find a δ such that for 

x ∈ (a − δ, a + δ), f(x) ∈ (f(a) − ε, f(a) + ε) = (f(a)/2, 3f(a)/2) ⊆ �
>0

. 

 

12. Let f be continuous. Assume that f(a) < 0 and f(b) > 0. Show that f(c) = 0 for 

some c between a and b. (15 pts.) 

 

13. Generalize the concept of a continuous function to metric spaces. (10 pts.) 

 


