Math 151 Final (2)

Ali Nesin January, 2005

A function $f : \mathbb{R} \to \mathbb{R}$ is called **continuous at a point** $a \in \mathbb{R}$, if for all $\varepsilon > 0$ (real or rational, it does not matter) there is a $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.

A function $f : \mathbb{R} \to \mathbb{R}$ is called **continuous** if it is continuous at every point $a \in \mathbb{R}$.

1. Show that a constant function is continuous. (3 pts.)

Proof. Let *f* be a constant function, say f(x) = c for all $x \in \mathbb{R}$. Let $a \in \mathbb{R}$. We will show that *f* is continuous at *a*. Let $\varepsilon > 0$. Choose $\delta = 1$ (or any positive real number). Assume $x \in \mathbb{R}$ is such that $|x - a| < \delta$. Then $|f(x) - f(a)| = |c - c| = 0 < \varepsilon$. Hence *f* is continuous at *a*. Since this holds for all $a \in \mathbb{R}$, *f* is continuous.

2. Show that the identity function is continuous. (3 pts.)

Proof. Let $a \in \mathbb{R}$. We will show that Id is continuous at a. Let $\varepsilon > 0$. Choose $\delta = \varepsilon$ (or any positive number less than ε). Assume $x \in \mathbb{R}$ is such that $|x - a| < \delta$. Then $|f(x) - f(a)| = |x - a| < \delta = \varepsilon$. Hence f is continuous at a. Since this holds for all $a \in \mathbb{R}$, f is continuous.

3. *Is the function f defined by*

$$f(x) = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x \ge 0 \end{cases}$$

continuous? Justify your answer. (4 pts.)

Answer: This function is continuous everywhere except at a = 0. Indeed let $\varepsilon = 1$ (or any positive real number less than 2). Let $\delta > 0$ be any positive real number. Choose $x = -\delta/2$. Then $|x - a| = |x| = |-\delta/2| = \delta/2 < \delta$ but $|f(x) - f(a)| = |f(x) - f(0)| = |f(x) - 1| = |f(-\delta/2) - 1| = |-1 - 1| = 2 > 1 = \varepsilon$.

4. *Let f be defined as follows:*

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{otherwise} \end{cases}$$

Is f continuous at some point? Justify your answer. (5 pts.)

Proof: No, *f* is not continuous anywhere. Indeed let $a \in \mathbb{R}$ be any real number. Let $\varepsilon = 1$ (or any positive real number less than 1). Let $\delta > 0$ be any. Choose $x \in (a - \delta, a + \delta)$ such that *x* is rational if *a* is irrational and *x* is irrational if *a* is rational. (Since is dense in \mathbb{R} , there is such an *x*). Now $|f(x) - f(a)| = 1 = \varepsilon \ge \varepsilon$. Thus *f* is not continuous at *a*.

5. Show that if f and g are continuous, then so is their sum f + g. (6 pts.)

Proof. Let $a \in \mathbb{R}$. Let $\varepsilon > 0$. Since *f* is continuous, there is a $\delta_1 > 0$ such that for all $x \in \mathbb{R}$, if $|x - a| < \delta_1$ then $|f(x) - f(a)| < \varepsilon/2$. Similarly, snce *g* is continuous, there is a $\delta_2 > 0$ such that for all $x \in \mathbb{R}$, if $|x - a| < \delta_1$ then $|g(x) - g(a)| < \varepsilon/2$. Now let $\delta = \min(\delta_1, \delta_2)$. For any $x \in \mathbb{R}$ such that $|x - a| < \delta$, we have, $|(f+g)(x) - (f+g)(a)| = |(f(x) + g(x)) - (f(a) + g(a))| = |(f(x) - f(a)) + (g(x) + g(a))| \le |f(x) - f(a)| + |g(x) + g(a)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

6. Show that if f and g are continuous, then so is their product $f \bullet g$. (7 pts.)

Proof. Let $a \in \mathbb{R}$. Let $\varepsilon > 0$.

Since *f* is continuous at *a*, there is a δ_1 such that if $|x - a| < \delta_1$ then |f(x) - f(a)| < 1, i.e. f(a) - 1 < f(x) < f(a) + 1. Let $M = \max(|f(a) - 1|, |f(a) + 1|)$. Then for all $x \in \mathbb{R}$ for which $|x - a| < \delta_1$, we have |f(x)| < M.

Let *N* be such that |g(a)| < N.

Since *f* is continuous at *a* there is a $\delta_2 > 0$ such that for all $x \in \mathbb{R}$ for which $|x - a| < \delta_2$, we have $|f(x) - f(a)| < \varepsilon/2N$.

Since g is continuous at a there is a $\delta_3 > 0$ such that for all $x \in \mathbb{R}$ for which $|x - a| < \delta_3$, we have $|g(x) - g(a)| < \varepsilon/2M$.

Now let $\delta = \max(\delta_1, \delta_2, \delta_3)$. Then for all $x \in \mathbb{R}$ for which $|x - a| < \delta_2$, we have: $|(fg)(x) - (fg)(a)| = |f(x)g(x) - f(a)g(a)| = |f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)| \le |f(x)g(x) - f(x)g(a)| + |f(x)g(a) - f(a)g(a)| = |f(x)||g(x) - g(a)| + |f(x) - f(a)||g(a)| < M(\epsilon/2M) + (\epsilon/2N)N = \epsilon.$

7. By applying the previous questions show that the function defined by $f(x) = x^2 - 4x + \sqrt{2}$

is continuous. (5 pts.)

Proof: The identity function is continuous by Q2. The squaring function $g(x) = x^2$ is continuous from this and Q6. By multiplying the constant -4 function with Id, by Q1 and Q6, we see that h(x) = -4x is continuous as well. The constant function $k(x) = \sqrt{2}$ being also continuous, by Q5, f = g + h + k is continuous as well.

8. By using directly the definition of continuity show that the function defined by $f(x) = x^2 - 4x + \sqrt{2}$ is continuous. (7 pts.)

Proof: Let $a \in \mathbb{R}$, $\varepsilon > 0$, $M = \max(|a - 1|, |a + 1|)$ and $\delta = \min(1, \varepsilon/(M + a + 4))$. Then if $x \in \mathbb{R}$ is such that $|x - a| < \delta$, then $-\delta < x - a < \delta$ and $a - 1 \le a - \delta < x < a + \delta \le a + 1$, and so |x| < M. Hence

 $\begin{aligned} |(x^2 - 4x + \sqrt{2}) - (a^2 - 4a + \sqrt{2})| &= |(x^2 - a^2 + (4a - 4x)| = |x - a||x + a - 4| \\ &< |x - a|(|x| + |a| + 4) < |x - a|(M + a + 4) < \varepsilon. \end{aligned}$

9. Let f and g be two functions. Assume that f is continuous at a and that g is continuous at f(a). Show that $g \circ f$ is continuous at a. (10 pts.)

Proof. Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Since *g* is continuous at f(a), there is a $\delta_1 > 0$ such that for all $x \in \mathbb{R}$, if $|x - f(a)| < \delta_1$ then $|g(f(x)) - g(f(a))| < \varepsilon$. Since *f* is continuous at *a* there is a $\delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \delta_1$. Now for $x \in \mathbb{R}$ that satisfies $|x - a| < \delta$, we have first $|f(x) - f(a)| < \delta_1$ and then then $|g(f(x)) - g(f(a))| < \varepsilon$.

10. Show that exp *x* defined by $\sum_{n\geq 0} x^n/n!$ is continuous. (15 pts.)

Proof. We know that exp x exists (i.e. the series converges for all x). Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Let $M = \max(|a - 1|, |a + 1|)$ and $\delta = \min(1, \varepsilon/\exp M)$. Now assume $x \in \mathbb{R}$ satisfies $|x - a| < \delta$. We have, first of all |x| < M as in Q8. It is easy to show that |a| < M as well. Finally,

$$\begin{split} |\sum_{n\geq 0} x^n/n! - \sum_{n\geq 0} a^n/n!| &= |\sum_{n\geq 0} (x^n - a^n)/n!| = |\sum_{n\geq 1} (x^n - a^n)/n!| \\ &= \sum_{n\geq 1} |x^n - a^n|/n! = \sum_{n\geq 1} |x^n - a^n|/n! \\ &= |x - a| \sum_{n\geq 1} |x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + a^{n-1}|/n! \\ &\leq |x - a| \sum_{n\geq 1} nM^{n-1}/n! = |x - a| \sum_{n\geq 1} M^{n-1}/(n-1)! \\ &= |x - a| \exp M < \varepsilon \end{split}$$

11. Let f be continuous at a and assume that f(a) > 0. Show that there is an interval around a where f is strictly positive. (15 pts.)

Proof. Since *f* is continuous, by choosing $\varepsilon = f(a)/2 > 0$, we find a δ such that for $x \in (a - \delta, a + \delta), f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon) = (f(a)/2, 3f(a)/2) \subseteq \mathbb{R}^{>0}$.

12. Let f be continuous. Assume that f(a) < 0 and f(b) > 0. Show that f(c) = 0 for some c between a and b. (15 pts.)

13. Generalize the concept of a continuous function to metric spaces. (10 pts.)