Math 151 Final (2)

Ali Nesin
January, 2005

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous at a point $a \in \mathbf{R}$, if for all $\varepsilon>0$ (real or rational, it does not matter) there is a $\delta>0$ such that for all $x \in \mathbf{R}$, if $|x-a|<\delta$ then $|f(x)-f(a)|<\varepsilon$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if it is continuous at every point $a \in \mathbb{R}$.

1. Show that a constant function is continuous. (3 pts .)

Proof. Let f be a constant function, say $f(x)=c$ for all $x \in \mathbb{R}$. Let $a \in \mathbb{R}$. We will show that f is continuous at a. Let $\varepsilon>0$. Choose $\delta=1$ (or any positive real number). Assume $x \in \mathbb{R}$ is such that $|x-a|<\delta$. Then $|f(x)-f(a)|=|c-c|=0<\varepsilon$. Hence f is continuous at a. Since this holds for all $a \in \mathbb{R}, f$ is continuous.
2. Show that the identity function is continuous. (3 pts.)

Proof. Let $a \in \mathbb{R}$. We will show that Id is continuous at a. Let $\varepsilon>0$. Choose $\delta=$ ε (or any positive number less than ε). Assume $x \in \mathbb{R}$ is such that $|x-a|<\delta$. Then $|f(x)-f(a)|=|x-a|<\delta=\varepsilon$. Hence f is continuous at a. Since this holds for all $a \in \mathbb{R}$, f is continuous.

3. Is the function f defined by

$$
f(x)=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{aligned}\right.
$$

continuous? Justify your answer. (4 pts.)
Answer: This function is continuous everywhere except at $a=0$. Indeed let $\varepsilon=1$ (or any positive real number less than 2). Let $\delta>0$ be any positive real number. Choose $x=-\delta / 2$. Then $|x-a|=|x|=|-\delta / 2|=\delta / 2<\delta$ but $|f(x)-f(a)|=|f(x)-f(0)|=$ $|f(x)-1|=|f(-\delta / 2)-1|=|-1-1|=2>1=\varepsilon$.
4. Let f be defined as follows:

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { otherwise }\end{cases}
$$

Is f continuous at some point? Justify your answer. (5 pts.)
Proof: No, f is not continuous anywhere. Indeed let $a \in \mathbb{R}$ be any real number. Let $\varepsilon=1$ (or any positive real number less than 1). Let $\delta>0$ be any. Choose $x \in(a-$ $\delta, a+\delta$) such that x is rational if a is irrational and x is irrational if a is rational. (Since is dense in \mathbb{R}, there is such an x). Now $|f(x)-f(a)|=1=\varepsilon \geq \varepsilon$. Thus f is not continuous at a.
5. Show that iff and g are continuous, then so is their sum $f+g$. (6 pts.)

Proof. Let $a \in \mathbb{R}$. Let $\varepsilon>0$. Since f is continuous, there is a $\delta_{1}>0$ such that for all $x \in \mathbb{R}$, if $|x-a|<\delta_{1}$ then $|f(x)-f(a)|<\varepsilon / 2$. Similarly, snce g is continuous, there is a $\delta_{2}>0$ such that for all $x \in \mathbb{R}$, if $|x-a|<\delta_{1}$ then $|g(x)-g(a)|<\varepsilon / 2$. Now let $\delta=$ $\min \left(\delta_{1}, \delta_{2}\right)$. For any $x \in \mathbb{R}$ such that $|x-a|<\delta$, we have, $|(f+g)(x)-(f+g)(a)|=\mid(f(x)+$ $g(x))-(f(a)+g(a))|=|(f(x)-f(a))+(g(x)+g(a))| \leq|f(x)-f(a)|+|g(x)+g(a)|<\varepsilon / 2+$ $\varepsilon / 2=\varepsilon$.
6. Show that iff and g are continuous, then so is their product $f \cdot g$. (7 pts .)

Proof. Let $a \in \mathbb{R}$. Let $\varepsilon>0$.
Since f is continuous at a, there is a δ_{1} such that if $|x-a|<\delta_{1}$ then $|f(x)-f(a)|<1$, i.e. $f(a)-1<f(x)<f(a)+1$. Let $M=\max (|f(a)-1|,|f(a)+1|)$. Then for all $x \in \mathbb{R}$ for which $|x-a|<\delta_{1}$, we have $|f(x)|<M$.

Let N be such that $|g(a)|<N$.
Since f is continuous at a there is a $\delta_{2}>0$ such that for all $x \in \mathbb{R}$ for which $|x-a|$ $<\delta_{2}$, we have $|f(x)-f(a)|<\varepsilon / 2 N$.

Since g is continuous at a there is a $\delta_{3}>0$ such that for all $x \in \mathbb{R}$ for which $|x-a|$ $<\delta_{3}$, we have $|g(x)-g(a)|<\varepsilon / 2 M$.

Now let $\delta=\max \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. Then for all $x \in \mathbb{R}$ for which $|x-a|<\delta_{2}$, we have: $|(f g)(x)-(f g)(a)|=|f(x) g(x)-f(a) g(a)|=|f(x) g(x)-f(x) g(a)+f(x) g(a)-f(a) g(a)| \leq$ $|f(x) g(x)-f(x) g(a)|+|f(x) g(a)-f(a) g(a)|=|f(x)||g(x)-g(a)|+|f(x)-f(a) \| g(a)|<$ $M(\varepsilon / 2 M)+(\varepsilon / 2 N) N=\varepsilon$.
7. By applying the previous questions show that the function defined by

$$
f(x)=x^{2}-4 x+\sqrt{2}
$$

is continuous. (5 pts.)
Proof: The identity function is continuous by Q2. The squaring function $g(x)=x^{2}$ is continuous from this and Q6. By multiplying the constant -4 function with Id, by Q1 and Q6, we see that $h(x)=-4 x$ is continuous as well. The constant function $k(x)=$ $\sqrt{2}$ being also continıus, by Q5, $f=g+h+k$ is continuous as well.
8. By using directly the definition of continuity show that the function defined by $f(x)=x^{2}-4 x+\sqrt{ } 2$ is continuous. (7 pts.)

Proof: Let $a \in \mathbb{R}, \varepsilon>0, M=\max (|a-1|,|a+1|)$ and $\delta=\min (1, \varepsilon /(M+a+4))$. Then if $x \in \mathbb{R}$ is such that $|x-a|<\delta$, then $-\delta<x-a<\delta$ and $a-1 \leq a-\delta<x<a+\delta$ $\leq a+1$, and so $|x|<M$. Hence

$$
\begin{aligned}
\left|\left(x^{2}-4 x+\sqrt{ } 2\right)-\left(a^{2}-4 a+\sqrt{ } 2\right)\right| & =\mid\left(x^{2}-a^{2}+(4 a-4 x)|=|x-a|| x+a-4 \mid\right. \\
& <|x-a|(|x|+|a|+4)<|x-a|(M+a+4)<\varepsilon .
\end{aligned}
$$

9. Let f and g be two functions. Assume that f is continuous at a and that g is continuous at $f(a)$. Show that $g \circ f$ is continuous at a. (10 pts.)

Proof. Let $a \in \mathbb{R}$ and $\varepsilon>0$. Since g is continuous at $f(a)$, there is a $\delta_{1}>0$ such that for all $x \in \mathbb{R}$, if $|x-f(a)|<\delta_{1}$ then $|g(f(x))-g(f(a))|<\varepsilon$. Since f is continuous at a there is a $\delta>0$ such that if $|x-a|<\delta$ then $|f(x)-f(a)|<\delta_{1}$. Now for $x \in \mathbb{R}$ that satisfies $|x-a|<\delta$, we have first $|f(x)-f(a)|<\delta_{1}$ and then then $|g(f(x))-g(f(a))|<\varepsilon$.
10. Show that $\exp x$ defined by $\sum_{n \geq 0} x^{n} / n$! is continuous. (15 pts .)

Proof. We know that exp x exists (i.e. the series converges for all x). Let $a \in \mathbb{R}$ and $\varepsilon>0$. Let $M=\max (|a-1|,|a+1|)$ and $\delta=\min (1, \varepsilon / \exp M)$. Now assume $x \in \mathbb{R}$ satisfies $|x-a|<\delta$. We have, first of all $|x|<M$ as in Q8. It is easy to show that $|a|<$ M as well. Finally,

$$
\begin{aligned}
\left|\sum_{n \geq 0} x^{n} / n!-\sum_{n \geq 0} a^{n} / n!\right|= & \left|\sum_{n \geq 0}\left(x^{n}-a^{n}\right) / n!\right|=\left|\sum_{n \geq 1}\left(x^{n}-a^{n}\right) / n!\right| \\
& =\sum_{n \geq 1}\left|x^{n}-a^{n}\right| / n!=\sum_{n \geq 1}\left|x^{n}-a^{n}\right| / n! \\
& =|x-a| \sum_{n \geq 1}\left|x^{n-1}+x^{n-2} a+x^{n-3} a^{2}+\ldots+a^{n-1}\right| / n! \\
& \leq|x-a| \sum_{n \geq 1} n M^{n-1} / n!=|x-a| \sum_{n \geq 1} M^{n-1} /(n-1)! \\
& =|x-a| \exp M<\varepsilon
\end{aligned}
$$

11. Let f be continuous at a and assume that $f(a)>0$. Show that there is an interval around a where f is strictly positive. (15 pts .)

Proof. Since f is continuous, by choosing $\varepsilon=f(a) / 2>0$, we find a δ such that for $x \in(a-\delta, a+\delta), f(x) \in(f(a)-\varepsilon, f(a)+\varepsilon)=(f(a) / 2,3 f(a) / 2) \subseteq \mathbb{R}^{>0}$.
12. Let f be continuous. Assume that $f(a)<0$ and $f(b)>0$. Show that $f(c)=0$ for some c between a and b. (15 pts .)
13. Generalize the concept of a continuous function to metric spaces. (10 pts .)

