Algebra (Field Theory and Local Fields) Resit I 15th of July, 1999

Ali Nesin

p always denotes a prime in \mathbb{N} .

If k is a nonarchimedean valuation field (with values in \mathbb{R}^*), o = o(k) denotes its valuation ring, $\mathcal{D} = \mathcal{D}(k)$ the unique maximal ideal of o.

If k is also complete with respect to the valuation | and K is an extension of degree n of k, recall that

$$|\alpha| = |\mathcal{N}_{K/k}(\alpha)|^{1/n} = |\det(m_{\alpha}: K \to K)|^{1/n}$$

defines the unique (necessarily complete) valuation on *K* that extends the valuation on *k*. We let $f = [o(K)/\wp(K) : o(k)/\wp(k)]$ and $e = [K^* : k^*]$. Recall that the extension *K/k* is called **unramified** if f = n and **completely ramified** if f = 1.

1. What is the characteristic of \mathbb{Q}_p ? (1 or -99 pts.)

2. Show that in a finite field *F*, $\sum_{a \in \mathbf{F}} a^m = 0$ if p - 1 does not divide *m*. (10 pts.)

3. Let A be an $n \times n$ matrix over a commutative ring such that $A^m = 0$ for some $m \in \mathbb{N}$. Show that Id + A is invertible. (7 or -4 pts.)

4. Let $q \in \mathbb{Q}$. Define $|q|_6 = 6^{-k}$ if $q = 6^k a/b$ where $a, b \in \mathbb{Z}, b \neq 0$ and 6 divides neither *a* nor *b*. Is $|a|_6$ a norm on \mathbb{Q} ? (5 or -95 pts.)

5. Show that $\sum_{n \in \mathbb{N}} np^n$ converges in \mathbb{Q}_p . Show that it is it is in fact in \mathbb{Q} . (10 pts.)

6a. Show that $\sum_{n>0} \frac{1}{n} p^n$ converges in \mathbb{Q}_p . (15 pts.)

6b*. Show that the above element is not the root of any nonzero polynomial over \mathbb{Q} . (30 pts.)

7. For $n \in \mathbb{N}$, let $n^* \in \{0, 1, ..., p-1\}$ be such that $n \equiv n^* \pmod{p}$. Show that $\sum_{n \in \mathbb{N}} n^* p^n$ converges in \mathbb{Q}_p and is in \mathbb{Q} . (**Hint:** Find an explicit formula). (10 pts.)

8. Let *k* be a field of characteristic $\neq 2$. Let *K* be an extension of degree 2 of *k*. **8a.** Show that $K = k[\delta]$ for some $\delta \in K \setminus k$ such that $d := \delta^2 \in k^*$. (5 pts.) **8b.** Show that there is a one-to-one correspondance between the set of extensions of degree ≤ 2 of k and $k^*/(k^*)^2$. (7 pts.)

From now on we assume that k is a complete field with respect to a nonarchimedean valuation $| \cdot |$. We let $K = k[\delta]$ and $d = \delta^2 \in k^*$ as in part a.

8c. Show that the unique valuation on $k[\delta]$ is given by

$$a + b\delta = |a^2 - b^2 d|^{1/2}$$

(From now on d and δ are as in part a). (3 pts.)

8d. Show that we may choose *d* so that $d \in O(k)$. (3 pts.)

8e. Conclude that $o(k)[\delta] \le o(k[\delta])$ and that $\wp(k)[\delta] \le \wp(k[\delta])$. (5 pts.)

9. We assume $p \neq 2$ and we continue with the above exercise.

9a. Show that *p* is not a square in \mathbb{Q}_p . (4 pts.)

9b. Show that there is an element u in \mathbb{Z}_p^* which is not a square in \mathbb{Q}_p . (In fact we may choose $u \in \{2, ..., p-1\}$). (5 or -10 pts.)

9c. Show that *up* is not a square in \mathbb{Q}_p . (4 or -5 pts.)

9d. Show that $\mathbb{Q}_p^*/\mathbb{Q}_p^{*2} \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. (5 pts.)

9e. Conclude that \mathbb{Q}_p has 3 extensions of degree 2 where *d* can be chosen to be one of *u*, *p*, *up*. (2 pts.)

9f. Show that if d = p or up, then e = 2. (10 pts.)

9g. Show that if d = p or up, then

$$o(\mathbb{Q}_p[\delta]) = \mathbb{Z}_p[\delta]$$

$$\mathcal{O}(\mathbb{Q}_p[\delta]) = \{a + b\delta : a \in p\mathbb{Z}_p \text{ and } b \in \mathbb{Z}_p\}.$$

Conclude that d = p or up, then f = 1. (15 pts.)

9h. Show that if $d = u \in \mathbb{Z}_p^*$, then f = 2 and e = 1. (15 pts.)

10. Show that \mathbb{Q}_2 has exactly 7 nonisomorphic extensions of degree 2 given by $\mathbb{Q}_2[\delta]$ where $\delta^2 = -1, 2, -2, 5, -5, 10, -10$. Which of those extensions are unramified and which ones are completely ramified? (30 pts.)