Algebra
 (Field Theory and Local Fields)
 Resit I
 15th of July, 1999
 Ali Nesin

p always denotes a prime in \mathbb{N}.
If k is a nonarchimedean valuation field (with values in \mathbb{R}^{*}), $\mathrm{o}=\mathrm{o}(k)$ denotes its valuation ring, $\wp=\wp(k)$ the unique maximal ideal of o.

If k is also complete with respect to the valuation $|\mid$ and K is an extension of degree n of k, recall that

$$
|\alpha|=\left|\mathrm{N}_{K / k}(\alpha)\right|^{1 / n}=\left|\operatorname{det}\left(m_{\alpha}: K \rightarrow K\right)\right|^{1 / n}
$$

defines the unique (necessarily complete) valuation on K that extends the valuation on k. We let $f=[\mathrm{o}(K) / \wp(K): \mathrm{o}(k) / \wp(k)]$ and $e=\left[K^{*}: k^{*}\right]$. Recall that the extension K / k is called unramified if $f=n$ and completely ramified if $f=1$.

1. What is the characteristic of \mathbb{Q}_{p} ? (1 or -99 pts.)
2. Show that in a finite field $F, \sum_{a \in \mathbf{F}} a^{m}=0$ if $p-1$ does not divide m. (10 pts .)
3. Let A be an $n \times n$ matrix over a commutative ring such that $A^{m}=0$ for some $m \in \mathbb{N}$. Show that $\mathrm{Id}+A$ is invertible. (7 or -4 pts.)
4. Let $q \in \mathbb{Q}$. Define $|q|_{6}=6^{-k}$ if $q=6^{k} a / b$ where $a, b \in \mathbb{Z}, b \neq 0$ and 6 divides neither a nor b. Is $\left|\left.\right|_{6}\right.$ a norm on \mathbb{Q} ? (5 or -95 pts.)
5. Show that $\sum_{n \in \mathbf{N}} n p^{n}$ converges in \mathbb{Q}_{p}. Show that it is it is in fact in \mathbb{Q}. (10 pts.)

6a. Show that $\sum_{n>0} \frac{1}{n} p^{n}$ converges in \mathbb{Q}_{p}. (15 pts.)
$\mathbf{6 b}$ *. Show that the above element is not the root of any nonzero polynomial over \mathbb{Q}. (30 pts.)
7. For $n \in \mathbf{N}$, let $n^{*} \in\{0,1, \ldots, p-1\}$ be such that $n \equiv n^{*}(\bmod p)$. Show that $\sum_{n \in \mathbf{N}} n^{*} p^{n}$ converges in \mathbb{Q}_{p} and is in \mathbb{Q}. (Hint: Find an explicit formula). (10 pts.)
8. Let k be a field of characteristic $\neq 2$. Let K be an extension of degree 2 of k.

8a. Show that $K=k[\delta]$ for some $\delta \in K \backslash k$ such that $d:=\delta^{2} \in k^{*}$. (5 pts .)

8b. Show that there is a one-to-one correspondance between the set of extensions of degree ≤ 2 of k and $k^{*} /\left(k^{*}\right)^{2}$. (7 pts .)

From now on we assume that k is a complete field with respect to a nonarchimedean valuation \mid. We let $K=k[\delta]$ and $d=\delta^{2} \in k^{*}$ as in part a.

8 c . Show that the unique valuation on $k[\delta]$ is given by

$$
|a+b \delta|=\left|a^{2}-b^{2} d\right|^{1 / 2} .
$$

(From now on d and δ are as in part a). (3 pts.)
8d. Show that we may choose d so that $d \in \mathrm{o}(k)$. (3 pts .)
8e. Conclude that $\mathrm{o}(k)[\delta] \leq \mathrm{o}(k[\delta])$ and that $\wp(k)[\delta] \leq \wp(k[\delta])$. (5 pts.)
9. We assume $p \neq 2$ and we continue with the above exercise.

9a. Show that p is not a square in \mathbb{Q}_{p}. (4 pts.)
9b. Show that there is an element u in $\mathbb{Z}_{p}{ }^{*}$ which is not a square in \mathbb{Q}_{p}. (In fact we may choose $u \in\{2, \ldots, p-1\}$). (5 or -10 pts.)

9c. Show that $u p$ is not a square in \mathbb{Q}_{p}. (4 or -5 pts.)
9d. Show that $\mathbb{Q}_{p} * / \mathbb{Q}_{p} *^{2} \approx \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. (5 pts .)
9e. Conclude that \mathbb{Q}_{p} has 3 extensions of degree 2 where d can be chosen to be one of $u, p, u p$. (2 pts.)

9f. Show that if $d=p$ or $u p$, then $e=2$. (10 pts.)
$\mathbf{9 g}$. Show that if $d=p$ or $u p$, then

$$
\begin{aligned}
& \mathrm{o}\left(\mathbb{Q}_{p}[\delta]\right)=\mathbb{Z}_{p}[\delta] \\
& \wp\left(\mathbb{Q}_{p}[\delta]\right)=\left\{a+b \delta: a \in p \mathbb{Z}_{p} \text { and } b \in \mathbb{Z}_{p}\right\} .
\end{aligned}
$$

Conclude that $d=p$ or $u p$, then $f=1$. (15 pts .)
9h. Show that if $d=u \in \mathbb{Z}_{p}{ }^{*}$, then $f=2$ and $e=1$. (15 pts .)
10. Show that \mathbb{Q}_{2} has exactly 7 nonisomorphic extensions of degree 2 given by $\mathbb{Q}_{2}[\delta]$ where $\delta^{2}=-1,2,-2,5,-5,10,-10$. Which of those extensions are unramified and which ones are completely ramified? (30 pts.)

