Math 151 Quiz October 20, 2004 Ali Nesin

We say that a sequence $(r_n)_n$ of real numbers converges to r if for all $\varepsilon > 0$ there is an N such that for all n > N, $|r_n - r| < \varepsilon$.

- 1. Let $r_n = 1/n$ if $n \neq 0$ and $r_0 = 1$. Show that the sequence $(r_n)_n$ converges to 0.
- 2. Let $r_n = (-1)^n$. Show that the sequence $(r_n)_n$ does not converges to any real number.
- 3. Let $r_n = n$. Show that the sequence $(r_n)_n$ does not converges to any real number.
- 4. Show that a sequence of real numbers cannot converge to two distinct real numbers. Thus we are allowed to write $\lim_{n\to\infty} r_n = r$ when *r* is the limit of the sequence r_n .
- 5. Show that any convergent sequence is a bounded sequence.