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the definitions. 

2. Suppose limn→∞ xn = x = limn→∞ yn. Let z2n = xn and z2n+1 = yn. Show that limn→∞ zn = x 

by using the definition of limits. 

3. Suppose limn→∞ xn = x and limn→∞ yn = y ≠ 0. Is it true that limn→∞ xn/yn = x/y? Prove or 

disprove. 

4. Supose (an)n is a sequence converging to 0. Show that if (bn)n is a bounded sequnce. 

then the sequence (anbn)n converges to 0. Does the converse hold? 

5. Let α ∈ �. Is there a sequence (an)n of natural numbers such that ∑
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6. Prove or disprove for any sequence (an)n. 

6a) If ∑
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=0n na converges then limn→∞ an = 0.  

6b) If limn→∞ an = 0 then ∑
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=0n na converges. 

6c) If limn→∞ an
2
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n na converges? 

7. Discuss the convergence of the series. 
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8. Suppose 
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→  exists. Show that f is continuous. 

9. Discuss the convergence of 
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 when x and y both go to zero/infinity. 

 


