Analysis II (Math 152) Resit, 2004 September Ali Nesin

- 1. Find $\lim_{n \to \infty} \frac{3-2n+n^2}{4+3n-2n^2}$ and $\lim_{x \to 3} \frac{x^2-2x-3}{x^2-x-6}$ and prove your results by using the definitions.
- **2.** Suppose $\lim_{n\to\infty} x_n = x = \lim_{n\to\infty} y_n$. Let $z_{2n} = x_n$ and $z_{2n+1} = y_n$. Show that $\lim_{n\to\infty} z_n = x$ by using the definition of limits.
- **3.** Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y \neq 0$. Is it true that $\lim_{n\to\infty} x_n/y_n = x/y$? Prove or disprove.
- **4.** Suppose $(a_n)_n$ is a sequence converging to 0. Show that if $(b_n)_n$ is a bounded sequence. then the sequence $(a_nb_n)_n$ converges to 0. Does the converse hold?
- 5. Let $\alpha \in \mathbb{R}$. Is there a sequence $(a_n)_n$ of natural numbers such that $\sum_{n=1}^{\infty} \frac{a_n}{n} = \alpha$?
- **6.** Prove or disprove for any sequence $(a_n)_n$.
 - **6a)** If $\sum_{n=0}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$. **6b)** If $\lim_{n\to\infty} a_n = 0$ then $\sum_{n=0}^{\infty} a_n$ converges.
 - **6c)** If $\lim_{n\to\infty} a_n^2 = 0$ then $\sum_{n=0}^{\infty} a_n$ converges.
 - **6d**) If $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} a_n^2$ converges?
- 7. Discuss the convergence of the series.

7a)
$$S_r(x) = \sum_{n=0}^{\infty} n^r x^n$$
 for a real number r and for $x \ge 0$.
7b) $S_k(x) = \sum_{n=0}^{\infty} \binom{n+k}{n} x^n$ for a natural number k and for $x \ne 1$.
7c) $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n^2+1}}$ for $x \ge 0$.
7d) $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^3+1}}$.
8. Suppose $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ exists. Show that f is continuous.

9. Discuss the convergence of $\frac{xy}{x^2 + y^2}$ when x and y both go to zero/infinity.