Analysis (Math 162) Final

Spring 2004 Ali Nesin

June 22, 2004

Do not use symbols such as \Rightarrow , \forall . Make full sentences. Write legibly. Use correct punctuation. Explain your ideas.

I. Convergent Sequences. For each of the topological spaces (X, τ) , describe the convergent sequences and discuss the uniqueness of their limits.

- 1. $\tau = \wp(X)$. ($\wp(X)$ is the set of all subsets of X).
- 2. $\tau = \{\emptyset, X\}.$
- 3. $a \in X$ is a fixed element and τ is the set of all subsets of X that do not contain a, together with X of course.
- 4. $a \in X$ is a fixed element and τ is the set of all subsets of X that contain a, together with \emptyset of course.
- 5. τ is the set of all cofinite subsets of X.

II. Subgroup Topology on \mathbb{Z} **.** Let $\tau = \{n\mathbb{Z} + m : n, m \in \mathbb{Z}, n \neq 0\} \cup \{\emptyset\}$. We know that (\mathbb{Z}, τ) is a topological space.

- 1. Let $a \in \mathbb{Z}$. Is $\mathbb{Z} \setminus \{a\}$ open in τ ?
- 2. Find an infinite non open subset of \mathbb{Z} .
- 3. Let $a, b \in \mathbb{Z}$. Is the map $f_{a,b} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f_{a,b}(z) = az + b$ continuous? (Prove or disprove).
- 4. Is the map $f_{a,b} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(z) = z^2$ continuous? (Prove or disprove).
- 5. Is the topological space (\mathbb{Z}, τ) compact? (Prove or disprove).
- III. Miscellaneous.

- 1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the squaring map. Suppose that the arrival set is endowed with the usual Euclidean topology. Find the smallest topology on the domain that makes f continuous.
- 2. Let τ be the topology on \mathbb{R} generated by $\{[a, b) : a, b \in \mathbb{R}\}$. Compare this topology with the Euclidean topology. Is this topology generated by a metric?
- 3. Show that the series $\sum_{i=0}^{n} x^n/n!$ converges for any $x \in \mathbb{R}$. Show that the map $\exp : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $\exp(x) = \sum_{i=0}^{n} x^n/n!$ is continuous.