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i. Decide the convergence of the series

∑
n

1√
|n2 − 2| .

Answer: Since for all n > 1,

1√
|n2 − 2| =

1√
n2 − 2

≥ 1√
n2

=
1
n

and since
∑

n
1
n diverges, the series

∑
n

1√
|n2−2| diverges as well.

ii. Decide the convergence of the series

∑
n

1√
n2 + 1

.

Answer: Since for n > 0,

1√
n2 + 1

≥ 1√
n2 + n2

=
1

n
√

2

and since
∑

n
1
n diverges, the series

∑
n

1√
n2+1

diverges as well.

iii. Decide the convergence of the series

∑
n

1√
|n4 − 6| .

Answer: Since for n > 1,

1√
|n4 − 6| =

1√
n4 − 6

≤ 1√
n4 − n4/2

=
√

2
n2

and since
∑

n
1

n2 converges, the series
∑

n
1√

n4−6
converges as well.
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iv. Suppose that the series
∑

n an is convergent. Show that limn→∞ an = 0.

Proof: Let sn = a0 + . . . + an and s =
∑

n an. Thus limn→∞ sn = s. We
have limn→∞ an = limn→∞(sn − sn−1) = s− s = 0.

v. Suppose that (an)n is a positive and decreasing sequence and that the
series

∑
n an is convergent. Show that limn→∞ nan = 0.

Proof: We know that limn→∞ an = 0. Let sn = a0 + . . . + an and
s =

∑
n an. Thus limn→∞ sn = s.

Since (an)n is decreasing,

na2n ≤ an+1 + . . . + a2n = s2n − sn.

Thus limn→∞ na2n = limn→∞(s2n−sn) = s−s = 0. Hence limn→∞ 2na2n =
0.

Also 0 < (2n + 1)a2n+1 ≤ (2n + 1)a2n = 2na2n + a2n. By the above and
the fact that limn→∞ a2n = 0, the right hand side converges to 0. Hence
by the squeezing lemma limn→∞(2n + 1)a2n+1 = 0.

From the above two paragraphs it follows that limn→∞ nan = 0.

(Remark: As we will see later, the series
∑∞

n=2
1

n ln n diverges. This ex-
ample shows that the conditions that (an)n is positive and decreasing and
that limn→∞ nan = 0 are not enough for the series

∑
n an to be conver-

gent.)

vi. Find a positive sequence (an)n such that the series
∑

n an is convergent
but that limn→∞ nan 6= 0.

Solution: Take an = 1/n2 if n is not a square and an = 1/n if n is a
square. Then (nan)n does not converge as limn→∞(n2 + 1)an2+1 = 0 and
limn→∞ n2an2 = 1. On the other hand

∑
n an =

∑
n non square an +∑

n a square an =
∑

n non square 1/n2 +
∑

n 1/n2 < 2
∑

n 1/n2 < 4.

vii. Suppose that series
∑

n an is absolutely convergent and that the sequence
(bn)n is Cauchy. Show that the series

∑
n anbn is absolutely convergent.

Proof: Since (bn)n is Cauchy the sequence (|bn|)n is bounded. In fact
that is all we need to conclude. Indeed, let B be an upper bound of
the sequence (|bn|)n. Then |anbn| ≤ B|an| and since

∑
n |an| converges,∑

n |anbn| converges as well.

viii. Let (an)n be a sequence. Suppose that
∑∞

n=1 |an− an+1| converges. Such
a sequence is called of bounded variation. Show that a sequence of
bounded variation converges.

Proof: Since
∑∞

n=1 |an−an+1| converges,
∑∞

n=1(an−an+1) converges as
well. Thus the sequence of partial sums whose terms are

n−1∑

i=1

(ai − ai+1) = a1 − an
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converges, say to a. Thus (an)n converges to a1 − a.
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