Math 152 Midterm

Ali Nesin

April 2004
i. Decide the convergence of the series

$$
\sum_{n} \frac{1}{\sqrt{\left|n^{2}-2\right|}}
$$

Answer: Since for all $n>1$,

$$
\frac{1}{\sqrt{\left|n^{2}-2\right|}}=\frac{1}{\sqrt{n^{2}-2}} \geq \frac{1}{\sqrt{n^{2}}}=\frac{1}{n}
$$

and since $\sum_{n} \frac{1}{n}$ diverges, the series $\sum_{n} \frac{1}{\sqrt{\left|n^{2}-2\right|}}$ diverges as well.
ii. Decide the convergence of the series

$$
\sum_{n} \frac{1}{\sqrt{n^{2}+1}}
$$

Answer: Since for $n>0$,

$$
\frac{1}{\sqrt{n^{2}+1}} \geq \frac{1}{\sqrt{n^{2}+n^{2}}}=\frac{1}{n \sqrt{2}}
$$

and since $\sum_{n} \frac{1}{n}$ diverges, the series $\sum_{n} \frac{1}{\sqrt{n^{2}+1}}$ diverges as well.
iii. Decide the convergence of the series

$$
\sum_{n} \frac{1}{\sqrt{\left|n^{4}-6\right|}}
$$

Answer: Since for $n>1$,

$$
\frac{1}{\sqrt{\left|n^{4}-6\right|}}=\frac{1}{\sqrt{n^{4}-6}} \leq \frac{1}{\sqrt{n^{4}-n^{4} / 2}}=\frac{\sqrt{2}}{n^{2}}
$$

and since $\sum_{n} \frac{1}{n^{2}}$ converges, the series $\sum_{n} \frac{1}{\sqrt{n^{4}-6}}$ converges as well.
iv. Suppose that the series $\sum_{n} a_{n}$ is convergent. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof: Let $s_{n}=a_{0}+\ldots+a_{n}$ and $s=\sum_{n} a_{n}$. Thus $\lim _{n \rightarrow \infty} s_{n}=s$. We have $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=s-s=0$.
v. Suppose that $\left(a_{n}\right)_{n}$ is a positive and decreasing sequence and that the series $\sum_{n} a_{n}$ is convergent. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
Proof: We know that $\lim _{n \rightarrow \infty} a_{n}=0$. Let $s_{n}=a_{0}+\ldots+a_{n}$ and $s=\sum_{n} a_{n}$. Thus $\lim _{n \rightarrow \infty} s_{n}=s$.
Since $\left(a_{n}\right)_{n}$ is decreasing,

$$
n a_{2 n} \leq a_{n+1}+\ldots+a_{2 n}=s_{2 n}-s_{n}
$$

Thus $\lim _{n \rightarrow \infty} n a_{2 n}=\lim _{n \rightarrow \infty}\left(s_{2 n}-s_{n}\right)=s-s=0$. Hence $\lim _{n \rightarrow \infty} 2 n a_{2 n}=$ 0.

Also $0<(2 n+1) a_{2 n+1} \leq(2 n+1) a_{2 n}=2 n a_{2 n}+a_{2 n}$. By the above and the fact that $\lim _{n \rightarrow \infty} a_{2 n}=0$, the right hand side converges to 0 . Hence by the squeezing lemma $\lim _{n \rightarrow \infty}(2 n+1) a_{2 n+1}=0$.
From the above two paragraphs it follows that $\lim _{n \rightarrow \infty} n a_{n}=0$.
(Remark: As we will see later, the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges. This example shows that the conditions that $\left(a_{n}\right)_{n}$ is positive and decreasing and that $\lim _{n \rightarrow \infty} n a_{n}=0$ are not enough for the series $\sum_{n} a_{n}$ to be convergent.)
vi. Find a positive sequence $\left(a_{n}\right)_{n}$ such that the series $\sum_{n} a_{n}$ is convergent but that $\lim _{n \rightarrow \infty} n a_{n} \neq 0$.
Solution: Take $a_{n}=1 / n^{2}$ if n is not a square and $a_{n}=1 / n$ if n is a square. Then $\left(n a_{n}\right)_{n}$ does not converge as $\lim _{n \rightarrow \infty}\left(n^{2}+1\right) a_{n^{2}+1}=0$ and $\lim _{n \rightarrow \infty} n^{2} a_{n^{2}}=1$. On the other hand $\sum_{n} a_{n}=\sum_{n}$ non square $a_{n}+$ $\sum_{n \text { a square }} a_{n}=\sum_{n}$ non square $1 / n^{2}+\sum_{n} 1 / n^{2}<2 \sum_{n} 1 / n^{2}<4$.
vii. Suppose that series $\sum_{n} a_{n}$ is absolutely convergent and that the sequence $\left(b_{n}\right)_{n}$ is Cauchy. Show that the series $\sum_{n} a_{n} b_{n}$ is absolutely convergent.
Proof: Since $\left(b_{n}\right)_{n}$ is Cauchy the sequence $\left(\left|b_{n}\right|\right)_{n}$ is bounded. In fact that is all we need to conclude. Indeed, let B be an upper bound of the sequence $\left(\left|b_{n}\right|\right)_{n}$. Then $\left|a_{n} b_{n}\right| \leq B\left|a_{n}\right|$ and since $\sum_{n}\left|a_{n}\right|$ converges, $\sum_{n}\left|a_{n} b_{n}\right|$ converges as well.
viii. Let $\left(a_{n}\right)_{n}$ be a sequence. Suppose that $\sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right|$ converges. Such a sequence is called of bounded variation. Show that a sequence of bounded variation converges.
Proof: Since $\sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right|$ converges, $\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)$ converges as well. Thus the sequence of partial sums whose terms are

$$
\sum_{i=1}^{n-1}\left(a_{i}-a_{i+1}\right)=a_{1}-a_{n}
$$

converges, say to a. Thus $\left(a_{n}\right)_{n}$ converges to $a_{1}-a$.

