Analysis (Math 162) Final

Spring 2004 Ali Nesin

June 23, 2004

Do not use symbols such as \Rightarrow , \forall . Make full sentences. Write legibly. Use correct punctuation. Explain your ideas.

I. Convergent Sequences. For each of the topological spaces (X, τ) , describe the convergent sequences and discuss the uniqueness of their limits.

1. $\tau = \wp(X)$. ($\wp(X)$ is the set of all subsets of X, 2 pts.).

Answer: Only the eventually constant sequences converging to that constant.

2. $\tau = \{\emptyset, X\}$. (2 pts.).

Answer: All sequences converge to all elements.

3. $a \in X$ is a fixed element and τ is the set of all subsets of X that do not contain a, together with X of course. (5 pts.)

Answer: First of all, all sequences converge to a. Second: If a sequence converges to $b \neq a$, then the sequence must be eventually the constant b.

4. $a \in X$ is a fixed element and τ is the set of all subsets of X that contain a, together with \emptyset of course. (5 pts.)

Answer: Only the eventually constant sequences converge to a. A sequence converge to $b \neq a$ if and only if the sequence eventually takes only the two values a and b.

5. τ is the set of all cofinite subsets of X, together with the \emptyset of course. (6 pts.)

Answer: All the sequences without infinitely repeating terms converge to all elements. Eventually constant sequences converge to the constant. There are no others.

II. Subgroup Topology on \mathbb{Z} **.** Let τ be the topology generated by $\{n\mathbb{Z} + m : n, m \in \mathbb{Z}, n \neq 0\} \cup \{\emptyset\}$.

1. Let $a \in \mathbb{Z}$. Is $\mathbb{Z} \setminus \{a\}$ open in τ ? (5 pts.)

Answer: Yes. $\bigcup_{n\neq 0,\pm 1} n\mathbb{Z} \cup (3\mathbb{Z}+2) = \mathbb{Z} \setminus \{1\}$. Translating this set by a-1, we see that $\mathbb{Z} \setminus \{a\}$ is open.

2. Find an infinite non open subset of \mathbb{Z} . (5 pts.)

Answer: \mathbb{N} is not open. Also the set of primes is not an open subset. Because otherwise, for some $a \neq 0$ and $b \in \mathbb{Z}$, the elements of $a\mathbb{Z} + b$ would all be primes. So b, ab + b and 2ab + b would be primes, a contradiction.

3. Let $a, b \in \mathbb{Z}$. Is the map $f_{a,b} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f_{a,b}(z) = az + b$ continuous? (Prove or disprove). (10 pts.)

Answer: Translation by *b* is easily shown to be continuous. Let us consider the map f(z) = az. If a = 0, 1, -1 then clearly *f* is continuous. Assume $a \neq 0, \pm 1$ and that *f* is continuous. We may assume that a > 1 (why?) Choose a *b* which is not divisible by *a*. Then $f^{-1}(b\mathbb{Z})$ is open, hence contains a subset of the form $c\mathbb{Z} + d$. Therefore $a(c\mathbb{Z} + d) \subseteq b\mathbb{Z}$. Therefore $ac = \pm b$ and so *a* divides *b*, a contradiction. Hence *f* is not continuous unless $a = 0, \pm 1$.

4. Is the map $f_{a,b}: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(z) = z^2$ continuous? (Prove or disprove). (5 pts.)

Answer: No! Left as an exercise.

5. Is the topological space (\mathbb{Z}, τ) compact? (Prove or disprove).(15 pts.)

Answer: First Proof: Note first the complement of open subsets of the form $a\mathbb{Z} + b$ are also open as they are unions of the form $a\mathbb{Z} + c$ for $c = 0, 1, \ldots, a - 1$ and $c \not\equiv b \mod a$. Now consider sets of the form $U_p = p\mathbb{Z} + (p-1)/2$ for p an odd prime. Then $\bigcap_p U_p = \emptyset$ because if $a \in \bigcap_p U_p$ then for any odd prime p there is an $x \in \mathbb{Z} \setminus \{-1\}$ such that 2a + 1 = px + p, so that 2a + 1 is divisible by all primes p and 2a + 1 = 0, a contradiction. On the other hand no finite intersection of the U_p 's can be emptyset as $(a\mathbb{Z} + b) \cap (c\mathbb{Z} + b) \neq \emptyset$ if a and b are prime to each other (why?) Hence $(U_p^c)_p$ is an open cover of \mathbb{Z} that does not have a finite cover. Therefore \mathbb{Z} is not compact.

First Proof: Let p be a prime and $a = a_0 + a_1p + a_2p^2 + ...$ be a p-adic integer which is not in \mathbb{Z} . Let

$$b_n = a_0 + a_1 p + a_2 p^2 + \ldots + a_{n-1} p^{n-1}.$$

Then $\cap_n p^n \mathbb{Z} + b_n = \emptyset$ but no finite intersection is empty. We conclude as above.

III. Miscellaneous.

1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the squaring map. Suppose that the arrival set is endowed with the usual Euclidean topology. Find the smallest topology on the domain that makes f continuous. (5 pts.)

Answer: The smallest such topology is the set

 $\{U \cap -U : U \text{ open in the usual topology of } \mathbb{R}\}.$

2. Let τ be the topology on \mathbb{R} generated by $\{[a, b) : a, b \in \mathbb{R}\}$. Compare this topology with the Euclidean topology. (3 pts.) Is this topology generated by a metric? (20 pts.)

Answer: Any open subset of the Euclidean topology is open in this topology because $(a, b) = \bigcup_{n=1}^{\infty} [a + 1/n, b]$. But of course [0, 1) is not open in the usual topology.

Assume a metric generates the topology. Note that $[0, \infty)$ is open as it is the union of open sets of the form [0, n) for $n \in \mathbb{N}$. Thus the sequence $(-1/n)_n$ cannot converge to 0. In fact for any $b \in \mathbb{R}$, no sequence can converge to b from the left. Thus for any $b \in \mathbb{R}$ there is an $\epsilon_b > 0$ such that $B(b, \epsilon_b) \subseteq [b, \infty)$. Let b_0 be any point of \mathbb{R} . Let $\epsilon_0 > 0$ be such that $B(b_0, \epsilon_0) \subseteq [b_0, \infty)$. Since $\{b_0\}$ is not open, there is $b_1 \in B(b_0, \epsilon_0) \setminus \{b_0\}$. Let $0 < \epsilon_1 < \epsilon_0/2$ be such that $B(b_1, \epsilon_1) \subseteq [b_1, \infty) \cap B(b_0, \epsilon_0)$. Inductively we can find $(b_n)_n$ and $(\epsilon_n)_n$ such that $B(b_n, \epsilon_n) \subseteq [b_n, \infty) \cap B(b_{n-1}, \epsilon_{n-1}) \setminus \{b_{n-1}\}$ and $\epsilon_n < \epsilon_0/2^n$. Then $(b_n)_n$ is a strictly increasing convergent sequence, a contradiction.

3. Show that the series $\sum_{i=0}^{n} x^n/n!$ converges for any $x \in \mathbb{R}$ (5 pts.) Show that the map exp : $\mathbb{R} \longrightarrow \mathbb{R}$ defined by $\exp(x) = \sum_{i=0}^{n} x^n/n!$ is continuous. (10 pts.)

Answer: