Nonarchimedian Discrete Valuations

Summer Midterm II 15th of June, 1999 Ali Nesin

Prelude: Let $| \cdot |$ be a nonarchemedian discrete valuation on the field k. Let o be the ring of integers and \wp the (unique) maximal ideal of 0. Let $p \in \wp$ be a generator of \wp . Recall that $o \setminus \wp = o^*$.

1. Show that $(p^n 0^*)_{n \in \mathbb{N}}$ is a disjoint family of subsets of 0. (2 pts.)

2. Show that
$$o = \bigcup_{n=0}^{\infty} p^n o^* \cup \{0\}$$
 (5 pts.)
3. Show that $\bigcap_{n=0}^{\infty} p^n o = \{0\}$. (3 pts.)

4. Show that every nonzero ideal of 0 is of the form p^n 0 for some $n \in \mathbb{N}$. Thus 0 is a pid. (15 pts.)

5. Show that the valuation group $G = |k^*|$ is generated by |p| and so is isomorphic to Z. (15 pts.)

A series $\sum_{i=0}^{\infty} a_i$ is said to converge to *s* if the sequence $\sum_{i=0}^{n} a_i$ of partial sums

converges to s.

6. Show that if k is complete, the series $\sum_{i=0}^{\infty} a_i$ converges iff the sequence $(a_n)_{n \in i}$

_N converges to 0. (15 pts.)

7. Assume that the series $\sum_{i=0}^{\infty} a_i$ converges in k. Show that $\left|\sum_{i=0}^{\infty} a_i\right| \le \max\{|a_n|:$

 $n \in \mathbf{N}$. (10 pts.)

8. Let p(T) be an irreducible polynomial in k[T]. Let $(f_n(T))_{n \in \mathbb{N}}$ be a sequence of formal power series (i.e. $f_n(T) \in k[[T]]$ for each *n*). Show that $\sum_{n=0}^{\infty} f_n(T)p(T)^n$

converges in k[[T]] for the p(T)-adic valuation. (5 pts.)

9. Assume k is complete. Let $A \subset o$ be a set of representatives of o/\wp . Show that every $a \in o$ can be written uniquely as $\sum_{n=0}^{\infty} a_n p^n$ ($a_n \in A$). Conversely, show that such a series converges always. (15 + 5 pts.)

10. Let $k = \mathbf{Q}_p$ be the completion of \mathbf{Q} for the *p*-adic valuation (*p* a prime). Show that the set *A* of the question above can be chosen to be $\{0, 1, ..., p - 1\}$. (10 pts.)