Nonarchimedean Discrete Valuations
Summer Midterm II
15th of June, 1999
Ali Nesin

Prelude: Let \(| \cdot | \) be a nonarchemedian discrete valuation on the field \(k \). Let \(o \) be the ring of integers and \(\mathfrak{o} \) the (unique) maximal ideal of \(o \). Let \(p \in \mathfrak{o} \) be a generator of \(\mathfrak{o} \). Recall that \(o \setminus \mathfrak{o} = o^* \).

1. Show that \((p^n o^*)_{n \in \mathbb{N}}\) is a disjoint family of subsets of \(o \). (2 pts.)

2. Show that \(o = \bigcup_{n=0}^{\infty} p^n o^* \cup \{0\} \) (5 pts.)

3. Show that \(\bigcap_{n=0}^{\infty} p^n o = \{0\} \). (3 pts.)

4. Show that every nonzero ideal of \(o \) is of the form \(p^n o \) for some \(n \in \mathbb{N} \). Thus \(o \) is a pid. (15 pts.)

5. Show that the valuation group \(G = | k^* | \) is generated by \(| p | \) and so is isomorphic to \(\mathbb{Z} \). (15 pts.)

A series \(\sum_{i=0}^{\infty} a_i \) is said to converge to \(s \) if the sequence \(\sum_{i=0}^{n} a_i \) of partial sums converges to \(s \).

6. Show that if \(k \) is complete, the series \(\sum_{i=0}^{\infty} d_i \) converges iff the sequence \((a_n)_{n \in \mathbb{N}} \) converges to 0. (15 pts.)

7. Assume that the series \(\sum_{i=0}^{\infty} a_i \) converges in \(k \). Show that \(\left| \sum_{i=0}^{\infty} a_i \right| \leq \max \{ \left| a_n \right| : n \in \mathbb{N} \} \). (10 pts.)

8. Let \(p(T) \) be an irreducible polynomial in \(k[T] \). Let \((f_n(T))_{n \in \mathbb{N}}\) be a sequence of formal power series (i.e. \(f_n(T) \in k[[T]] \) for each \(n \)). Show that \(\sum_{n=0}^{\infty} f_n(T) p(T)^n \) converges in \(k[[T]] \) for the \(p(T) \)-adic valuation. (5 pts.)

9. Assume \(k \) is complete. Let \(A \subset o \) be a set of representatives of \(o/\mathfrak{o} \). Show that every \(a \in o \) can be written uniquely as \(\sum_{n=0}^{\infty} a_n p^n \) (\(a_n \in A \)). Conversely, show that such a series converges always. (15 + 5 pts.)

10. Let \(k = \mathbb{Q}_p \) be the completion of \(\mathbb{Q} \) for the \(p \)-adic valuation (\(p \) a prime). Show that the set \(A \) of the question above can be chosen to be \(\{0, 1, \ldots, p-1\} \). (10 pts.)