Analysis I (Math 121) Resit - Correction

Fall 2002
Ali Nesin

1. Find a sequence neither decreasing nor increasing that converges to 1 . (2 pts.)
Answer: Let $a_{n}=1+\frac{(-1)^{n}}{n}$. It is clear that $\lim _{n \rightarrow \infty} a_{n}=1$. Since the subsequence $\left(a_{2 n}\right)_{n}$ is decreasing and converges to 1 and the subsequence $\left(a_{2 n}\right)_{n}$ is increasing and converges to 1 , the sequence $\left(a_{n}\right)$ is neither increasing nor decreasing.
2. Let $\left(a_{n}\right)_{n}$ be a convergent sequence of real numbers. Suppose that $a_{n} \in \mathbb{Z}$ for all n. Is it true that $\lim _{n \rightarrow \infty} a_{n} \in \mathbb{Z}$? (4 pts.)
Answer: Yes, it is true. In fact this is true even for Cauchy sequences: A Cauchy sequence $\left(a_{n}\right)_{n}$ whose terms are in \mathbb{Z} is eventually constant, i.e. there is an N such that $a_{n}=a_{N}$ for all $n \geq N$, and this implies of course that $\lim _{n \rightarrow \infty} a_{n}=a_{N} \in \mathbb{Z}$. So, let us show that the Cauchy sequence $\left(a_{n}\right)_{n}$ is eventually constant.
In the definition of Cauchy sequences, take $\epsilon=1 / 2$. Thus, there is an M such that for all $n, m>M,\left|a_{n}-a_{m}\right|<1 / 2$. But since a_{n} and a_{m} are in \mathbb{Z}, this means that for all $n, m>M,\left|a_{n}-a_{m}\right|=0$, i.e. that $a_{n}=a_{m}$. Now take $N=M+1$.
3. Let $\left(q_{n}\right)_{n}$ be a convergent sequence of real numbers. Suppose that $q_{n} \in \mathbb{Q}$ for all n. Is it true that $\lim _{n \rightarrow \infty} q_{n} \in \mathbb{Q}$? (3 pts.)
Answer: Of course not! In fact every real number is the limit of a rational sequence. Indeed, let $r \in \mathbb{R}$. Let $n \in \mathbb{N} \backslash\{0\}$. Since \mathbb{Q} is dense in \mathbb{R}, there is a rational number $q_{n} \in(r-1 / n, r)$. Since $r-1 / n<q_{n}<r$, by the Sandwich Lemma, $\lim _{n \rightarrow \infty} q_{n}=r$.
4. Let $\left(a_{n}\right)_{n}$ be a convergent sequence of real numbers. Suppose that $5 a_{n} / 2 \in$ \mathbb{N} for all n. What can you say about $\lim _{n \rightarrow \infty} a_{n}$? (4 pts.)
Answer: Let $\lim _{n \rightarrow \infty} a_{n}=r$. Then $\lim _{n \rightarrow \infty} 5 a_{n} / 2=5 r / 2$. By hypothesis and by part $2,5 r / 2 \in \mathbb{Z}$. Thus $r=2 n / 5$ for some $n \in \mathbb{N}$.
5. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers such that the subsequence $\left(a_{2 n}\right)_{n}$ converges. Does the sequence $\left(a_{n}\right)_{n}$ converge necessarily? (2 pts.)

Answer: Of course not! We can have $a_{2 n}=1 / n$ and $a_{2 n+1}=n$.
6. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers such that the sequence $\left(a_{n}^{2}\right)_{n}$ converges to 1 . Does the sequence $\left(a_{n}\right)_{n}$ converge necessarily? (2 pts .)
Answer: Of course not! We can have $a_{n}=(-1)^{n}$. Then $\left(a_{n}\right)_{n}$ is a sequence of alternating ones and minus ones, so that it diverges. And since $a_{n}^{2}=1$, the sequence $\left(a_{n}^{2}\right)_{n}$ converges to 1 .
7. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers such that the subsequences $\left(a_{2 n}\right)_{n}$ and $\left(a_{2 n+1}\right)_{n}$ both converge. Does the sequence $\left(a_{n}\right)_{n}$ converge necessarily? (2 pts.)
Answer: Of course not! We can have $a_{n}=(-1)^{n}$. Then $\left(a_{n}\right)_{n}$ is a sequence of alternating ones and minus ones, so that it diverges. And since $a_{2 n}=1$ and $a_{2 n+1}=-1$, the sequence $\left(a_{2 n}\right)_{n}$ converges to 1 and the sequence $\left(a_{2 n+1}\right)_{n}$ converges to -1 .
8. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers such that the sequence $\left(a_{n}^{2}\right)_{n}$ converges to 0 . Does the sequence $\left(a_{n}\right)_{n}$ converge necessarily? (8 pts .)
Answer: Yes! Let $\epsilon>0$. Let $\nu=\sqrt{\epsilon}$. Since the sequence $\left(a_{n}^{2}\right)_{n}$ converges to 0 , there is an N such that for all $n>N,\left|a_{n}^{2}\right|<\nu$, i.e. $\left|a_{n}\right|^{2}<\epsilon^{2}$. Since $\left|a_{n}\right|$ and ν are positive, this implies that $\left|a_{n}\right|<\epsilon$. Thus there is an N such that for all $n>N,\left|a_{n}\right|<\epsilon$; i.e. the sequence $\left(a_{n}\right)_{n}$ converges to 0 .
9. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=\infty$. Is it true that $\lim _{n \rightarrow} a_{2 n}=\infty$? (3 pts.)
Answer: Yes! Let A be any real number. $\lim _{n \rightarrow \infty} a_{n}=\infty$, there is an N such that for all $n>N, a_{n}>A$. Then for $2 n>N, a_{2 n}>A$.
10. Assume $\lim _{n \rightarrow \infty} a_{n}$ exists and $a_{n} \neq 0$ for all n. Does the sequence $\left(a_{2 n} / a_{2 n+1}\right)_{n}$ converge necessarily? (5 pts .)
Answer: No, the sequence $\left(a_{2 n} / a_{2 n+1}\right)_{n}$ may not converge if $\lim _{n \rightarrow \infty} a_{n}=$ 0 . For example, choose

$$
a_{n}= \begin{cases}1 / n & \text { if } n \text { is even } \\ 1 / n^{2} & \text { if } n \text { is odd }\end{cases}
$$

Clearly $\lim _{n \rightarrow \infty} a_{n}=0$, but

$$
\frac{a_{n}}{a_{n+1}}= \begin{cases}\frac{(n+1)^{2}}{n} & \text { if } n \text { is even } \\ \frac{n+1}{n^{2}} & \text { if } n \text { is odd }\end{cases}
$$

And the subsequence $\frac{(n+1)^{2}}{n}$ diverges to ∞, although the subsequence $\frac{n+1}{n^{2}}$ converges to 0 .
On the other hand, if the limit of the sequence $\left(a_{n}\right)_{n}$ is nonzero, say ℓ, then the sequence $\left(a_{2 n} / a_{2 n+1}\right)_{n}$ converges to 1 because $\lim _{n \rightarrow \infty} a_{2 n} / a_{2 n+1}=$ $\lim _{n \rightarrow \infty} a_{2 n} / \lim _{n \rightarrow \infty} a_{2 n+1}=\ell / \ell=1$. Note that the last part uses the fact that ℓ is nonzero.
11. Find the following limits and prove your result using only the definition. (30 pts.)
a. $\lim _{n \rightarrow \infty} \frac{3 n+105}{5 n-79}$

Answer: $\lim _{n \rightarrow \infty} \frac{3 n+105}{5 n-79}=\frac{3}{5}$.
Proof: Let $\epsilon>0$. Let N_{1} be such that $32<\epsilon N_{1}$. Let $N=\max \left(N_{1}, 395\right)$. Now for $n>N$, we have,

$$
\left|\frac{3 n+105}{5 n-79}-\frac{3}{5}\right|=\left|\frac{762}{25 n-395}\right|=\frac{762}{25 n-395} \leq \frac{762}{24 n}<\frac{32}{n}<\frac{32}{N_{1}}<\epsilon .
$$

The first equality is simple computation. The second equality follows from the fact $n>N \geq 395>16$ (so that $25 n-395>0$). The third inequality follows from the fact that $n>N \geq 395$, so that $25 n-395 \geq 25 n-n=$ $24 n$. The fourth inequality is also a simple computation.
b. $\lim _{n \rightarrow \infty} \frac{n^{2}-5 n+3}{-100 n+2}$

Answer: $\lim _{n \rightarrow \infty} \frac{n^{2}-5 n+3}{-100 n+2}=-\infty$.
Proof: It is enough to show that $\lim _{n \rightarrow \infty} \frac{n^{2}-5 n+3}{100 n-2}=\infty$.
We first note that the two roots of $n^{2}-5 n+3$ are $\frac{5 \pm \sqrt{25-12}}{2}=\frac{5 \pm \sqrt{13}}{2}$, so that if $n \geq 5>\frac{9}{2}=\frac{5+\sqrt{16}}{2}>\frac{5+\sqrt{13}}{2}$, then $n^{2}-5 n+3>0$.
Now let $A \in \mathbb{R}$ be any real number. Let $N=\max (100 A+5,5)$. Now, for all $n>N$,

$$
\frac{n^{2}-5 n+3}{100 n-2}>\frac{n^{2}-5 n+3}{100 n}>\frac{n^{2}-5 n}{100 n}=\frac{n-5}{100}>\frac{N-5}{100}=A
$$

Here, the first inequality follows from the fact that $n>N \geq 5$, so that $n^{2}-5 n+3>0$.
c. $\lim _{n \rightarrow \infty} \frac{n-8}{2 n^{3}-89}$.

Answer: $\lim _{n \rightarrow \infty} \frac{n-8}{2 n^{3}-89}=0$.
Proof: Let $\epsilon>0$. Let $N=\max (1 / \epsilon, 89)$. Now for $n>N,\left|\frac{n-8}{2 n^{3}-89}\right|=$ $\frac{n-8}{2 n^{3}-89}<\frac{n}{2 n^{3}-n}=\frac{1}{2 n^{2}-1}<\frac{1}{n^{2}}<\frac{1}{n}<\epsilon$.
12. Find (16 pts. Justify your answers).
a. $\lim _{n \rightarrow \infty}\left(\frac{2}{3}+\frac{6 n}{n^{2}+1}\right)^{3 n}$.

Answer: $\lim _{n \rightarrow \infty}\left(\frac{2}{3}+\frac{6 n}{n^{2}+1}\right)^{3 n}=0$.
Proof: We use the fact that $2 / 3<1$. Since $\lim _{n \rightarrow \infty} \frac{6 n}{n^{2}+1}=0$, there is an N such that for all $n>N, \frac{6 n}{n^{2}+1}<1 / 6$. Then $0 \leq\left(\frac{2}{3}+\frac{6 n}{n^{2}+1}\right)^{3 n}=$ $(2 / 3+1 / 6)^{3 n}=(5 / 6)^{3 n}$. By Sandwich Lemma $\lim _{n \rightarrow \infty}\left(\frac{2}{3}+\frac{6 n}{n^{2}+1}\right)^{3 n}=0$.
b. $\lim _{n \rightarrow \infty}\left(\frac{5}{4}-\frac{7}{n^{5}}\right)^{n^{n}}$.

Answer: $\lim _{n \rightarrow \infty}\left(\frac{5}{4}-\frac{7}{n^{5}}\right)^{n^{n}}=\infty$.
Proof: We use the fact that $5 / 4>1$. Since $\lim _{n \rightarrow \infty} \frac{7}{n^{5}}=0$, there is an N such that for all $n>N, \frac{7}{n^{5}}<1 / 8$. Then $\left(\frac{5}{4}-\frac{7}{n^{5}}\right)^{n^{n}}>(5 / 4-1 / 8)^{n^{n}}=$ $(9 / 8)^{n^{n}} \geq(9 / 8)^{n}$. Since $(9 / 8)>1, \lim _{n \rightarrow \infty}(9 / 8)^{n}=\infty$. The result follows.
13. Find $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}} \cdot(10 \mathrm{pts}$.$) .$

Answer: $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}=0$.
Proof: Since $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)=0$, there is an N_{1} such that for all $n>N_{1}, \frac{n^{2}-1}{n^{3}-n-5}<1 / 2$. On the other hand, for $n>3, \frac{n^{2}-1}{2 n-3}<\frac{n^{2}-1}{n}<n$. Let $N=\max \left(3, N_{1}\right)$. Now for $n>N,\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}<(1 / 2)^{\frac{n^{2}-1}{2 n-3}}<$ $(1 / 2)^{n}$. Since the right hand side converges to 0 , by Sandwich Lemma, $0 \leq \lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}=0$. (For the first inequality, one needs the fact that $n^{3}-n-5>0$ for $n \geq 2$. This follows from the facts that $2^{3}-2-5=1>0$ and $n^{3}-n-5<(n+1)^{3}-(n+1)-5$. And this last inequality is easy to show).
14. Show that the series $\sum_{n=1}^{\infty}\left(\frac{n}{n^{2}+1}\right)^{n / 3}$ converges. Find an upper bound for the sum. (10 pts.)
Answer: $\sum_{n=1}^{\infty}\left(\frac{n}{n^{2}+1}\right)^{n / 3}=\sum_{n=1}^{\infty}(1 / n)^{n / 3}<\sum_{n=1}^{\infty} 1 / 2^{n / 3}=$ $\sum_{n=1}^{\infty} 1 / 2^{3 n / 3}+\sum_{n=0}^{\infty} 1 / 2^{\frac{3 n+1}{3}}+\sum_{n=0}^{\infty} 1 / 2^{\frac{3 n+2}{3}}$
$=\sum_{n=1}^{\infty} 1 / 2^{n}+\frac{1}{2^{1 / 3}} \sum_{n=0}^{\infty} 1 / 2^{n}+\frac{1}{2^{1 / 3}} \sum_{n=0}^{\infty} 1 / 2^{n}=1 / 2+2^{-1 / 3}+2^{-2 / 3}<$ 5.
15. Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers. Assume that there is an $r>1$ such that $\left|a_{n+1}\right| \geq r\left|a_{n}\right|$ for all n. What can you say about the convergence or the divergence of $\left(a_{n}\right)_{n}$? (6 pts .)

Answer: The sequence diverges. Furthermore the sequence diverges to ∞ if it is eventually positive and to $-\infty$ if it is eventually negative.
Proof: One can show by induction on n that $\left|a_{n}\right|>r^{n}\left|a_{0}\right|$. Thus $\lim _{n \rightarrow}\left|a_{n}\right|=\infty$ (because $r>1$). It should now be clear that the answer is valid.

