1. Find a sequence neither decreasing nor increasing that converges to 1. (2 pts.)

Answer: Let \(a_n = 1 + \frac{(-1)^n}{n} \). It is clear that \(\lim_{n \to \infty} a_n = 1 \). Since the subsequence \((a_{2n})_n \) is decreasing and converges to 1 and the subsequence \((a_{2n})_n \) is increasing and converges to 1, the sequence \((a_n) \) is neither increasing nor decreasing.

2. Let \((a_n)_n \) be a convergent sequence of real numbers. Suppose that \(a_n \in \mathbb{Z} \) for all \(n \). Is it true that \(\lim_{n \to \infty} a_n \in \mathbb{Z} \)? (4 pts.)

Answer: Yes, it is true. In fact this is true even for Cauchy sequences: A Cauchy sequence \((a_n)_n \) whose terms are in \(\mathbb{Z} \) is eventually constant, i.e. there is an \(N \) such that \(a_n = a_N \) for all \(n \geq N \), and this implies of course that \(\lim_{n \to \infty} a_n = a_N \in \mathbb{Z} \). So, let us show that the Cauchy sequence \((a_n)_n \) is eventually constant.

In the definition of Cauchy sequences, take \(\epsilon = 1/2 \). Thus, there is an \(M \) such that for all \(n, m > M \), \(|a_n - a_m| < 1/2 \). But since \(a_n \) and \(a_m \) are in \(\mathbb{Z} \), this means that for all \(n, m > M \), \(|a_n - a_m| = 0 \), i.e. that \(a_n = a_m \). Now take \(N = M + 1 \).

3. Let \((q_n)_n \) be a convergent sequence of real numbers. Suppose that \(q_n \in \mathbb{Q} \) for all \(n \). Is it true that \(\lim_{n \to \infty} q_n \in \mathbb{Q} \)? (3 pts.)

Answer: Of course not! In fact every real number is the limit of a rational sequence. Indeed, let \(r \in \mathbb{R} \). Let \(n \in \mathbb{N} \setminus \{0\} \). Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), there is a rational number \(q_n \in (r - 1/n, r) \). Since \(r - 1/n < q_n < r \), by the Sandwich Lemma, \(\lim_{n \to \infty} q_n = r \).

4. Let \((a_n)_n \) be a convergent sequence of real numbers. Suppose that \(5a_n/2 \in \mathbb{N} \) for all \(n \). What can you say about \(\lim_{n \to \infty} a_n \)? (4 pts.)

Answer: Let \(\lim_{n \to \infty} a_n = r \). Then \(\lim_{n \to \infty} 5a_n/2 = 5r/2 \). By hypothesis and by part 2, \(5r/2 \in \mathbb{Z} \). Thus \(r = 2n/5 \) for some \(n \in \mathbb{N} \).

5. Let \((a_n)_n \) be a sequence of real numbers such that the subsequence \((a_{2n})_n \) converges. Does the sequence \((a_n)_n \) converge necessarily? (2 pts.)
6. Let \((a_n)_n\) be a sequence of real numbers such that the sequence \((a_n^2)_n\) converges to 1. Does the sequence \((a_n)_n\) converge necessarily? (2 pts.)

Answer: Of course not! We can have \(a_{2n} = 1/n\) and \(a_{2n+1} = n\).

7. Let \((a_n)_n\) be a sequence of real numbers such that the subsequences \((a_{2n})_n\) and \((a_{2n+1})_n\) both converge. Does the sequence \((a_n)_n\) converge necessarily? (2 pts.)

Answer: Of course not! We can have \(a_n = (-1)^n\). Then \((a_n)_n\) is a sequence of alternating ones and minus ones, so that it diverges. And since \(a_n^2 = 1\), the sequence \((a_n^2)_n\) converges to 1.

8. Let \((a_n)_n\) be a sequence of real numbers such that the sequence \((a_n^2)_n\) converges to 0. Does the sequence \((a_n)_n\) converge necessarily? (8 pts.)

Answer: Yes! Let \(\epsilon > 0\). Let \(\nu = \sqrt{\epsilon}\). Since the sequence \((a_n^2)_n\) converges to 0, there is an \(N\) such that for all \(n > N\), \(|a_n^2| < \nu\), i.e. \(|a_n|^2 < \epsilon\). Since \(|a_n|\) and \(\nu\) are positive, this implies that \(|a_n| < \epsilon\). Thus there is an \(N\) such that for all \(n > N\), \(|a_n| < \epsilon\); i.e. the sequence \((a_n)_n\) converges to 0.

9. Let \((a_n)_n\) be a sequence of real numbers such that \(\lim_{n \to \infty} a_n = \infty\). Is it true that \(\lim_{n \to \infty} a_{2n} = \infty\)? (3 pts.)

Answer: Yes! Let \(A\) be any real number. \(\lim_{n \to \infty} a_n = \infty\), there is an \(N\) such that for all \(n > N\), \(a_n > A\). Then for \(2n > N\), \(a_{2n} > A\).

10. Assume \(\lim_{n \to \infty} a_n = \ell\) exists and \(a_n \neq 0\) for all \(n\). Does the sequence \((a_{2n}/a_{2n+1})_n\) converge necessarily? (5 pts.)

Answer: No, the sequence \((a_{2n}/a_{2n+1})_n\) may not converge if \(\lim_{n \to \infty} a_n = 0\). For example, choose

\[
a_n = \begin{cases}
1/n & \text{if } n \text{ is even} \\
1/n^2 & \text{if } n \text{ is odd}
\end{cases}
\]

Clearly \(\lim_{n \to \infty} a_n = 0\), but

\[
a_n/a_{n+1} = \begin{cases}
(n+1)^2/n^2 & \text{if } n \text{ is even} \\
(n+1)/n^2 & \text{if } n \text{ is odd}
\end{cases}
\]

And the subsequence \((n+1)^2/n^2\) diverges to \(\infty\), although the subsequence \((n+1)/n^2\) converges to 0.

On the other hand, if the limit of the sequence \((a_n)_n\) is nonzero, say \(\ell\), then the sequence \((a_{2n}/a_{2n+1})_n\) converges to 1 because \(\lim_{n \to \infty} a_{2n}/a_{2n+1} = \lim_{n \to \infty} a_{2n}/\lim_{n \to \infty} a_{2n+1} = \ell/\ell = 1\). Note that the last part uses the fact that \(\ell\) is nonzero.
11. Find the following limits and prove your result using only the definition. (30 pts.)

a. \(\lim_{n \to \infty} \frac{3n + 105}{5n - 79} \)

Answer: \(\lim_{n \to \infty} \frac{3n + 105}{5n - 79} = \frac{3}{5} \).

Proof: Let \(\epsilon > 0 \). Let \(N_1 \) be such that \(32 < \epsilon N_1 \). Let \(N = \max(N_1, 395) \). Now for \(n > N \), we have,

\[
\left| \frac{3n + 105}{5n - 79} - \frac{3}{5} \right| = \frac{762}{25n - 395} \leq \frac{32}{24} < \frac{32}{N_1} < \epsilon.
\]

The first equality is simple computation. The second equality follows from the fact \(n > N \geq 395 > 16 \) (so that \(25n - 395 > 0 \)). The third inequality follows from the fact that \(n > N \geq 395 \), so that \(25n - 395 \geq 25n - n = 24n \). The fourth inequality is also a simple computation.

b. \(\lim_{n \to \infty} \frac{n^2 - 5n + 3}{100n + 2} \)

Answer: \(\lim_{n \to \infty} \frac{n^2 - 5n + 3}{100n + 2} = -\infty \).

Proof: It is enough to show that \(\lim_{n \to \infty} \frac{n^2 - 5n + 3}{100n + 2} = \infty \).

We first note that the two roots of \(n^2 - 5n + 3 \) are \(\frac{5 + \sqrt{25 - 12}}{2} = \frac{5 + \sqrt{13}}{2} \), so that if \(n \geq \frac{9}{2} \), then \(n^2 - 5n + 3 > 0 \).

Now let \(A \in \mathbb{R} \) be any real number. Let \(N = \max(100A + 5, 5) \). Now, for all \(n > N \),

\[
\frac{n^2 - 5n + 3}{100n + 2} > \frac{n^2 - 5n + 3}{100n} = \frac{n - 5}{100} > \frac{N - 5}{100} = A.
\]

Here, the first inequality follows from the fact that \(n > N \geq 5 \), so that \(n^2 - 5n + 3 > 0 \).

c. \(\lim_{n \to \infty} \frac{n^8}{2n^3 - 89} \)

Answer: \(\lim_{n \to \infty} \frac{n^8}{2n^3 - 89} = 0 \).

Proof: Let \(\epsilon > 0 \). Let \(N = \max(1/\epsilon, 89) \). Now for \(n > N \),

\[
\left| \frac{n^8}{2n^3 - 89} \right| = \frac{n^8}{2n^3 - 89} < \frac{n}{2n^3 - n} = \frac{1}{2n^2 - 1} < \frac{1}{n^2} < \frac{1}{n} < \epsilon.
\]

a. \(\lim_{n \to \infty} \left(\frac{2}{3} + \frac{6n}{n^3 + 1} \right)^{3n} \)

Answer: \(\lim_{n \to \infty} \left(\frac{2}{3} + \frac{6n}{n^3 + 1} \right)^{3n} = 0 \).

Proof: We use the fact that \(2/3 < 1 \). Since \(\lim_{n \to \infty} \frac{6n}{n^3 + 1} = 0 \), there is an \(N \) such that for all \(n > N \), \(\frac{6n}{n^3 + 1} < 1/6 \). Then \(0 \leq \left(\frac{2}{3} + \frac{6n}{n^3 + 1} \right)^{3n} = (2/3 + 1/6)^{3n} = (5/6)^{3n} \). By Sandwich Lemma \(\lim_{n \to \infty} \left(\frac{2}{3} + \frac{6n}{n^3 + 1} \right)^{3n} = 0 \).
b. \(\lim_{n \to \infty} \left(\frac{2}{3} - \frac{2}{n} \right)^n \).

Answer: \(\lim_{n \to \infty} \left(\frac{2}{3} - \frac{2}{n} \right)^n = \infty. \)

Proof: We use the fact that \(5/4 > 1 \). Since \(\lim_{n \to \infty} \frac{2}{n} = 0 \), there is an \(N \) such that for all \(n > N \), \(\frac{2}{n} < 1/8 \). Then \(\left(\frac{2}{3} - \frac{2}{n} \right)^n > (5/4 - 1/8)n^n = (9/8)^n \geq (9/8)^n \). Since \((9/8) > 1 \), \(\lim_{n \to \infty} (9/8)^n = \infty. \) The result follows.

13. Find \(\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^3 - n - 5} \right)^{\frac{n^2-1}{n^2+3}} \). (10 pts.)

Answer: \(\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^3 - n - 5} \right)^{\frac{n^2-1}{n^2+3}} = 0. \)

Proof: Since \(\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^3 - n - 5} \right) = 0 \), there is an \(N_1 \) such that for all \(n > N_1 \), \(\frac{n^2 - 1}{n^3 - n - 5} < 1/2 \). On the other hand, for \(n > 3 \), \(\frac{n^2 - 1}{2n - 3} < \frac{2^2 - 1}{n} < n. \)

Let \(N = \max(3, N_1) \). Now for \(n > N \), \(\left(\frac{n^2 - 1}{n^3 - n - 5} \right)^{\frac{n^2-1}{n^2+3}} < (1/2)^{\frac{n^2-1}{n^2+3}} < (1/2)^n. \) Since the right hand side converges to 0, by Sandwich Lemma, \(0 \leq \lim_{n \to \infty} \left(\frac{n^2 - 1}{n^3 - n - 5} \right)^{\frac{n^2-1}{n^2+3}} = 0. \) (For the first inequality, one needs the fact that \(n^3 - n - 5 > 0 \) for \(n \geq 2 \). This follows from the facts that \(2^3 - 2 - 5 = 1 > 0 \) and \(n^3 - n - 5 < (n + 1)^3 - (n + 1) - 5. \) And this last inequality is easy to show).

14. Show that the series \(\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n/3} \) converges. Find an upper bound for the sum. (10 pts.)

Answer: \(\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n/3} = \sum_{n=1}^{\infty} (1/n)^{n/3} < \sum_{n=1}^{\infty} 1/2^{n/3} = \sum_{n=1}^{\infty} 1/2^{n/3} + \sum_{n=0}^{\infty} 1/2^{3n+1} + \sum_{n=0}^{\infty} 1/2^{3n+2} = \sum_{n=1}^{\infty} 1/2^n + 1/27 \sum_{n=0}^{\infty} 1/2^n + 1/81 \sum_{n=0}^{\infty} 1/2^n = 1/2 + 2^{-1/3} + 2^{-2/3} < 5. \)

15. Let \((a_n) \) be a sequence of real numbers. Assume that there is an \(r > 1 \) such that \(|a_{n+1}| \geq r|a_n| \) for all \(n \). What can you say about the convergence or the divergence of \((a_n) \)? (6 pts.)

Answer: The sequence diverges. Furthermore the sequence diverges to \(\infty \) if it is eventually positive and to \(-\infty \) if it is eventually negative.

Proof: One can show by induction on \(n \) that \(|a_n| > r^n |a_0| \). Thus \(\lim_{n \to \infty} |a_n| = \infty \) (because \(r > 1 \)). It should now be clear that the answer is valid.