Analysis I (Math 121) Final

Fall 2002
Ali Nesin
February 8, 2003

Justify all your answers. A nonjustified answer will not receive any grade whatsoever, even if the answer is correct. DO NOT use symbols such as \forall, \exists, \Rightarrow. Make full sentences with correct punctuation. You may write in Turkish or in English.

1. Let $\left(a_{n}\right)_{n}$ be a convergent sequence of real numbers.
a. Does the sequence $\left(a_{2 n}\right)_{n}$ converge necessarily? (2 pts .)

Since $\left(a_{2 n}\right)_{n}$ is a subsequence of the converging sequence $\left(a_{n}\right)_{n}$, both sequences converge to the same limit.
Remarks. We have seen in class that a subsequence of a conc-verging sequence converges.
Contrary to what some of you think, $a_{2 n} \neq 2 a_{n}$!
b. Assume $a_{n} \neq 0$ for all n. Does the sequence $\left(a_{n} / a_{n+1}\right)_{n}$ converge necessarily? (2 pts .)
No, the sequence $\left(a_{n} / a_{n+1}\right)_{n}$ may not converge if $\lim _{n \rightarrow \infty} a_{n}=0$. For example, choose

$$
a_{n}= \begin{cases}1 / n & \text { if } n \text { is even } \\ 1 / n^{2} & \text { if } n \text { is odd }\end{cases}
$$

Clearly $\lim _{n \rightarrow \infty} a_{n}=0$, but

$$
\frac{a_{n}}{a_{n+1}}= \begin{cases}\frac{(n+1)^{2}}{n} & \text { if } n \text { is even } \\ \frac{n+1}{n^{2}} & \text { if } n \text { is odd }\end{cases}
$$

And the subsequence $\frac{(n+1)^{2}}{n}$ diverges to ∞, although the subsequence $\frac{n+1}{n^{2}}$ converges to 0 .
On the other hand, if the limit of the sequence $\left(a_{n}\right)_{n}$ is nonzero, say ℓ, then the sequence $\left(a_{n} / a_{n+1}\right)_{n}$ converges to 1 because $\lim _{n \rightarrow \infty} a_{n} / a_{n+1}=$ $\lim _{n \rightarrow \infty} a_{n} / \lim _{n \rightarrow \infty} a_{n+1}=\ell / \ell=1$. Note that the last part uses the fact that ℓ is nonzero.
2. Find the following limits and prove your result using only the definition. (30 pts.)
a. $\lim _{n \rightarrow \infty} \frac{2 n-5}{5 n+2}$.

We claim that the limit is $2 / 5$. Let $\epsilon>0$. Since \mathbb{R} is Archimedean, there is an N such that $2<\epsilon N$. Now for $n>N,\left|\frac{2 n-5}{5 n+2}-\frac{2}{5}\right|=\frac{29}{5(5 n+2)}<\frac{29}{25 n}<$ $2 / n<2 / N<\epsilon$.
b. $\lim _{n \rightarrow \infty} \frac{2 n^{2}-5}{-5 n+2}$.

We claim that the limit is $-\infty$. For this it is enough to prove that $\lim _{n \rightarrow \infty} \frac{2 n^{2}-5}{5 n-2}=\infty$. Let A be any real number. Let $N=\max (5 A, 2)$. For $n>N$ we have $\frac{2 n^{2}-5}{5 n-2}>\frac{2 n^{2}-5}{5 n}>\frac{2 n^{2}-n^{2}}{5 n}=\frac{n^{2}}{5 n}=\frac{n}{5}>\frac{N}{5} \geq A$. This proves that $\lim _{n \rightarrow \infty} \frac{2 n^{2}-5}{5 n-2}=\infty$.
c. $\lim _{n \rightarrow \infty} \frac{2 n^{2}-5}{n^{3}+2}$.

We claim that the limit is 0 . Let $\epsilon>0$. Let N_{1} be such that $2>\epsilon N_{1}$ (Archimedean property of \mathbb{R}). Let $N=\max (1, N)$. Then for all $n>N$,

$$
\left|\frac{2 n^{2}-5}{n^{3}+2}\right|=\frac{2 n^{2}-5}{n^{3}+2}<\frac{2 n^{2}}{n^{3}+2} \leq \frac{2 n^{2}}{n^{3}}=\frac{2}{n}<\frac{2}{N}<\epsilon
$$

Note that the first equality is valid because $n^{3}-5 \geq 0$, the second inequality is valid because $n^{3}+2>0$.
3. Find (16 pts. Justify your answers).
a. $\lim _{n \rightarrow \infty}(1 / 2+1 / n)^{n}$.

Note that for $n \geq 3,0<1 / 2+1 / n \leq 1 / 2+1 / 3=5 / 6$. Thus the sequence $\left((1 / 2+1 / n)^{n}\right)_{n}$ is eventually squeezed between the zero constant sequence and the sequence $\left((5 / 6)^{n}\right)_{n}$. Since $\lim _{n \rightarrow \infty}(5 / 6)^{n}=0$ (because $5 / 6<1$), $\lim _{n \rightarrow \infty}(1 / 2+1 / n)^{n}=0$.
b. $\lim _{n \rightarrow \infty}(3 / 2-7 / n)^{n}$.

Since $3 / 2>1$ and $\lim _{n \longrightarrow \infty} 7 / n=0$, there is an N such that $7 / N<$ $1 / 2=3 / 2-1$. In fact, it is enough to take $N=15$. Then for all $n \geq N$, $3 / 2-7 / n \geq 3 / 2-7 / N>1$ and so $(3 / 2-7 / n)^{n} \geq(3 / 2-7 / N)^{n}$. Therefore the sequence $\left((3 / 2-7 / n)^{n}\right)_{n}$ is greater than the sequence $\left((3 / 2-7 / N)^{n}\right)_{n}$. Since $3 / 2-7 / N>1$, the sequence $\left((3 / 2-7 / N)^{n}\right)_{n}$ diverge to ∞. Hence $\lim _{n \rightarrow \infty}(3 / 2-7 / n)^{n}=\infty$.
4. Find $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}$. (10 pts. Justify your answer).

Assume $n>5$. Then we have, $n^{3}-n-5>n^{3}-2 n>n^{3}-n^{3} / 2=n^{3} / 2>0$. Therefore,

$$
\left|\frac{n^{2}-1}{n^{3}-n-5}\right|=\frac{n^{2}-1}{n^{3}-n-5}<\frac{n^{2}}{n^{3}-n-5}<\frac{n^{2}}{n^{3} / 2}=2 / n
$$

Also $\frac{n^{2}-1}{2 n-3}>\frac{n^{2}-1}{2 n}>\frac{n^{2}-n}{2 n}=\frac{n-1}{2}>2$. Hence

$$
\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}<(2 / n)^{2}
$$

It follows that $\lim _{n \rightarrow \infty}\left(\frac{n^{2}-1}{n^{3}-n-5}\right)^{\frac{n^{2}-1}{2 n-3}}=0$.
5. Show that the series $\sum_{n=1}^{\infty}(1 / n)^{n}$ converges. Find an upper bound for the sum. (10 pts.)
Since for $n \geq 2,1 / n \leq 1 / 2$, we have $\sum_{n=1}^{\infty}(1 / n)^{n} \leq 1+\sum_{n=2}^{\infty}(1 / n)^{n} \leq$ $1+\sum_{n=1}^{\infty}(1 / 2)^{n}=1+\frac{1}{2} \sum_{n=0}^{\infty}(1 / 2)^{n}=1+1 / 2=3 / 2$.
6. Let $\left(a_{n}\right)_{n}$ be a sequence of nonnegative real numbers. Suppose that the sequence $\left(a_{n}^{2}\right)_{n}$ converges to a. Show that the sequence $\left(a_{n}\right)_{n}$ converges to $\sqrt{a} .(15 \mathrm{pts}$.
Note first that, since $a_{n} \geq 0, a \geq 0$ as well.
Let $\epsilon>0$.
Case 1: $a>0$. Since $\lim _{n} \longrightarrow \infty a_{n}^{2}=a$, there is an N_{2} such that for all $n>N,\left|a_{n}^{2}-a\right|<\epsilon a$. Now for all $n>N,\left|a_{n}-\sqrt{a}\right|=\frac{\left|a_{n}^{2}-a\right|}{a_{n}+a} \leq \frac{\left|a_{n}^{2}-a\right|}{a}<\epsilon$.
Case 2. $a=0$.
Since the sequence $\left(a_{n}^{2}\right)_{n}$ converges to 0 , there is an N such that for all $n>N, a_{n}^{2}<\epsilon^{2}$. So $\left(\epsilon+a_{n}\right)\left(\epsilon-a_{n}\right)=\epsilon^{2}-a_{n}^{2}>0$. Since $\epsilon>0$ and $a_{n} \geq 0$, we can divide both sides by $\epsilon+a_{n}$ to get $\epsilon-a_{n}>0$, i.e. $a_{n}<\epsilon$. Since $a_{n} \geq 0$, this implies $\left|a_{n}\right|<\epsilon$.
7. We have seen in class that the sequence given by $a_{n}=\left((1+1 / n)^{n}\right)_{n}$ converges to a real number >1. Let e be this limit. Do the following sequences converge? If so find their limit. (15 pts. Justify your answers).
a) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}$.
$\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n+1}}{\lim _{n \rightarrow \infty} 1+\frac{1}{n+1}}=\frac{e}{1}=$ e. The first equality is algebraic. The second equality holds because the limits of the numerator and the denominator exist and they are nonzero.
The third equality holds because $\left(\left(1+\frac{1}{n+1}\right)^{n+1}\right)_{n}$ is a subsequence of $\left(\left(1+\frac{1}{n}\right)^{n}\right)_{n}$.
b) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{3 n}$.
$\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{3 n}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{2 n}\right)^{2 n}\right)^{3 / 2}=e^{3 / 2}$ by Question 6.
c) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n^{2}}$.
$\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n^{2}}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}\right)^{n}=\lim _{n \longrightarrow \infty} e^{n}=\infty$ because $e>1$.

