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1. Which of the following are not vector spaces over R (with the componen-
twise addition and scalar multiplication) and why?

V1 = {(x, y, z) ∈ R3 : xy ≥ 0}
V2 = {(x, y, z) ∈ R3 : 3x− 2y + z = 0}
V3 = {(x, y, z) ∈ R3 : xyz ∈ Q}
V4 = {(x, y) ∈ R3 : x + y ≥ 0}
V5 = {(x, y) ∈ R2 : x2 + y2 = 0}
V6 = {(x, y) ∈ C2 : x2 + y2 = 0}

(2+2+2+2+2+5 pts.)

Answers. V1 is not a vector space because e.g. (−1, 0, 0) ∈ V1, (0, 1, 0) ∈
V1 but their sum (−1, 1, 0) 6∈ V1.

V2 is a vector space.

V3 is not a vector space because e.g. (1, 1, 1) ∈ V3, but
√

2(1, 1, 1) 6∈ V3.

V4 is not a vector space because e.g. (1, 2, 1) ∈ V4, but −(1, 2, 1) 6∈ V4.

V5 is a vector space because V5 = {(0, 0, 0)}.
V6 is not a vector space because e.g. (1, i) ∈ V6, (1,−i) ∈ V6, but their
sum (2, 0) 6∈ V6.

2. On the set X = {2, 3 . . . , 100} define the relation x ≺ y by “x 6= y and x
divides y”.

a) Show that this defines a partial order on X. (3 pts.)

b) Is this a linear order? (2 pts.)

c) Find all the maximal and minimal elements of this poset. (5 pts.)
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Answers. By definition, we have,

2 ≺ 4 ≺ 8 ≺ 16 ≺ . . .
2 ≺ 6 ≺ 12 ≺ 24 ≺ 48 ≺ . . .
3 ≺ 6 ≺ 12 ≺ . . .
3 6≺ 4 6≺ 6

a) Yes, this is a partial order: Clearly x 6≺ x for any x. Since division is
transitive, ≺ is transitive as well.

b) No, because e.g. 2 and 3 are not comparable.

c) The prime numbers are minimal elements. The maximal elements are
the numbers which are greater than 50. (For example 53 and 97 are both
minimal and maximal. 47 is minimal but not maximal, since 47 ≺ 94. 94
is maximal but not minimal. 50 is neither minimal nor maximal.)

3. On R × R define the relation ≺ as follows (x, y) ≺ (x1, y1) by “either
y < y1, or y = y1 and x < x1”.

a) Show that this is a linear order. (5 pts.)

b) Does every subset of this linear order which has an upper bound has a
least upper bound? (5 pts.)

Answers. a) Irreflexivity. Clearly (x, y) 6≺ (x, y) for all (x, y) ∈ R× R.

b) Transitivity. Assume (x, y) ≺ (x1, y1) and (x1, y1) ≺ (x2, y2). We
must have y ≤ y1 and y1 ≤ y2. If either y < y1 or y1 < y2, then y < y2

and so (x, y) ≺ (x2, y2). Assume y = y1 = y2. Then x < x1 < x2, so
x < x2. Hence (x, y) ≺ (x2, y2).

c Comparability. Let (x, y) and (x1, y1) be two elements of R× R. We
want to show that these two elements are comparable with respect to
the partial order ≺. If y < y1 or y1 < y, then these two elements are
comparable. Assume y = y1. If x < x1 or x1 < x, then these two elements
are comparable. The only case left is the case where these two elements
are equal.

Thus the relation ≺ is a linear order.

b) No. For example the set R×{0} is bounded above by (0, 1) but it does
not have a least upper bound.

4. For each n ∈ N, let an and bn be two real numbers. Assume that for each
n, an ≤ an+1 ≤ bn+1 ≤ bn. Show that ∩n∈N[an, bn] = [a, b] for some real
numbers a and b. (10 pts.)

Proof: Since the set {an : n ∈ N} is bounded above by b0, it has a least
upper bound, say a. Similarly the set {bn : n ∈ N} has a greatest lower
bound, say b. I claim that ∩n∈N[an, bn] = [a, b].

If x ≥ a, then x ≥ an for all n. Likewise, if x ≤ b, then x ≤ bn for all n.
Hence, if x ∈ [a, b], then x ∈ [an, bn] for all n.
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Conversely, let x ∈ ∩n∈N[an, bn]. Then an ≤ x ≤ bn for all n. Thus x is
an upper bound for {an : n ∈ N} and a lower bound for {bn : n ∈ N}.
Hence a ≤ x ≤ b.

5. Show that for any natural number n and for any real number x ∈ [0, 1),

(1− x)n ≤ 1− nx +
n(n− 1)

2
x2.

(10 pts.)

Proof: We proceed by induction on n.

If n = 0, then both sides are equal to 1, and so the result holds.

Suppose we know the result for n, i.e. suppose we know that for any real
number x ∈ [0, 1),

(1− x)n ≤ 1− nx +
n(n− 1)

2
x2.

We will prove that for any real number x ∈ [0, 1),

(1− x)n+1 ≤ 1− (n + 1)x +
(n + 1)n

2
x2.

Let x ∈ [0, 1). Since (1 − x)n ≤ 1 − nx + n(n−1)
2 x2 and since 1 − x > 0,

multiplying by 1− x both sides we get

(1− x)n+1 = (1− x)n(1− x)
≤ (1− nx + n(n−1)

2 x2)(1− x)
= 1− (n + 1)x + (n+1)n

2 x2 − n(n−1)
2 x3.

Thus

(1− x)n+1 ≤ 1− (n + 1)x +
(n + 1)n

2
x2 − n(n− 1)

2
x3.

Since x ≥ 0,

(1− x)n+1 ≤ 1− (n + 1)x + (n+1)n
2 x2 − n(n−1)

2 x3

≤ 1− (n + 1)x + (n+1)n
2 x2.

.

6. a) Show that for any complex number α there is a polynomial of the form
p(X) = X2 + aX + b ∈ R[X] such that p(α) = 0. (Note: a and b should
be real numbers). (10 pts.)

b) What can you say about a and b if α = u + iv for some u, v ∈ Z? (5
pts.)

Proof: a) Let α be a complex number. Then p(x) := (x − α)(x − α) =
x2 − (α + α)x + αα ∈ R[x] (because α + α and αα are real numbers) and
it is easy to check that p(α) = 0.

3



b) It is clear that if α = u + iv for some u, v ∈ Z, then α + α = 2u and
αα = u2 + v2 are integers and so p(x) ∈ Z[x].

Second Proof of part a. Write α = u + iv where u and v are real
numbers. Then α2 = u2− v2 + 2uvi. Thus α2− 2uα = (u2− v2 + 2uvi)−
2u(u + iv) = −u2 − v2, so that α2 − 2uα + (u2 + v2) = 0. Hence α is a
root of the polynomial p(x) = x2 − 2ux + (u2 + v2) ∈ R[x].

Part b follows from this immediately.

7. a) Show that for any α ∈ C there is a β ∈ C such that β2 = α. (15 pts.)

b) Show that for any α, β ∈ C there is an x ∈ C such that x2+αx+β = 0.
(10 pts.)

Proof: a. Let α = a + bi. We try to find β ∈ C such that β2 = α, i.e.
we try to find two real numbers x and y such that (x + iy)2 = a + bi. We
may assume that α 6= 0 (otherwise take β = 0). Thus we assume that a
and b are noth both 0. After multiplying out, we see that this equation is
equivalent to the system

x2 − y2 = a
2xy = b

Since x = 0 implies a = 0 = y = b, which is contrary to our assumption,
x must be nonzero. Thus we have y = b/2x and so the above system is
equivalent to the following:

x2 − (b/2x)2 = a
y = b/2x

Equalizing the denominators in the first one, we get the following equiva-
lent system:

4x4 − 4ax2 − b2 = 0
y = b/2x

So now the problem is about the solvability of the first equation 4x4 −
4ax2 − b2 = 0. (Once we find x, which is necessarily nonzero, we set
y = b/2x). Setting z = x2, we see that the solvability of 4x4−4ax2−b2 = 0
is equivalent to the question of whether 4z2−4az−b2 = 0 has a nonnegative
solution. Since this last equation is a quadratic equation over R, it is easy
to answer this question. There are two possible solutions: z = a±√a2 + b2

and one of them z = a +
√

a2 + b2 is nonnegative (even if a is negative).
Thus we can take

x =
√

a +
√

a2 + b2

and
y = b/2x.

b. We first compute as follows: 0 = x2 + αx + β = x2 + αx + α2/4 + (β−
α2/4) = (x+α/2)2 +(β−α2/4). Thus a solution, x of this equation must
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satisfy (x+α/2)2 = α2/4−β. Hence if z ∈ C is such that z2 = α2/4−β (by
the first part there is such a z), then z−α/2 is a solution of x2+αx+β = 0.
(The other solution is −z − α/2).

8. Suppose X and Y are two subsets of R that have least upper bounds.
Show that the set X + Y := {x + y : x ∈ X, y ∈ Y } has a least upper
bound and that sup(X + Y ) = sup(X) + sup(Y ). (15 pts.)

Proof: Let a and b be the least upper bounds of X and Y respectively.
Thus x ≤ a for all x ∈ X and y ≤ b for all y ∈ Y . It follows that
x + y ≤ a + b for all x ∈ X and y ∈ Y , meaning exactly that a + b is an
upper bound of X + Y . Now we show that a + b is the least upper bound
of X + Y . Let ε > 0 be any. We need to show that a + b − ε < x + y
for some x ∈ X and y ∈ Y . Since a is the least upper bound of X, there
is an x ∈ X such that a − ε/2 < x. Similarly there is a y ∈ Y such that
b− ε/2 < y. Summing these two, we get a + b− ε < x + y.

9. We consider the subset X = {1/2n : n ∈ N} ∪ {0} of R together with the
usual metric, i.e. for x, y ∈ X, d(x, y) is defined to be |x− y|. Show that
the open subsets of X are the cofinite subsets1 of X and the ones that do
not contain 0. (20 pts.)

Proof: We first show that the singleton set {1/2n} is an open subset of X.
This is clear because B(1/2n, 1/2n+1) = {1/2n}. It follows that any subset
of X that does not contain 0 is open. Now let U be any cofinite subset of
X. We proceed to show that U is open. If 0 6∈ U , then we are done by the
preceding. Assume 0 ∈ U . Since U is cofinite, there is a natural number
n◦ such that for all n > n◦, 1/2n ∈ U , i.e. B(0, 1/2n◦) ⊆ U . Now U is
the union of B(0, 1/2n◦) and of a finite subset not containing 0. Thus U
is open.

For the converse, we first show that a nonempty open ball is of the form
described in the statement of the question. If the center of the ball is 0,
then the ball is cofinite by the Archimedean property. If the center of the
ball is not 0, then either the ball does not contain 0 or else it does contain
0, in which case the ball must be cofinite.

To finish the proof, we must show that an arbitrary union of open balls
each of which does not contain 0 cannot contain 0. But this is clear!

1A subset Y of X is called cofinite if X \ Y is finite.
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