Math 331

Real and Complex Analysis
Midterm 1
November 24, 2000
Ali Nesin
1a. Starting from the axioms for real numbers, show that for any real number $A>0$ there is an integer $n>0$ such that $A<n$. (Archimedean Property)

1b. Show that for any $\varepsilon>0$ there is an integer $n>0$ such that $1 / n<\varepsilon$.
1c. By using the definition of limit of a sequence, show that $\lim _{n \rightarrow \infty} 1 / n=0$.
2a. Show that any increasing and bounded sequence of real numbers has a limit, namely the least upper bound of the sequence.

Let $\left(a_{n}\right)_{n}$ be a sequence of real numbers. We say that $\sum_{i=0}^{\infty} a_{i}$ converges to the real number ℓ if the sequence of "partial sums" $\left(\sum_{i=0}^{n} a_{i}\right)_{n}$ converges to ℓ. Let $r \in(0,1)$ be a real number.

2b. Show that the sequence $\left(\sum_{i=0}^{n} r^{n}\right)_{n}$ is increasing and bounded by $\frac{1}{1-r}$.
2c. Show that $\sum_{i=0}^{\infty} r^{n}$ converges to the real number $\frac{1}{1-r}$.
2d. Let $\left(a_{n}\right)_{n}$ be a sequence of strictly positive real numbers. Show that if $a_{n+1} / a_{n} \leq r$ for some $r \in(0,1)$ then $\sum_{i=0}^{\infty} a_{i}$ converges.

2e. Let x be a positive real number. Show that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges.
2f. Let $\left(a_{n}\right)_{n}$ be a sequence of strictly positive real numbers. Assume that $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}$ exists and is <1. Show that $\sum_{i=0}^{\infty} a_{i}$ converges.
3. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous and increasing on a closed interval $[a, b]$. Let $A=f(a)$ and $B=f(b)$. Show that $f:[a, b] \rightarrow[A, B]$ is a bijection which has a continuous and increasing inverse.

