Set Theory (Math 111)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous at a point $a \in \mathbb{R}$, if for all $\varepsilon>0$ (real or rational, it does not matter) there is a $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x-a|<\delta$ then $|f(x)-f(a)|<\varepsilon$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if it is continuous at every point $a \in \mathbb{R}$.

1. Show that a constant function is continuous. (3 pts .)
2. Show that the identity function is continuous. (5 pts .)
3. Is the function f defined by

$$
f(x)=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
1 & \text { if } x \geq 0
\end{aligned}\right.
$$

continuous? Justify your answer. (6 pts.)
4. Let f be defined as follows:

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { otherwise }\end{cases}
$$

Is f continuous at some point? (6 pts .)
5. Show that if f and g are continuous, then so is their $\operatorname{sum} f+g$. (8 pts.)
6. Show that if f and g are continuous, then so is their product $f \bullet g$. (10 pts.)
7. By applying the previous questions show that the function defined by

$$
f(x)=x^{2}-4 x+\sqrt{ } 2
$$

is continuous. (5 pts .)
8. By using directly the definition of continuity show that the function defined by $f(x)=x^{2}-4 x+\sqrt{ } 2$ is continuous. (10 pts .)
9. Let f and g be two functions. Assume that f is continuous at a and that g is continuous at $f(a)$. Show that $g \circ f$ is continuous at a. (15 pts .)
10. Let f be continuous at a and assume that $f(a)>0$. Show that there is an interval around a where f is strictly positive. (15 pts .)
11. Let f be continuous. Assume that $f(a)<0$ and $f(b)>0$. Show that $f(c)=0$ for some c between a and b. (17 pts.)

