A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is called **continuous at a point** \(a \in \mathbb{R} \), if for all \(\varepsilon > 0 \) (real or rational, it does not matter) there is a \(\delta > 0 \) such that for all \(x \in \mathbb{R} \), if \(|x - a| < \delta \) then \(|f(x) - f(a)| < \varepsilon \).

A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is called **continuous** if it is continuous at every point \(a \in \mathbb{R} \).

1. Show that a constant function is continuous. (3 pts.)
2. Show that the identity function is continuous. (5 pts.)
3. Is the function \(f \) defined by
 \[
 f(x) = \begin{cases}
 -1 & \text{if } x < 0 \\
 1 & \text{if } x \geq 0
 \end{cases}

 continuous? Justify your answer. (6 pts.)
4. Let \(f \) be defined as follows:
 \[
 f(x) = \begin{cases}
 0 & \text{if } x \text{ is rational} \\
 1 & \text{otherwise}
 \end{cases}

 Is \(f \) continuous at some point? (6 pts.)
5. Show that if \(f \) and \(g \) are continuous, then so is their sum \(f + g \). (8 pts.)
6. Show that if \(f \) and \(g \) are continuous, then so is their product \(f \cdot g \). (10 pts.)

7. By applying the previous questions show that the function defined by
 \[
 f(x) = x^2 - 4x + \sqrt{2}

 is continuous. (5 pts.)
8. By using directly the definition of continuity show that the function defined by
 \[
 f(x) = x^2 - 4x + \sqrt{2}

 is continuous. (10 pts.)
9. Let \(f \) and \(g \) be two functions. Assume that \(f \) is continuous at \(a \) and that \(g \) is continuous at \(f(a) \). Show that \(g \circ f \) is continuous at \(a \). (15 pts.)
10. Let \(f \) be continuous at \(a \) and assume that \(f(a) > 0 \). Show that there is an interval around \(a \) where \(f \) is strictly positive. (15 pts.)
11. Let \(f \) be continuous. Assume that \(f(a) < 0 \) and \(f(b) > 0 \). Show that \(f(c) = 0 \) for some \(c \) between \(a \) and \(b \). (17 pts.)