IBU Math 121 Final Exam Ali Nesin June 10th,1998

1. (12 points). Differentiate the following functions: $\arctan x$, $\frac{\sin x}{e^{x^2}}$, $\sin^3(x^2)$

2. (8 points). Express sin(arctan *x*) and tan(arcsin *x*) as algebraic functions.

3. (12 points). Integrate

 $\int_{0}^{\pi} x \cos x dx, \quad \int \frac{\sin(\ln x)}{x} dx, \quad \int \cos(\ln x) dx \quad (\text{Hint: For the last one, apply}$

integration by parts twice).

4. (15 points). Graph the function $f(x) = x/e^x$ with care.

5. (5 points). Let *f* be real-valued a function defined on an interval containing 0. Assuming that $1 \le f'(x) \le 2$ and f(0) = 0, show that $x \le f(x) \le 2x$ for all *x* in the domain of definition.

6. Let x > 0 and $a_n = x^n/n!$

6a. (4 points). Show that the sequence $(a_n)_n$ is decreasing after a while.

6b. (8 points). Show that $\lim_{n \to \infty} a_n = 0$. (Hint: Find an algebraic relation between a_n and a_{n+1}).

6c. (4 points). Conclude that $\lim_{n \to \infty} x^n / (n-1)! = 0$

7a. (8 points). Let $a_n \ge 0$. Assume that for some $r \in (0,1)$, $a_{n+1} < r a_n$ for large enough *n*. Deduce that the series $\sum_{i=0}^{\infty} a_i$ is convergent¹. (Hint: Show that the partial sums $\sum_{i=0}^{n} a_i$ form an increasing and bounded sequence after a while).

7b. (8 points). Let a_n be real numbers. Show that if the series $\sum_{i=0}^{\infty} |a_i|$ is convergent, then so is $\sum_{i=0}^{\infty} a_i$. (Hint: Show that the partial sums form a Cauchy sequence).

7c. (8 points). Conclude from parts a and b that the series $\sum_{n=0}^{\infty} x^n / n!$ is convergent for all real numbers x.

7d. (8 points). Let $\exp(x) = \sum_{n=0}^{\infty} x^n / n!$ Show that $\exp(x) \exp(y) = \exp(x + y).$

¹ Recall that $\sum_{i=0}^{\infty} a_i$ means $\lim_{n \to \infty} \sum_{i=0}^{n} a_i$.