1. (12 points). Differentiate the following functions: \(\arctan x \), \(\frac{\sin x}{e^{x^2}} \), \(\sin^3(x^2) \).

2. (8 points). Express \(\sin(\arctan x) \) and \(\tan(\arcsin x) \) as algebraic functions.

3. (12 points). Integrate
\[
\int_0^\pi x \cos x \, dx, \quad \int \frac{\sin(ln x)}{x} \, dx, \quad \int \cos(ln x) \, dx
\]
(Hint: For the last one, apply integration by parts twice).

4. (15 points). Graph the function \(f(x) = \frac{x}{e^x} \) with care.

5. (5 points). Let \(f \) be real-valued a function defined on an interval containing 0. Assuming that \(1 \leq f'(x) \leq 2 \) and \(f(0) = 0 \), show that \(x \leq f(x) \leq 2x \) for all \(x \) in the domain of definition.

6. Let \(x > 0 \) and \(a_n = \frac{x^n}{n!} \).

 6a. (4 points). Show that the sequence \((a_n)_n \) is decreasing after a while.

 6b. (8 points). Show that \(\lim_{n \to \infty} a_n = 0 \). (Hint: Find an algebraic relation between \(a_n \) and \(a_{n+1} \)).

 6c. (4 points). Conclude that \(\lim_{n \to \infty} x^n/(n−1)! = 0 \).

7a. (8 points). Let \(a_n \geq 0 \). Assume that for some \(r \in (0,1) \), \(a_{n+1} < r a_n \) for large enough \(n \). Deduce that the series \(\sum_{i=0}^{\infty} a_i \) is convergent\(^1\). (Hint: Show that the partial sums \(\sum_{i=0}^{n} a_i \) form an increasing and bounded sequence after a while).

7b. (8 points). Let \(a_n \) be real numbers. Show that if the series \(\sum_{i=0}^{\infty} |a_i| \) is convergent, then so is \(\sum_{i=0}^{\infty} a_i \). (Hint: Show that the partial sums form a Cauchy sequence).

7c. (8 points). Conclude from parts a and b that the series \(\sum_{n=0}^{\infty} x^n / n! \) is convergent for all real numbers \(x \).

7d. (8 points). Let \(\exp(x) = \sum_{n=0}^{\infty} x^n / n! \) Show that \(\exp(x) \exp(y) = \exp(x + y) \).

\(^1\) Recall that \(\sum_{i=0}^{\infty} a_i \) means \(\lim_{n \to \infty} \sum_{i=0}^{n} a_i \).