MATH 212

Basic Algebra II
Ali Nesin

1) Find all ring homomorphisms from \mathbb{R} into \mathbb{R}.
2) Let n be an natural number. Find all ring homomorphisms from \mathbb{R}^{n} into \mathbb{R}.
3) Show that the additive group of a commutative ring with identity cannot be isomorphic to the additive group \mathbb{Q} / \mathbb{Z}.
4) Let R be a principal ideal domain. And let I and J be nonzero ideals in R. Show that $I J=I \cap J$ if and only if $I+J=R$.
5) Show that for any prime $p>2,(\mathbb{Z} / p \mathbb{Z})[X]$ has an irreducible polynomial of degree 2 . Is the statement true for $p=2$?
6) Show that the equation $x^{3}=1$ has three distinct roots in a field if and only if -3 has a square root and if characteristic of the field is not 3 .
7) Is the ideal of $\mathbb{Z}[X]$ generated by $X^{3}+X+1$ prime? (An ideal I of a commutative ring R is called prime if R / I is a domain)
8) Let I be an ideal and S be a subring of the ring R. Prove that $I \cap S$ is an ideal of S. Give an example to show that every ideal of S need not be of the form $I \cap S$ for some ideal I of R.
9) Let R be a commutative ring and P be a maximal ideal of R. Let $I=P[X]$ be the ideal of the polynomial ring $R[X]$ consisting of the polynomials in $R[X]$ with coefficients in P. Show that I is prime ideal that is not a maximal ideal.
10) Let R be a commutative ring with identity. Let $f(X)=a_{0}+a_{1} X+\ldots+a_{n} X^{n} \in R[X]$. Prove that $f(X)$ is unit if and only if a_{0} is a unit in R and a_{i} is nilpotent for all $i>0$.
11) Find all irreducible $\mathbb{Z} / 60 \mathbb{Z}$-modules.
12) Let R be a domain and K its field of fractions. Show that an R-submodule of K is indecomposable.
13) Find all ring automorphisms of $\mathbb{Q}[X]$.
14) Find all field automorphisms of $\mathbb{Q}(X)$.
