Math 212 MT
Apr 11th, 2009
Ali Nesin

1. Show that any ring endomorphism from a field into a ring is one-to-one. (2 pts.)

Proof: A field has no nontrivial ideals, so the kernel of an endomorphism is either 0 or R. But 1 is not in the kernel, so that the kernel is trival and the endomorphism is one-toone.
2. Let F be a field of prime characteristic p.

2a. Show that $x \mapsto x^{p}$ is a ring endomorphism of F. (3 pts.)
Proof: This follows from the elementary fact that if $0<i<p$ then p divides $\binom{p}{i}$.
2b. Show that if F is finite this endomorphism is always an automorphism. (3 pts.)
Proof: The endomorphism is one-to-one by \#1. So it is onto as well.
2c. Find a field F of characteristic p where this endomorphism is not an automorphism. (5 pts.)

Answer: Let $K=\mathbb{Z} / p \mathbb{Z}$ and $F=K(X)$.
3. Let R be a domain and $a \in R^{*}$ and $b \in R$.

3a. Show that the map defined by the formula $f(X) \mapsto f(a X+b)$ is an automorphism of $R[X]$. (4 pts.)

Proof: The map is obviously an endomorphism of $R[X]$, say φ. Consider the endomorphism $f(X) \mapsto f\left(a^{-1} X-a^{-1} b\right)$ of $R[X]$. Call it ψ. Then $(\psi \circ \varphi)(X)=\psi(\varphi(X))=$ $\psi(a X+b)=a\left(a^{-1} X-a^{-1} b\right)+b=X$. Hence $\psi \circ \varphi=\operatorname{Id}_{R[X] .}$. Similarly $\varphi \circ \psi=\operatorname{Id}_{R[X]}$.

3b. Show that this is not so if $a \in R \backslash R^{*}$. (4 pts.)
Proof: Assume $f(X) \mapsto f(a X+b)$ is an automorphism of $R[X]$. We know from above that the map $f(X) \mapsto f(X-b)$ is an automorphism of $R[X]$. Composing these two, we see that the map $f(X) \mapsto f(a X)$ is an automorphism of $R[X]$. But then, the leading coefficient of any nonconstant polynomial is a multiple of a. Thus a is invertible.
4. Let R be a domain and $f \in R[X]$. Consider the subring $R[f]$ of $R[X]$ generated by R and f. Find a necessary and sufficent condition on ffor $R[X]=R[f]$. (6 pts .)
Answer: Clearly $R[f] \leq R[X]$. Now, $R[X]=R[f]$ iff $X \in F[f]$ iff $X=g(f)$ for some polynomial g over F. Comparing degrees, we get $1=(\operatorname{deg} f)(\operatorname{deg} g)$. Thus $\operatorname{deg} f=1=$ deg g. Writing $f(X)=a X+b$ and $g(X)=c X+d$, we get $X=g(f)=c(a X+b)+d$, so that $c a=1$ and hence $a \in R^{*}$. Conversely if $f(X)=a X+b$ with $a \in R^{*}$ and $b \in R$, then, from the previous question we get $R[f]=R[X]$
5. Find $\operatorname{Aut}(R[X]: R)=\{$ automorphisms of $R[X]$ that fix R pointwise $\}$. (4 pts.)

Answer: Let $\varphi \in \operatorname{Aut}(R[X]: R)$. Then φ is given by the image of X. Say $\varphi(X)=f$. Then $R[X]=\operatorname{Im} \varphi=R[f]$. By question $4, f(X)=a X+b$ for some $a \in R^{*}$ and $b \in R$. By question 3, all such endomorphisms are automorphisms of $R[X]$ over R.
6. Let C be the set of functions from \mathbb{R} into \mathbb{R}. Then C is a ring under the addition and multiplication of functions.
6a. Describe the invertible elements of C. (2 pts.)
Answer: $C^{*}=\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x) \neq 0$ for any $x\}$.
6b. Describe the set of zero divisors of C. (2 pts.)
Answer: $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(x)=0$ for some $x\}$.
6c. Let $a \in \mathbb{R}$ be fixed. Consider $I_{a}=\{f \in C: f(a)=0\}$. Show that I_{a} is a maximal ideal of C. Find the isomorphism type of the ring C / I_{a}. (6 pts.)

Answer: Consider the map $C \rightarrow \mathbb{R}$ defined by $f \mapsto f(a)$. This is a ring endomorphism which is clearly onto and whose kernel is I_{a}. Thus $C / I_{a} \approx \mathbb{R}$ is a field, so that I_{a} is a maximal ideal.

6d. Show that there is a maximal ideal of C different from all I_{a}. (7 pts .)
Answer: Let $J=\{f \in C: f(x) \neq 0$ for only finitely many $x \in \mathbb{R}\}$. Then $J \triangleleft C$ and J
 then $J \subseteq m=I_{a}$, a contradiction.
7. Let F be a field and R a domain containing F. Show that if $\operatorname{dim}_{F}(R)$ is finite, then R is a field. (6 pts.)
Proof: Let $a \in R \backslash\{0\}$. Let $m: R \rightarrow R$ be defined by $m(x)=a x$. Then m is an F-vector space homomorphism. Since R is a domain, $\operatorname{Ker} m=\operatorname{ann}_{R} x=0$, so that m is one-toone. Since R is a finite dimensionl vector space, this implies that m is onto.
8. Let R be a UFD and K its field of fractions. Let $f \in R[X]$. Show that if f is irreducible in $R[X]$ then it is irreducible in $K[X]$. (5 pts.)
Proof: Let $f=g h$ for $g, h \in K[X]$. We can write $g=g^{\prime} / r, h=h^{\prime} / s$ where $g^{\prime}, h^{\prime} \in R[X]$ are R-scalar multiples of g and h respectively and $r, s \in R$. Therefore $r s f=g^{\prime} h^{\prime}$. By Gauss Lemma, any prime that divides r or s divides either g^{\prime} or h^{\prime}. By induction $r s$ divides g^{\prime} and h^{\prime}. So $f=g^{\prime \prime} h^{\prime \prime}$ for $g^{\prime \prime}, h^{\prime \prime} \in R[X]$. Thus either $g^{\prime \prime}$ or $h^{\prime \prime}$ is in R, i.e. its degree is 0 . So the same holds for g or h.
9. Let F be a field and $f, g \in F[X] \backslash\{0\}$ be two nonzero polynomials. Show that f / g is algebraic over F if and only if $f / g \in F$. Conclude that iff or g are not both constant polynomials then $F[f / g] \approx F[X]$. (5 pts .)
Proof: We may assume that f and g are prime to each other. Assume there are constants $a_{i} \in F$ such that

$$
a_{0}+a_{1} f / g+a_{2} f^{2} / g^{2}+\ldots+a_{2} f^{n} / g^{n}=0
$$

We may assume that a_{0} and $a_{n} \neq 0$. Then

$$
a_{0} g^{n}+a_{1} f g^{n-1}+a_{2} f^{2} g^{n-2}+\ldots+a_{2} f^{n}=0
$$

It follows that any prime factor of f divides g and vice versa. So f and g must be in F.
10. Let F be a field and $g(Z), f(Z) \in F[Z]$ be two nonzero polynomials which are prime to each other. Show that the polynomial $g(Z)-Y f(Z)$ of $F[Y, Z]$ is prime in $F[Y, Z]$. Conclude that the polynomial $g(Z)-Y f(Z)$ of $F(Y)[Z]$ is prime in $F(Y)[Z]$. (8 pts.)
Proof: Assume $g(Z)-Y f(Z)=h(Y, Z) k(Y, Z)$. Then $\operatorname{deg}_{Y} h+\operatorname{deg}_{Y} k=1$. Assume $\operatorname{deg}_{Y} h=1$ and $\operatorname{deg}_{Y} k=0$. Then $h(Y, Z)=a(Z)+b(Z) Y$ and $k(Y, Z)=k(Z)$. Therefore
we have $g(Z)-Y f(Z)=(a(Z)+b(Z) Y) k(Z)$ and so $a(Z) k(Z)=g(Z)$ and $b(Z) k(Z)=$ $f(Z)$. Since f and g are prime to each other, $k(Y, Z)=k(Z)=k \in F$. The second part follows from \# 8 .
11. Let F be a field. We let $K=F(Y)$ where Y is an indeterminate.

11a. Consider the subrings $F\left[Y^{2}\right]$ and $F[Y]$ of K. Show that $F\left[Y^{2}\right] \approx F[Y]$. What is [$\left.F(Y): F\left(Y^{2}\right)\right]$? (8 pts.)
Proof: We know that Y^{2} is transcendental over F, so $F\left[Y^{2}\right] \approx F[Y]$. (The map $f(Y) \mapsto$ $f\left(Y^{2}\right)$ is the required isomorphism.)
Y is the root of the polynomial $p(Z)=Z^{2}-Y^{2}$ over the field $F\left(Y^{2}\right)$ which is of degree 2. Let us show that this polynomial is irreducible $F\left(Y^{2}\right)[Z]$. By \#8 it is enough to show this in $F\left[Y^{2}, Z\right]$. Otherwise there are polynomials $a\left(Y^{2}\right), b\left(Y^{2}\right), c\left(Y^{2}\right), d\left(Y^{2}\right) \in$ $F\left[Y^{2}\right]$ such that

$$
p(Z)=Z^{2}-Y^{2}=\left(a\left(Y^{2}\right)+Z b\left(Y^{2}\right)\right)\left(c\left(Y^{2}\right)+Z d\left(Y^{2}\right)\right) .
$$

Thus $b\left(Y^{2}\right) d\left(Y^{2}\right)=1$ and so $b\left(Y^{2}\right)=b \in F$ and $d\left(Y^{2}\right)=d \in F \in F$. Also $a\left(Y^{2}\right) c\left(Y^{2}\right)=$ Y^{2}; thus, say, $a\left(Y^{2}\right)=\alpha Y^{2}$ and $c\left(Y^{2}\right)=c \in F$. Thus

$$
p(Z)=Z^{2}-Y^{2}=\left(\alpha Y^{2}+Z b\right)(c+Z d)
$$

Since there are no terms in $Y^{2} Z$ on the LHS, clearly α must be 0 . The rest is easy. Thus $p(Z)=Z^{2}-Y^{2}$ is the minimal polynomial of Y over $F\left(Y^{2}\right)$ and so,
$F(Y)=F\left(Y^{2}\right)(Y)=F\left(Y^{2}\right)[Y]=F\left(Y^{2}\right)[Z] /\langle p\rangle$
And it has degree $=\operatorname{deg} p=2$.
11b. Consider the subrings $F\left[Y^{2}\right]$ and $F[Y]$ of K. Show that $F\left[1 / Y^{3}\right] \approx F[Y]$. What is [$\left.F(Y): F\left(1 / Y^{3}\right)\right]$? (Only outline the proof.) (3 pts.)
Proof: Note that $F\left(1 / Y^{3}\right)=F\left(Y^{3}\right)$. The rest can be done as above. The answer is 3. It also follows from 12b.
12. Let F be a field. Let X be an indeterminate over F.

12a. Let $f, g \in F[X]$ be such that $f / g \notin F$. Let $Y=f / g \in F(X)$. Show that $[F(X): F(Y)]$ $\leq \max \{\operatorname{deg} f, \operatorname{deg} g\}$. (6 pts.)
Proof: Clearly X is the root of the polynomial $g(Z) Y-f(Z) \in F(Y)[Z]$. Thus the minimal polynomial of X over $F(Y)$ divides $g(Z) Y-f(Z)$, whose degree in X is $\max \{\operatorname{deg} g, \operatorname{deg} f\}$. Thus the degree of the minimal polynomial of X over $F(Y)$ is less than or equal to $\max \{\operatorname{deg} g, \operatorname{deg} f\}$, that is $[F(X): F(Y)] \leq \max \{\operatorname{deg} f, \operatorname{deg} g\}$.
12b. Let f, g and Y be as above and f and g are coprime. Show that $[F(X): F(Y)]=$ $\max \{\operatorname{deg} f, \operatorname{deg} g\}$. (10 pts.)
Proof: We need to show that the polynomial $g(Z) Y-f(Z)$ of $F(Y)[Z]$ is irreducble in $F(Y)[Z]$. Noting that $g(Z) Y-f(Z)$ of $F[Y][Z]$, by \#8, it is enough to show that the polynomial $g(Z) Y-f(Z)$ is irreducible in $F[Y][Z]=F[Y, Z]$. Suppose, $g(Z) Y-f(Z)=$ $p(Y, Z) q(Y, Z)$. By comparing degrees in Y we see that, say,

$$
p(Y, Z)=p(Z) \text { and } q(Y, Z)=a(Z)+b(Z) Y
$$

for some polynomails $a(Z), b(Z) \in K[Z]$. Thus

$$
g(Z) Y-f(Z)=p(Z)(a(Z)+b(Z) Y)=p(Z) a(Z)+p(Z) b(Z) Y
$$

and so $g(Z)=p(Z) b(Z)$ and $f(Z)=p(Z) a(Z)$. Since f and g are coprime, this implies that $p(Z)=p \in K$.
13. Conclude from above that for any $\varphi \in \operatorname{Aut}(F(X) / F)$ there are $a, b, c, d \in F$ such that $\varphi(X)=\frac{a X+b}{c X+d}$. Show that we must have $a d-b c \neq 0$. (10 pts.)
Proof: Easy by now!

