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1. Show that any ring endomorphism from a field into a ring is one-to-one. (2 pts.) 

Proof: A field has no nontrivial ideals, so the kernel of an endomorphism is either 0 or 

R. But 1 is not in the kernel, so that the kernel is trival and the endomorphism is one-to-

one. 

 

2. Let F be a field of prime characteristic p.  

2a. Show that x � x
p
 is a ring endomorphism of F. (3 pts.) 

Proof: This follows from the elementary fact that if 0 < i < p then p divides 








i

p
. 

2b. Show that if F is finite this endomorphism is always an automorphism. (3 pts.) 

Proof: The endomorphism is one-to-one by #1. So it is onto as well. 

2c. Find a field F of characteristic p where this endomorphism is not an 

automorphism. (5 pts.) 

Answer: Let K = �/p� and F = K(X). 

 

3. Let R be a domain and a ∈ R* and b ∈ R.  

3a. Show that the map defined by the formula f(X) � f(aX + b) is an automorphism 

of R[X]. (4 pts.)  

Proof: The map is obviously an endomorphism of R[X], say ϕ. Consider the 

endomorphism f(X) � f(a
−1

X − a
−1

b) of R[X]. Call it ψ. Then (ψ ◦ ϕ)(X) = ψ(ϕ(X)) = 

ψ(aX + b) = a(a
−1

X − a
−1

b) + b = X. Hence ψ ◦ ϕ = IdR[X]. Similarly ϕ ◦ ψ = IdR[X]. 

 

3b. Show that this is not so if a ∈ R \ R*. (4 pts.) 

Proof: Assume f(X) � f(aX + b) is an automorphism of R[X]. We know from above 

that the map f(X) � f(X − b) is an automorphism of R[X]. Composing these two, we see 

that the map f(X) � f(aX) is an automorphism of R[X]. But then, the leading coefficient 

of any nonconstant polynomial is a multiple of a. Thus a is invertible. 

 

4. Let R be a domain and f ∈ R[X]. Consider the subring R[f] of R[X] generated by R 

and f. Find a necessary and sufficent condition on f for R[X] = R[f]. (6 pts.) 

Answer: Clearly R[f] ≤ R[X]. Now, R[X] = R[f] iff X ∈ F[f] iff X = g(f) for some 

polynomial g over F. Comparing degrees, we get 1 = (deg f)(deg g). Thus deg f = 1 = 

deg g. Writing f(X) = aX + b and g(X) = cX + d, we get X = g(f) = c(aX + b) + d, so that 

ca = 1 and hence a ∈ R*. Conversely if f(X) = aX + b with a ∈ R* and b ∈ R, then, 

from the previous question we get R[f] = R[X] 

 

5. Find Aut(R[X] : R) = {automorphisms of R[X] that fix R pointwise}. (4 pts.) 

Answer: Let ϕ ∈ Aut(R[X] : R). Then ϕ is given by the image of X. Say ϕ(X) = f. Then 

R[X] = Im ϕ = R[f]. By question 4, f(X) = aX + b for some a ∈ R
*
 and b ∈ R. By 

question 3, all such endomorphisms are automorphisms of R[X] over R. 

 



6. Let C be the set of functions from � into �. Then C is a ring under the addition and 

multiplication of functions. 

6a. Describe the invertible elements of C. (2 pts.) 

Answer: C
*
 = {f : � → � : f(x) ≠ 0 for any x}. 

6b. Describe the set of zero divisors of C. (2 pts.) 

Answer: {f : � → � : f(x) = 0 for some x}. 

6c. Let a ∈ � be fixed. Consider Ia = {f ∈ C : f(a) = 0}. Show that Ia is a maximal 

ideal of C. Find the isomorphism type of the ring C/Ia. (6 pts.) 

Answer: Consider the map C → � defined by f � f(a). This is a ring 

endomorphism which is clearly onto and whose kernel is Ia. Thus C/Ia ≈ � is a field, so that 

Ia is a maximal ideal. 

6d. Show that there is a maximal ideal of C different from all Ia. (7 pts.) 

Answer: Let J = {f ∈ C : f(x) ≠ 0 for only finitely many x ∈ �}. Then J � C and J 

⊄ Ia. By Zorn’s Lemma there is a maximal 	 ideal containing J. If 	 = Ia for some a ∈ �, 

then J ⊆ 	 = Ia, a contradiction. 

 

7. Let F be a field and R a domain containing F. Show that if dimF(R) is finite, then R 

is a field. (6 pts.) 

Proof: Let a ∈ R \ {0}. Let m : R → R be defined by m(x) = ax. Then m is an F-vector 

space homomorphism. Since R is a domain, Ker m = annR x = 0, so that m is one-to-

one. Since R is a finite dimensionl vector space, this implies that m is onto. 

 

8. Let R be a UFD and K its field of fractions. Let f ∈ R[X]. Show that if f is 

irreducible in R[X] then it is irreducible in K[X]. (5 pts.) 

Proof: Let f = gh for g, h ∈ K[X]. We can write g = g′/r, h = h′/s where g′, h′ ∈ R[X] 

are R-scalar multiples of g and h respectively and r, s ∈ R. Therefore rsf = g′h′. By 

Gauss Lemma, any prime that divides r or s divides either g′ or h′. By induction rs 

divides g′ and h′. So f = g′′h′′ for g′′, h′′ ∈ R[X]. Thus either g′′ or h′′ is in R, i.e. its 

degree is 0. So the same holds for g or h. 

 

9. Let F be a field and f, g ∈ F[X] \ {0} be two nonzero polynomials. Show that f/g is 

algebraic over F if and only if f/g ∈ F. Conclude that if f or g are not both constant 

polynomials then F[f/g] ≈ F[X]. (5 pts.) 

Proof: We may assume that f and g are prime to each other. Assume there are 

constants ai ∈ F such that  

a0 + a1f/g + a2f 
2
/g

2
 + ... + a2f 

n
/g

n
 = 0. 

We may assume that a0 and an ≠ 0. Then  

a0g
n
 + a1fg

n−1
 + a2f 

2
g

n−2
 + ... + a2f 

n
 = 0. 

It follows that any prime factor of f divides g and vice versa. So f and g must be in 

F. 

 

10. Let F be a field and g(Z), f(Z) ∈ F[Z] be two nonzero polynomials which are prime 

to each other. Show that the polynomial g(Z) − Yf(Z) of F[Y, Z] is prime in F[Y, Z]. 

Conclude that the polynomial g(Z) − Yf(Z) of F(Y)[Z] is prime in F(Y)[Z]. (8 pts.) 

Proof: Assume g(Z) − Yf(Z) = h(Y, Z)k(Y, Z). Then degY h + degY k = 1. Assume 

degY h = 1 and degY k = 0. Then h(Y, Z) = a(Z) + b(Z)Y and k(Y, Z) = k(Z). Therefore 



we have g(Z) − Yf(Z) = (a(Z) + b(Z)Y) k(Z) and so a(Z)k(Z) = g(Z) and b(Z)k(Z) = 

f(Z). Since f and g are prime to each other, k(Y, Z) = k(Z) = k ∈ F. The second part 

follows from # 8. 

 

11. Let F be a field. We let K = F(Y) where Y is an indeterminate. 

11a. Consider the subrings F[Y
2
] and F[Y] of K. Show that F[Y

2
] ≈ F[Y]. What is 

[F(Y) : F(Y
2
)]? (8 pts.) 

Proof: We know that Y
2
 is transcendental over F, so F[Y

2
] ≈ F[Y]. (The map f(Y) � 

f(Y
2
) is the required isomorphism.)  

Y is the root of the polynomial p(Z) = Z
2
 − Y

2
 over the field F(Y

2
) which is of degree 

2. Let us show that this polynomial is irreducible F(Y
2
)[Z]. By #8 it is enough to 

show this in F[Y
2
, Z]. Otherwise there are polynomials a(Y

2
), b(Y

2
), c(Y

2
), d(Y

2
) ∈ 

F[Y
2
] such that  

p(Z) = Z
2
 − Y

2
 = (a(Y

2
) + Zb(Y

2
))(c(Y

2
) + Zd(Y

2
)). 

Thus b(Y
2
)d(Y

2
) = 1 and so b(Y

2
) = b ∈ F and d(Y

2
) = d ∈ F ∈ F. Also a(Y

2
)c(Y

2
) = 

Y
2
; thus, say, a(Y

2
) = αY

2
 and c(Y

2
) = c ∈ F. Thus 

p(Z) = Z
2
 − Y

2
 = (αY

2
 + Zb)(c + Zd). 

Since there are no terms in Y
2
Z on the LHS, clearly α must be 0. The rest is easy. 

Thus p(Z) = Z
2
 − Y

2
 is the minimal polynomial of Y over F(Y

2
) and so, 

F(Y) = F(Y
2
)(Y) = F(Y

2
)[Y] = F(Y

2
)[Z]/〈p〉 

And it has degree = deg p = 2. 

 

11b. Consider the subrings F[Y
2
] and F[Y] of K. Show that F[1/Y

3
] ≈ F[Y]. What is 

[F(Y) : F(1/Y
3
)]? (Only outline the proof.) (3 pts.) 

Proof: Note that F(1/Y
3
) = F(Y

3
). The rest can be done as above. The answer is 3. It 

also follows from 12b. 

 

12. Let F be a field. Let X be an indeterminate over F. 

12a. Let f, g ∈ F[X] be such that f/g ∉ F. Let Y = f/g ∈ F(X). Show that [F(X) : F(Y)] 

≤ max{deg f, deg g}. (6 pts.) 

Proof: Clearly X is the root of the polynomial g(Z)Y − f(Z) ∈ F(Y)[Z]. Thus the 

minimal polynomial of X over F(Y) divides g(Z)Y − f(Z), whose degree in X is 

max{deg g, deg f}. Thus the degree of the minimal polynomial of X over F(Y) is 

less than or equal to max{deg g, deg f}, that is [F(X) : F(Y)] ≤ max{deg f, deg g}. 

12b. Let f, g and Y be as above and f and g are coprime. Show that [F(X) : F(Y)] = 

max{deg f, deg g}. (10 pts.) 

Proof: We need to show that the polynomial g(Z)Y − f(Z) of F(Y)[Z] is irreducble in 

F(Y)[Z]. Noting that g(Z)Y − f(Z) of F[Y][Z], by #8, it is enough to show that the 

polynomial g(Z)Y − f(Z) is irreducible in F[Y][Z] = F[Y, Z]. Suppose, g(Z)Y − f(Z) = 

p(Y, Z) q(Y, Z). By comparing degrees in Y we see that, say,  

p(Y, Z) = p(Z) and q(Y, Z) = a(Z) + b(Z)Y 

for some polynomails a(Z), b(Z) ∈ K[Z]. Thus  

g(Z)Y − f(Z) = p(Z)(a(Z) + b(Z)Y) = p(Z)a(Z) + p(Z)b(Z)Y 

and so g(Z) = p(Z)b(Z) and f(Z) = p(Z)a(Z). Since f and g are coprime, this implies 

that p(Z) = p ∈ K.  

 



13. Conclude from above that for any ϕ ∈ Aut(F(X)/F) there are a, b, c, d ∈ F such that 

dcX

baX
X

+

+
=ϕ )( . Show that we must have ad − bc ≠ 0. (10 pts.) 

Proof: Easy by now! 

  

 

 


