BOREL SETS, WELL-ORDERINGS OF R AND THE
CONTINUUM HYPOTHESIS

SIMON THOMAS

1. THE FINITE BASIS PROBLEM

Definition 1.1. Let C be a class of structures. Then a basis for C is a collection

B C C such that for every C € C, there exists B € B such that B embeds into C.

Theorem 1.2 (Ramsey). If x : [N]2 — 2 is any function, then there exists an
infinite X C N such that x | [X]? is a constant function.

Proof. We shall define inductively a decreasing sequence of infinite subsets of N
N=S>2581D028>---D28,D: -

together with an associated increasing sequence of natural numbers
O=ap<a1<a < - <a,<--

with a,, = min S,, as follows. Suppose that S,, has been defined. For each ¢ =0, 1,

define
Sy =A{le Su~Aan} | x({an, }) =€}

Then we set

89 if SY is infinite;
Sn+1 -
S}, otherwise.

Notice that if n < m < ¢, then a.,, ap € Sp4+1 and so
X({an; am}) = x({an, ac}).
Thus there exists ¢,, € 2 such that
x({an,an}) =€, forall m >n.

There exists a fixed € € 2 and an infinite £ C N such that ¢,, = ¢ for all n € E.

Hence X = {a,, | n € E} satisfies our requirements. O
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Corollary 1.3. Fach of the following classes has a finite basis:
(i) the class of countably infinite graphs;
(ii) the class of countably infinite linear orders;

(iil) the class of countably infinite partial orders.

FEzxzample 1.4. The class of countably infinite groups does not admit a countable

basis.
Theorem 1.5 (Sierpinski). wq, wi 4 R.

Proof. Suppose that f : w; <— R is order-preserving. If ran f is bounded above,
then it has a least upper bound r € R. Hence, since (—oo,r) 2 R, we can suppose
that ran f is unbounded in R. Then for each n € N, there exists a,, € w; such that
f(an) > n. Hence if @ = supay, € wy, then f(a) > n for all n € N, which is a

contradiction. O

Theorem 1.6 (Sierpinski). There exists an uncountable graph T' = (R, E) such
that:

e I' does not contain an uncountable complete subgraph.

o [ does not contain an uncountable null subgraph.

Proof. Let < be a well-ordering of R and let < be the usual ordering. If r # s € R,
then we define

rEs iff r<s<=r<s.

Question 1.7. Can you find an explicit well-ordering of R?

Question 1.8. Can you find an explicit example of a subset A C R such that
|A] = 8,7

An Analogue of Church’s Thesis. The explicit subsets of R"™ are precisely the

Borel subsets.

Definition 1.9. The collection B(R™) of Borel subsets of R™ is the smallest col-

lection such that:

(a) If U C R™ is open, then U € B(R").
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(b) If A € B(R™), then R™ \ A € B(R").

(c) If A, € B(R") for each n € N, then [ A,, € B(R").
In other words, B(R") is the o-algebra generated by the collection of open subsets
of R™.

Main Theorem 1.10. If A C R is a Borel subset, then either A is countable or
else |A| = |R|.

Definition 1.11. A binary relation R on R is said to be Borel iff R is a Borel
subset of R x R.

FEzxzample 1.12. The usual order relation on R
R={(z,y) eRxR|z <y}
is an open subset of R x R. Hence R is a Borel relation.

Main Theorem 1.13. There does not exist a Borel well-ordering of R.

2. TOPOLOGICAL SPACES

Definition 2.1. If (X, d) is a metric space, then the induced topological space is
(X, T), where 7 is the topology with open basis

B(z,r)={ye X |d(z,y) <r} zeX,r>0.

In this case, we say that the metric d is compatible with the topology 7 and we
also say that the topology 7 is metrizable.

Definition 2.2. A topological space X is said to be Hausdorff iff for all z # y € X,
there exist disjoint open subsets U, V C X such that z € U and y € V.

Remark 2.3. If X is a metrizable space, then X is Hausdorff.

Definition 2.4. Let X be a Hausdorff space. If (a)nen is a sequence of elements
of X and b € X, then lima, = b iff for every open nbhd U of b, we have that
an € U for all but finitely many n.

Definition 2.5. If X, Y are topological spaces, then the map f : X — Y is

continuous iff whenever U C Y is open, then f~1(U) C X is also open.
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Definition 2.6. Let (X,7) be a topological space. Then the collection B(7") of
Borel subsets of X is the smallest collection such that:

(a) T CB(7T).

(b) If A€ B(7), then X \ A € B(7).

(¢) If A, € B(T) for each n € N, then | J A,, € B(7).
In other words, B(7) is the o-algebra generated by 7. We sometimes write B(X)
instead of B(7).

Example 2.7. Let d be the usual Euclidean metric on R? and let (R?,7) be the
corresponding topological space. Then the New York metric

d(@,9) = |z1 — y1| + |22 — y2
is also compatible with 7.

Remark 2.8. Let (X,7T) be a metrizable space and let d be a compatible metric.
Then

d(w,y) = min{d(x,y),1}

is also a compatible metric.
Definition 2.9. A metric (X, d) is complete iff every Cauchy sequence converges.

FEzxzample 2.10. The usual metric on R™ is complete. Hence if C C R"™ is closed,

then the metric on C is also complete.
Ezample 2.11. If X is any set, the discrete metric on X is defined by

0, ifx=uy;
d(z,y) =
1, otherwise.

Clearly the discrete metric is complete.

Definition 2.12. Let (X, 7) be a topological space.

(a) (X,7) is separable iff it has a countable dense subset.
(b) (X,7) is a Polish space iff it is separable and there exists a compatible

complete metric d.
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Example 2.13. Let 2N be the set of all infinite binary sequences
(an) = (ao, a1, an, ),

where each a, = 0, 1. Then we can define a metric on 2" by

|an — bn|

d((an), (b)) = Z on+1
n=0

The corresponding topological space (2V,T) is called the Cantor space. It is easily
checked that 2V is a Polish space. For each finite sequence ¢ = (coy - ,c0) € <N,

let

Us = {(an) €2V | an = ¢, for all 0 < n < ¢}.

Then {U; | ¢ € 2<N} is a countable basis of open sets.

Remark 2.14. Let (X, T) be a separable metrizable space and let d be a compatible

metric. If {z,} is a countable dense subset, then
B(zn,1/m)={y € X | d(xn,y) <1/m} neN,0<meN,
is a countable basis of open sets.
Ezample 2.15 (The Sorgenfrey Line). Let 7 be the topology on R with basis
{[r,s) | r<seR}.
Then (X, 7) is separable but does not have a countable basis of open sets.

Definition 2.16. If (X1, d;) and (X3, d2) are metric spaces, then the product metric
on X; X X5 is defined by

d(Z,9) = di(z1,y1) + d2(22,y2).
The corresponding topology has an open basis
{U1 x Uz | Uy C X7 and Uy C X5 are open }.

Definition 2.17. For each n € N, let (X,,,d,,) be a metric space. Then the product
metric on [[, X, is defined by

oo

1 .
d(fvy) = Z W mln{dn(xnayn)a 1}

n=0
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The corresponding topology has an open basis consisting of sets of the form
UpxUp X -+ xUpX -+,

where each U, C X, is open and U,, = X, for all but finitely many n.

Example 2.18. The Cantor space 2" is the product of countably many copies of the
discrete space 2 = {0, 1}.

Theorem 2.19. If X,,, n € N, are Polish spaces, then [[,, X,, is also Polish.

Proof. For example, to see that [ X, is separable, let {V,, ; | £ € N} be a countable
open basis of X, for each n € N. Then [],, X, has a countable open basis consisting
of the sets of the form

Uy xUp X+ xUpx---,
where each U,, € {V,,¢ | { € N} U{X,} and U,, = X,, for all but finitely many n.

Choosing a point in each such open set, we obtain a countable dense subset. ([

3. PERFECT POLISH SPACES

Definition 3.1. A topological space X is compact iff whenever X = | J,.; U; is an

open cover, there exists a finite subset Iy C I such that X = UieIo U;.

Remark 3.2. If (X, d) is a metric space, then the topological space (X, 7) is compact

iff every sequence has a convergent subsequence.
Theorem 3.3. The Cantor space is compact.

Definition 3.4. If (X,7) is a topological space and Y C X, then the subspace
topologyon Y is Ty ={Y NU |U €T }.

Theorem 3.5. (a) A closed subset of a compact space is compact.
(b) Suppose that f : X — 'Y is a continuous map between the topological spaces
X, Y. If Z C X is compact, then f(Z) is also compact.

(¢) Compact subspaces of Hausdorff spaces are closed.

Definition 3.6. Let X be a topological space.
(i) The point z is a limit point of X iff {x} is not open.

(ii) X is perfect iff all its points are limit points.
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(iii) Y C X is a perfect subset iff Y is closed and perfect in its subspace topology.

Theorem 3.7. If X is a nonempty perfect Polish space, then there is an embedding
of the Cantor set 2N into X.

Definition 3.8. A map f : X — Y between topological spaces is an embedding
iff f induces a homeomorphism between X and f(X). (Here f(X) is given the
subspace topology.)

Lemma 3.9. A continuous injection f : X — Y from a compact space into a

Hausdorff space is an embedding.

Proof. Tt is enough to show that if U C X is open, then f(U) is open in f(X).
Since X \ U is closed and hence compact, it follows that f(X \ U) is compact in

Y. Since Y is Hausdorff, it follows that f(X \ U) is closed in Y. Hence
fU) = (Y~ f(XNU)) N f(X)
is an open subset of f(X). O

Definition 3.10. A Cantor scheme on a set X is a family (Ag)geo<n of subsets of
X such that:
(1) AgqogNAq = 0 for all s € 2<N,

(i) Ay € A forall s € 2<N and i € 2.

Proof of Theorem 3.7. Let d be a complete compatible metric on X. We will define
a Cantor scheme (Us)gea<v on X such that:

(a) Us is a nonempty open ball;

(b) diam(U,) < 2 lensth(s),

(c) cl(Ug;) C Ug for all s € 2<N and i € 2.
Then for each ¢ € 2V, we have that (\ Uy, = () cl(Uy ) is a singleton; say {f(¢)}.
Clearly the map f : 2N — X is injective and continuous, and hence is an embedding.

We define Uy by induction on length(s). Let Uy be an arbitrary nonempty open

ball with diam(Up) < 1. Given Us, choose x # y € U and let Usg, Ugsq be

sufficiently small open balls around x, y respectively. ([l

Definition 3.11. A point x in a topological space X is a condensation point iff

every open nbhd of z is uncountable.
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Theorem 3.12 (Cantor-Bendixson Theorem). If X is a Polish space, then X can
be written as X = P U C, where P is a perfect subset and C is a countable open

subset.

Proof. Let P = {xz € X | = is a condensation point of X} and let C' = X \ P. Let
{U,} be a countable open basis of X. Then C = |J{U, | U, is countable } and
hence C is a countable open subset. To see that P is perfect, let x € P and let
U be an open nbhd of z in X. Then U is uncountable and hence U N P is also

uncountable. 0

Corollary 3.13. Any uncountable Polish space contains a homeomorphic copy of

the Cantor set 2N,
4. POLISH SUBSPACES

Theorem 4.1. If X is a Polish space and U C X is open, then U is a Polish

subspace.

Proof. Let d be a complete compatible metric on X. Then we can define a metric

cfonUby
. 1 1

d(z,y) = d(z,y) + dz, X \U) dy, X~U)|

It is easily checked that d is a metric. Since J(x,y) > d(x,y), every d-open set

is also d—open. Conversely suppose that z € U, d(z, X ~U) =r > 0 and € > 0.

Choose ¢ > 0 such that if 0 < < 4, then 1 + ﬁ <e. Iftd(z,y) =n <4, then

r—n<d(y,X ~U) <r+n and hence

17 1 < 1 B 1 <17 1
roor—n " dlz,X\U) dy,X~\U) " r r+n
and so
- 1 1 n

r(rfn)gd(x,X\U) d(y,X\U)ST(T+n)'
Thus d(z,y) < n+ —|—ﬁ < e. Thus the d-ball of radius € around 2 contains the
d-ball of radius § and so every d-open set is also d-open. Thus d is compatible with
the subspace topology on U and we need only show that dis complete.
Suppose that (x,) is a d-Cauchy sequence. Then (25, is also a d-Cauchy sequence

and so there exists x € X such that x,, — z. In addition,

1 1
lim — =0

1,j—00 d(CUZ,X N U) d(.’L‘j,X N U)
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and so there exists s € R such that

1
lim —— =
it dz, X U)

In particular, d(z;, X \ U) is bounded away from 0 and hence z € U. |

Definition 4.2. A subset Y of a topological space is said to be a Gs-set iff there
exist open subsets {V;,} such that Y = V.

Example 4.3. Suppose that X is a metrizable space and that d is a compatible
metric. If FF C X is closed, then

F = ﬁ{x€X|d(x,F)<l/n}

n=1

is a Gg-set.

Corollary 4.4. If X is a Polish space and Y C X is a Gs-set, then'Y is a Polish

subspace.

Proof. Let Y = [V, where each V,, is open. By Theorem 4.1, each V;, is Polish.
Let d,, be a complete compatible metric on V,, such that d,, < 1. Then we can

define a complete compatible metric on Y by

R 1
n=0
The details are left as an exercise for the reader. O

Ezample 4.5. Note that Q C R is not a Polish subspace.

Theorem 4.6. If X a Polish space and Y C X, then Y is a Polish subspace iff Y

is a Gg-set.

Proof. Suppose that Y is a Polish subspace and let d be a complete compatible
metric on Y. Let {U,} be an open basis for X. Then for every y € Y and ¢ > 0,
there exists U, such that y € U, and diam(Y NU,) < e, where the diameter is

computed with respect to d. Let

A={zecl(Y)| (Ve >0)(3In) z € U, and diam(Y NU,) < ¢}

- ﬁ J{Un nel(Y) | diam(Y NU,) < 1/m}.
m=1
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Thus A is a Gs-set in cl(Y). Since cl(Y) is a Gs-set in X, it follows that A is a
Gs-set in X. Furthermore, we have already seen that Y C A.

Suppose that € A. Then for each m > 1, there exists U, such that x € U,,
and diam(Y NU,, ) < 1/m. Since Y is dense in A, for each m > 1, there exists
Ym €Y NUp, N---NU,,,. Thus yi1, y2, ... is a d-Cauchy sequence which converges
toxandsox €Y. Thus Y = A is a Gs-set. [l

5. CHANGING THE TOPOLOGY

Theorem 5.1. Let (X,7T) be a Polish space and let A C X be a Borel subset.
Then there ezists a Polish topology Ta 2 T on X such that B(T) = B(74) and A
is clopen in (X, T4).

Theorem 5.2 (The Perfect Subset Theorem). Let X be a Polish space and let
A C X be an uncountable Borel subset. Then A contains a homeomorphic copy of

the Cantor set 2N.

Proof. Extend the topology 7 of X to a Polish topology 74 with B(7) = B(74)
such that A is clopen in (X, 74). Equipped with the subspace topology T, relative
to (X, 74), we have that (A4, 7)) is an uncountable Polish space. Hence there exists
an embedding f : 2V — (A, 74). Clearly f is also a continuous injection of 2V into
(X,T4) and hence also of 2" into (X, 7). Since 2V is compact, it follows that f is
an embedding of 2V into (X, 7). O

We now begin the proof of Theorem 5.1.

Lemma 5.3. Suppose that (X1,71) and (X2, 72) are disjoint Polish spaces. Then
the disjoint union (X1 U X5, 7), where T = {UUV |U € T,V € Ta}, is also a
Polish space.

Proof. Let dy, dy be compatible complete metrics on X7, X5 such that dy, dy < 1.
Let d be the metric defined on X7 U X5 by

dl(%yﬁ lf%yEXh
d(z,y) = S dy(z,y), ifz, ye Xy
2, otherwise.

Then d is a complete metric which is compatible with 7. [
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Lemma 5.4. Let (X,7T) be a Polish space and let F C X be a closed subset. Let
Tr be the topology generated by T U {F}. Then (X,7F) is a Polish space, F is
clopen in (X,Tr), and B(T) = B(7F).

Proof. Clearly T is the topology with open basis 7 U{UNF |U € T} and so Tr
is the disjoint union of the relative topologies on X ~\ F and F'. Since F is closed
and X \ F' is open, it follows that their relatives topologies are Polish. So the result

follows by Lemma 5.3. O

Lemma 5.5. Let (X,7) be a Polish space and let (7,,) be a sequence of Polish
topologies on X such that T C T, C B(7) for each n € N. Then the topology Too
generated by | J 7y, is Polish and B(T) = B(7x).

Proof. For each n € N, let X,, denote the Polish space (X,7,). Consider the
diagonal map ¢ : X — [] X, defined by ¢(z) = (x,z,z,---). We claim that ¢(X)
is closed in [] X,,. To see this, suppose that (z,) ¢ ¢(X); say, z; # x;. Then there
exist disjoint open sets U, V € T C 7;, 7; such that x; € U and z; € V. Then

(@) € Xo X+ x Xjy x U x Xip1 % -+ x Xy x V x Xjpg x -+ C [[ X~ 0(X).

In particular, (X)) is a Polish subspace of [| X,,; and it is easily checked that ¢ is
a homeomorphism between (X, 7)) and ¢(X). O

Proof of Theorem 5.1. Consider the class
S ={A4 € B(T) | A satisfies the conclusion of Theorem 5.1 }.

It is enough to show that S is a o-algebra such that 7 C S. Clearly S is closed
under taking complements. In particular, Lemma 5.4 implies that 7 C S. Finally
suppose that {4,} € S. For each n € N, let 7, be a Polish topology which
witnesses that A,, € S and let 75, be the Polish topology generated by |J7,. Then
A =JA, is open in 7. Applying Lemma 5.4 once again, there exists a Polish
topology 74 2 T such that B(74) = B(7,,) = B(7) and A is clopen in (X, 7y4).
Thus A € S. O

6. THE BOREL ISOMORPHISM THEOREM

Definition 6.1. If (X, T) is a topological space, then the corresponding Borel space
is (X,B(7)).
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Theorem 6.2. If (X,7) and (Y,S) are uncountable Polish spaces, then the corre-
sponding Borel spaces (X,B(T)) and (Y,B(S)) are isomorphic.

Definition 6.3. Let (X,7) and (Y,S) be topological spaces and let f: X — Y.
(a) fis a Borel map iff f=1(A) € B(T) for all A € B(S).
(b) f is a Borel isomorphism iff f is a Borel bijection such that f~! is also a

Borel map.

Definition 6.4. Let (X,7) be a topological space and let Y C X. Then the
Borel subspace structure on Y is defined to be B(7)y = {ANY | A € B(7) }.
Equivalently, we have that B(7 )y = B(7y).

Theorem 6.5 (The Borel Schroder-Bernstein Theorem). Suppose that X, Y are
Polish spaces, that f : X — Y is a Borel isomorphism between X and f(X) and
that g : Y — X is a Borel isomorphism between Y and g(Y). Then there exists a
Borel isomorphism h : X — Y.

Proof. We follow the standard proof of the Schroder-Bernstein Theorem, checking

that all of the sets and functions involved are Borel. Define inductively

Xo=X Yo=Y

X1 = g(f(Xn)) Yot = f(9(Yn))
Then an easy induction shows that X,, V;,, f(X,) and ¢(Y,) are Borel for each
n € N. Hence X, = (X, and Yo = (1Y, are also Borel. Furthermore, we have
that

f(Xn N g(Yn)) = f(Xn) N Yn+1

9(Yn N f(Xn)) = 9(Yn) N Xnp1

Finally define
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Then A, B are Borel, f(A) =Y ~\ B and g(B) = X \ A. Thus we can define a
Borel bijection h: X — Y by

hz) = f(ax), if x € A;

g '(z) otherwise.

O

Definition 6.6. A Hausdorff topological space X is zero-dimensional iff X has a

basis consisting of clopen sets.

Theorem 6.7. FEvery zero-dimensional Polish space X can be embedded in the

Cantor set 2N.

Proof. Fix a countable basis {U,} of clopen sets and define f : X — 2 by

f(x) = (XU(J(J:)7"' aXUn($)7"')7

where xy, : X, — 2 is the characteristic function of U,,. Since the characteristic
function of a clopen set is continuous, it follows that f is continuous; and since

{U,} is a basis, it follows that f is an injection. Also

FU) = fX)N{pe2¥|p(n) =1}
is open in f(X). Hence f is an embedding. d

Thus Theorem 6.2 is an immediate consequence of Theorem 6.5, Corollary 3.13

and the following result.

Theorem 6.8. Let (X, T) be a Polish space. Then there exists a Borel isomorphism
f:X — 2" between X and f(X).

Proof. Let {U,} be a countable basis of open sets of (X,7) and let F,, = X \ U,.
By Lemma 5.4, for each n € N, the topology generated by 7 U {F,} is Polish.
Hence, by Lemma 5.5, the topology 7’ generated by 7 U {F,, | n € N} is Polish.

Clearly the sets of the form
Up O Fpyy NN Fpy,

form a clopen basis of (X,7’). Hence, applying Theorem 6.7, there exists an
embedding f : (X,7’) — 2Y. Clearly f : (X,7) — 2" is a Borel isomorphism
between X and f(X). O
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7. THE NONEXISTENCE OF A WELL-ORDERING OF R

Theorem 7.1. There does not exists a Borel well-ordering of 2N.
Corollary 7.2. There does not erists a Borel well-ordering of R.
Proof. An immediate consequence of Theorems 7.1 and 6.2. O

Definition 7.3. The Vitali equivalence relation Ey on 2N is defined by:

(an) Eg (by) iff  there exists m such that a,, = b, for all n > m.

Definition 7.4. If F is an equivalence relation on X, then an E-transversal is a

subset T C X which intersects every E-class in a unique point.
Theorem 7.5. There does not admit a Borel Ey-transversal.

Let Cy = {0,1} be the cyclic group of order 2. Then we can regard 2V =[] 5

as a direct product of countably many copies of Cs. Define
I = @02 ={(an) € HCQ | a, = 0 for all but finitely many n}.

Then I is a subgroup of [],, C> and clearly
(an) Eo (bn) iff  (Fy€T) v-(an) = (bn).
Definition 7.6. A probability measure p1 on an algebra B C P(X) of sets is a

function p : F — [0, 1] such that:

(i) u(0) =0 and pu(X)=1.
(ii) If A,, € B, n € N, are pairwise disjoint and |J A,, € B, then

p(JAn) =D n(Ay).
Ezample 7.7. Let By C 2N consist of the clopen sets of the form
A]: = {(an) | (G’O) e aam—l) S ]:}a

where F C 2™ for some m € N. Then u(Ax) = |F|/2™ is a probability measure
on By. Furthermore, it is easily checked that p is I'-invariant in the sense that

w(y-Ar) = p(Ar) for all v € T

Theorem 7.8. u extends to a T-invariant probability measure on B(2Y).
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Sketch Proof. First we extend p to arbitrary open sets U by defining
w(U) =sup{u(A) | A€ By and A CU}.

Then we define an outer measure u* on P(2N) by setting
w*(Z) = inf{u(U) | U open and Z C U}.

Unfortunately there is no reason to suppose that p* is countably additive; and so
we should restrict 4* to a suitable subcollection of P(2N). A minimal requirement

for Z to be a member of this subcollection is that
(1) p(Z)+ (2NN 2) =1

and it turns out that:

(i) p* is countably additive on the collection B of sets satisfying condition ().
(ii) B is a o-algebra contain the open subsets of 2.
(iii) If U € B is open, then p*(U) = p(U).
Clearly u* is T-invariant and hence the probability measure p* | B(2Y) satisfies

our requirements. ]

Remark 7.9. In order to make the proof go through, it turns out to be necessary
to define B to consist of the sets Z which satisfy the apparently stronger condition
that

() wW(ENZ)+p (ENZ)=p"(E) for every E C 2V,

Proof of Theorem 7.5. If T is a Borel tranversal, then T is p-measurable. Since
oN = |_| v - T,
yeT

it follows that

L=p(2%) =) u(y-T).

yel

But this is impossible, since u(y - T) = u(T) for all v € T O

We are now ready to present the proof of Theorem 7.1. Suppose that R C 2N x 2N
is a Borel well-ordering of 2V and let Ey be the Vitali equivalence relation on 2N.

Applying Theorem 7.5, the following claim gives the desired contradiction.
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Claim 7.10. T = {z € 2 | x is the R-least element of [z]g, } is a Borel Eq-

transversal.

Proof of Claim 7.10. Clearly T is an FEjy-transversal and so it is enough to check
that T is Borel. If 4 € I, then the map x +— ~-z is a homeomorphism and it follows
easily that
M, = {(,7-2) |2 € 2"}

is a closed subset of 2V x 2N, Hence

L,={(z,y-z)€lzRy-z}=M,NR
is a Borel subset of 2V x 2N, Let f, : 2% — 2V x 2% be the continuous map defined
by fy(z) = (x,7-z). Then

T,={ze2" [z Ry-a} = f; (L)

is a Borel subset of 2¥ and hence T = (1,20 Ty is also Borel. O



