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Part 3. Carry, Cinderella of Arithmetic

10. Palindromic decimals and palindromic polynomials

My next case study is based on conversations with an 8 year old boy, DW, in
May 2007.

DW’s parents sent me a file of DW’s book. It included the following paragraph,
reproduced here verbatim:

I wrote to DW:
Dear D,

Indeed, there is something weird. I believe you have figured out
that

1× 1 = 1

11× 11 = 121

111× 111 = 12321

1111× 1111 = 1234321

11111× 11111 = 123454321

111111× 111111 = 12345654321

1111111× 1111111 = 1234567654321

11111111× 11111111 = 123456787654321

111111111× 111111111 = 12345678987654321

There is a wonderful palindromic pattern in the results. But mathemat-
ics is interested not so much in beautiful patterns but in reasons why
the patterns cannot be extended without loss of their beauty. In our
case, the pattern breaks at the next step (judging by your book, you
have already noticed that):

1111111111× 1111111111 = 1234567900987654321
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The result is no longer symmetric. Why? What is the difference from
the previous 9 squares? Can you give any suggestions?

I had some brief e-mail exchanges with DW which suggested that he
might have an explanation, but could not clearly express himself. Our dis-
cussion continued when he visited me (with his mother) in Manchester on 8
May 2007.

I wrote on the whiteboard in my office (this is a photograph of actual
writing on the board):

and asked DW whether the symmetric pattern of results continued indefi-
nitely. DW instantly answered “No” and also instantly wrote on the board,
apparently from his memory:

“Good”–said I–but let us try to figure out why this is happening”, and
wrote on the board:

“Yes”–said DW–“this is column multiplication”.
“And what are the sums of columns’?”
“1, 2, 3, 4, 3, 2, 1”–dictated DW to me, and I have written down the

result:
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“Will the symmetric pattern continue indefinitely?”–asked I.
“No”–was DW’s answer–“when there are 10 1’s in a column, 1 is added

on the left and there is no symmetry.”
“Yes!”–said I–“carries break the symmetry. But let us look at another

example”–and I wrote:

DW was intrigued and made a couple of experiments (and it appeared
from his behaviour that he was using mostly mental arithmetic, writing
down the result, term by term, with pauses):

and said with obvious enthusiasm: “Yes, it is the same pattern!”
“Wonderful”–answered I–“let us see why this is happening. I’ll give you

a hint: multiplication of polynomials can be written as column multiplica-
tion”, and started to write:
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DW did not let me finish, grabbed the marker from my hand and insisted
on doing it himself:

He stopped after he barely started the second line and said very firmly:
“Yes, it is like with numbers”.

“Well”–said I–“but will the pattern break down or will continue forever?”
That was the first time when DW fell in deep thought (and I was a bit

uncomfortable about the degree of his concentration and retraction from
the real world). This was also the first time when his response was not
instant–perhaps, whole 20 seconds passed in silence. Then he suddenly
smiled happily and answered: “No, it will not break down!”

“Why?”–inquired I.
“Because when you add polynomials, the coefficients just add up, there

are no carries.”
At that point I decided to stop the session on the pretext that it was

late and the boy was perhaps tired, but, to round up the discussion, made
a general comment:

“You know, in mathematics polynomials are sometimes used to explain
what is happening with numbers”.

The last word, however, belonged to DW:
“Yes, 10 is x.”

11. DW: a discussion

DW is a classical example of what is usually called a “mathematically
able child”. He mastered, more or less on his own, some mathematical
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routines—multiplication of decimals and polynomials—which are normally
taught to children at much later age. He also showed instinctive inter-
est in detecting beautiful patterns in behaviour of numbers, and, which is
even more important, in limits of applicability of patterns, in their breaking
points.

DW understands what generalisation is and, moreover, loves making
quick, I would say recklessly quick generalisations. Krutetskii [16] lists this
trait among characteristic traits of “mathematically able” children: very
frequently, they are children, who, after solving just one problem, already
know how to solve any problem of the same type.

But let us return to the principal theme of the present paper: hid-
den structures of elementary mathematics. In our conversation, DW was
shown—I emphasise, for the first time in his life—a beautiful but hidden
connection between decimals and polynomials—and was able to see it !

In our little exercise, DW advanced (a tiny step) in conceptual under-
standing of mathematics: he had seen an example of how one mathemati-
cal structure (polynomials) may hide inside another mathematical structure
(decimals).

My final comment is that although DW made a small, but important step
towards deeper understanding of mathematics, this step is not necessarily
visible in the standard mathematics education framework. It is unlikely that
a school assignment will detect him making this small step. Procedurally,
in this small exercise DW learned next to nothing—he multiplied numbers
and polynomials before, he will multiply them with the same speed after.

One should not think, however, that the “procedural” aspect of math-
ematics is of no importance. DW’s ability to do this tiny bit of “concep-
tual” mathematics would be impossible without him mastering the standard
routines (in this case, column multiplication of decimals and addition and
multiplication of polynomials).

12. Carry, Cinderella of arithmetic

The deceptive simplicity of elementary school arithmetic is especially
transparent when we take a closer look at carries in the addition of decimals.

12.1. Cohomology. In Molièr’s Le Bourgeois Gentilhomme, Monsieur
Jourdain was surprised to learn that he had been speaking prose all his life.
I was recently reminded that, starting from my elementary school and then
all my life, I was calculating 2-cocycles.

Indeed, a carry in elementary arithmetic, a digit that is transferred from
one column of digits to another column of more significant digits during
addition of two decimals, is defined by the rule

c(a, b) =
{

1 if a + b > 9
0 otherwise .
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One can easily check that this is a 2-cocycle from Z/10Z to Z and is respon-
sible for the extension of additive groups

0 −→ 10Z −→ Z −→ Z/10Z −→ 0.

DW discovered (without knowing the words ‘2-cocycle’ and ‘cohomology’)
that carry is doing what cocycles frequently do: they are responsible for
break of symmetry.

12.2. A few formal definitions. Let G be a group and A an abelian
group with an action of G on A:

G×A −→ A

(g, a) 7→ g · a.

A 2-cocycle is a map
f : G×G −→ A

such that
g · f(h, k) + f(g, hk) = f(gh, k) + f(g, h)

Let E be an extension of A by G,

1 −→ A −→ E −→ G −→ 1,

S a system of coset representative of A in E,

s : G −→ E

a coset map.
Then f : G×G → A defined by

s(gh) = f(g, h)s(g)s(h)

is a 2-cocycle. It measures the extent to which the collection of coset repre-
sentatives fails to be closed under multiplication.

A 2-coboundary for the action of G on A is a function

f : G×G → A

such that there exists a function

φ : G → A

such that:
f = (g, h) 7→ g · φ(h)− φ(gh) + φ(g)

Two 2-cocycles for the same extension E differ by a 2-coboundary.
Therefore the exensions are described by the second cohomology group

H2(G,A) = Z2(G,A)/B2(G,A),

where Z2(G,A) is the group of 2-cocycles with respect to natural pointwise
addition and B2(G, A) is the group of coboundaries.
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12.3. Limits and series. Carry has another interesting property: it
contains a seed of a concept of limit leading to immensely rich p-adic analysis.

A few words on limits are due. A rare topic in undergraduate education
generates more controversy than the classical ε-δ approach to limits and
continuity in the real domain. I quote Raphael Núnez [21]:

Formal definitions and axioms in mathematics are themselves created
by human ideas [. . . ] and they only capture very limited aspects of
the richness of mathematical ideas. Moreover, definitions and axioms
often neither formalize nor generalize human everyday concepts. A
clear example is provided by the modern definitions of limits and
continuity, which were coined after the work by Cauchy, Weierstrass,
Dedekind, and others in the 19th century. These definitions are at
odds with the inferential organization of natural continuity provided
by cognitive mechanisms such as fictive and metaphorical motion.
Anyone who has taught calculus to new students can tell how counter-
intuitive and hard to understand the epsilon-delta definitions of limits
and continuity are (and this is an extremely well-documented fact in
the mathematics education literature). The reason is (cognitively)
simple. Static epsilon-delta formalisms neither formalize nor general-
ize the rich human dynamic concepts underlying continuity and the
“approaching” the location.

This thesis is fully developed in a book by Lakoff and Núnez [17] and is very
representative of a certain school of thought in mathematics education largely in-
formed by neurophysiological research.

In this context, it is interesting to analyse how p-adic analysis arises from the
purely algebraic concept of carry and completely avoids all alleged psychological
traps which imperil the study of real analysis.

Very frequently, when we deal with a mathematical object and wish to modify
it and make it “infinite” in some sense, we have several different ways for doing so.
For example, usual decimal numbers can be extended to infinite decimal expansions
to the right :

π = 3.1415926 . . .

and to the left :
. . . 987654321

In the second case, the operations of multiplication and addition on infinite to the
left decimals (called 10-adic integers) are defined in the usual way, with the excess
carried to the next position on the left. Carries march on and on, uninterruptedly,
and this steadiness of their pace is the psychological basis of a very intuitive concept
of limit.

10-adics are not frequently used in mathematics, but p-adic integers for prime
values of the base p, defined in a similar way by expanding integers written to base
p to the left, are quite useful and very popular.

10-adic integers are not so good as p-adic for prime p because they contain zero
divisors, non-zero numbers x and y such that xy = 0. The following elementary
example was provided by Hovik Khudaverdyan and Gábor Megyesi and nicely
illustrates the concept of 10-adic limit. If you look at the sequence of iterated
squares

5, 52 = 25, 252 = 625, 6252 = 390625, 3906252 = 152587890625 . . .
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you notice that consecutive numbers have in common an increasingly long sequences
of the rightmost digits, that is,

52n+1 ≡ 52n

mod 10n,

the fact which could be easily proven by induction. This freezing of rightmost digits
means exactly that the sequence converges to a 10-adic integer

x = . . . 92256259918212890625.

One can easily see that x has the property that x2 = x and hence x(x − 1) = 0.
Therefore x and x− 1 are desired zero divisors.

It can be shown that zero divisors appear in the ring of 10-adic integers because
10 is not a prime number. An exercise for the reader: prove that the ring of 2-adic
integers has no zero divisors.

Properties of 10-adic and p-adic integers are quite different from that of real
numbers: to give one example, you cannot order 10-adic integers in a way com-
patible with addition and multiplication (so that the usual rules of manipulating
inequalities would hold). This can be seen already from one of the simplest instances
of addition:

. . . 99999 + 1 = . . . 00000 = 0.

For lack of space, I will mention only one other property of p-adic integers made
self-explanatory by application of simplest rules of operating with carries.

12.4. Euler’s sum. Notice that a paradoxical summation of the infinite series

1 + 2 + 4 + · · · = −1,

due to Euler, makes sense and is completely correct in the domain of 2-adic inte-
gers written by base 2 expansions. Indeed, it becomes an easy-to-check arithmetic
calculation:

1 + 2 + 4 + 8 + · · · = 1 + 10 + 100 + 1000 + · · ·
= · · · 111111111

But

· · · 111111111
+ 1
= · · · 000000000

Hence in 2-adic arithmetic

1 + 2 + 4 + 8 + · · · = −1.

It was worth noting that Euler was most likely to know binary numbers. A first
clear description of them was published in 1703 by Leibnitz in his paper Explication
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de l’Arithétique Binaire [19] in modern notation, se Figure 11:

0 = 0
1 = 1
2 = 10
3 = 11
4 = 100
5 = 101
6 = 110
7 = 111

...
2n = 10 · · · 0 ( n zeroes)

Exercises.

Exercise 12.1. (Gardiner [12]) The list of numbers

49, 4489, 444889, 44448889, 4444488889, . . .

goes on for ever. What is the next number on the list? The first number 49 is a
perfect square. Is the second number 4489 a perfect square? Is the tenth number
on the list a perfect square? Which other numbers in the list are perfect squares?

Exercise 12.2. Prove that a 10-adic integer has an inverse if and only if its
last digit is 1, 3, 7 or 9.

Hint. If the last digit of x is 1, we can write it as x = 1 + 10y and

(1 + 10y)−1 = 1− 10y + 100y2 − 100y3 + · · · ,

with the expression on the right making sense because in the infinite sum in every
position we sum up only finitely many digits.

Exercise 12.3. Prove that a 2-adic integer has an inverse if and only if its last
digit is 1.

Exercise 12.4. Prove that every 2-adic integer can be written in the form
2k · x, where k is an (ordinary) non-negative integer and x is an invertible 2-adic
integer.

Exercise 12.5. Prove that the ring Z2 of 2-adic integers is a domain, that is,
it has no zero divisors.

Exercise 12.6.

Exercise 12.7. Study the arithmetic properties of the ring Z[[x]] of formal
power series over integers; here, formal power series are expressions

a0 + a1x + a2x
2 + · · ·+ anxn + · · ·

with all coefficients ai ∈ Z, with usual operations of addition and multiplication.
• Is Z[[x]] a domain? (Domain is a commutative ring which has no zero

divisors.)
• Which elements of Z[[x]] are invertible?
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Figure 11. A page from Leibnitz’s paper about binary system
[19], 1703.

• Take a page from DW’s book and find in Z[[x]] the inverse of

1 + 2x + 3x2 + 4x3 + 5x4 + · · ·
• Does Z[[x]] have unique factorisation?

See Birmajer and Gill [4] for answers.
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