
Metamathematics 1–3 Nesin Mathematics Village, Şirince, 23 Jul 2008

Part 2. Adding one by one

3. Adding one by one

My colleague EHK4 told me about a difficulty she experienced in her first
encounter with arithmetic, aged 6. She could easily solve “put a number in the
box” problems of the type

7 + ¤ = 12,

by counting how many 1’s she had to add to 7 in order to get 12 but struggled with

¤ + 6 = 11,

because she did not know where to start. Worse, she felt that she could not com-
municate her difficulty to adults. Her teacher forgot to explain to her that addition
was commutative.

Another one of my colleagues, AB5, told me how afraid she was of subtraction.
She could easily visualise subtraction of 4 from 100, say, as a stack of 100 objects;
after removing 4 objects from the top (by reverse counting: 100, 99, 98, 97), 96 are
left. But what will happens if you remove 4 objects from the bottom of the stack?

A brief look at axioms introduced by Dedekind (but commonly called Peano
axioms) provides some insight in EHK’s and AB’s difficulties.

3.1. Dedekind-Peano axioms. Recall that the Dedekind-Peano axioms de-
scribe the properties of natural numbers N in terms of a “successor” function S(n).
(There is no canonical notation for the successor function, in various books it is
denoted s(n), σ(n), n′, or even n++, as in popular computer languages C and C++.)

Axiom 1: 1 is a natural number.
Axiom 2: For every natural number n, S(n) is a natural number.

Axioms 1 and 2 define a unary representation of the natural numbers: the number
2 is S(1), and, in general, any natural number n is

Sn−1(1) = S(S(· · ·S(1) · · · )) (n− 1 times).

As we shall soon see, the next two axioms deserve to be treated separately; they
define the properties of this representation.

Axiom 3: For every natural number n other than 1, S(n) 6= 1. That is,
there is no natural number whose successor is 1.

Axiom 4: For all natural numbers m and n, if S(m) = S(n), then m = n.
That is, S is an injection.

The final axiom (Axiom of Induction) has a very different nature and is best un-
derstood as a method of reasoning about all natural numbers.

Axiom 5: If K is a set such that:
• 1 is in K, and
• for every natural number n, if n is in K, then S(n) is in K,

then K contains every natural number.

4For the record: EHK is female, has a PhD in Mathematics, teaches mathematics at a highly
selective secondary school.

5AB is female, has a PhD in Mathematics, teaches mathematics in a research-led university.

14 c© 2008 Alexandre V. Borovik



Metamathematics 1–3 Nesin Mathematics Village, Şirince, 23 Jul 2008

Thus, Dedekind-Peano arithmetic is a formalisation of that very counting by one
that little EHK did, and addition is defined in precisely the same way as EHK
learned to do it: by a recursion

m + 1 = S(m)
m + S(n) = S(m + n).

Commutativity of addition is a non-trivial (although still accessible to a beginner)
theorem. To force you to feel some sympathy to poor little EHK and to poor little
AB, I will prove it to you in the next section.

3.2. A brief digression: is 1 a number? Having postponed more serious
work, we can spend a few minutes discussing Axiom 1: 1 is a natural number.

Even this axiom is not self-evident as it appears to be. In many languages,
including English, the word ‘number’ can denote some collection or ensemble of
objects with tacit understanding that it contains at least a few, and in any case
more than one, objects. For example, a phrase

“A number of people feel that 1 is not a number”
makes sense and means that more than one person thinks that 1 is not a number.
Such usage reflects an earlier stage of development of the system of numerals when
1 was not a number; numbers were made of ones, of basic units; but one is not
made of ones.

What is very important for the history of mathematics, it appears that, for
similar reasons, 1 was not a number for ancient Greek mathematicians, as evidenced
in Euclid’s Elements: Euclid careful separated the use of words ‘number’ and ‘unit’.

And, as a digression within digression, I want to mention the issue of collective
nouns—I shall discuss them again in later lectures, so the present deviation is not
waste of time. The English language has a peculiar tendency to form or find a
special word to denote groups of particular animals. For example, Englishmen say

a herd of cows,
a flock of sheep,
a pack of dogs,
a school of fish.

To illustrate how far things go, it will suffice to mention that ducks, while on water,
form a paddling, while in flight they are a flush. Some nouns are absolutely obscure;
for example, I found in Wikipedia a sedge of bitterns, but I do not even know what
bitterns are.

Invention of collective nouns for groups of people from various professional
groups is a popular genre of English humor; to my taste,

a number of mathematicians
appears to be one of the more obvious solutions.

4. Properties of addition

There are several alternative forms of notation for the successor function: S(n),
s(n), σ(n), n′ and even n++, the latter used in programming languages C and
C++. I shall use notation n′; as the reader will soon see, it is very convenient—
and natural—to write a symbol for the successor function after the number that
has to be incremented.
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Figure 9. Guido Reni. A fragment of The Rape of Helena, 1631.
Musée du Louvre. Source: Wikipedia Commons. Public domain.

In this new notation, the recursive rule for addition looks like

n + 1 = n′(4)
n + m′ = (n + m)′.(5)

I will also use Axiom 5 in a more conventional form, obviously equivalent to
the original one.

Axiom 5: Assume that a certain statement about numbers If K is a set
such that:
• the statement is true for 1 (Basis of Induction)
• if the statement is true for a natural number n (Inductive Assump-

tion) then it is true for the next number n′ (Inductive Step).
Then the statement is true for all natural numbers.

I will prove two canonical properties of addition.

4.1. Associativity of addition.

Theorem 4.1. Assume that + is a binary operation which satisfies conditions
(4) and (5). Then + is associative, that is,

(a + b) + c = a + (b + c)

for all a, b, c.

Proof. The proof will use induction on c.
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Basis of Induction.

(a + b) + 1
by (4)

= (a + b)′

by (5)
= a + b′

by (4)
= a + (b + 1).

Inductive Assumption:

(a + b) + c = a + (b + c).

Inductive Step.

(a + b) + c′
by (5)

= ((a + b) + c)′

by inductive
assumption

= (a + (b + c))′

by (5)
= a + (b + c)′

by (5)
= a + (b + c′).

¤

4.2. Commutativity of addition. We shall start with a very special, but
crucially important case.

Theorem 4.2. Assume that + is a binary operation which satisfies conditions
(4) and (5). Then

1 + a = a + 1
for all a.

Proof. We shall prove the theorem by induction on a.
Basis of Induction.

1 + 1 = 1 + 1.

There is nothing to prove here.
Inductive Assumption:

1 + a = a + 1.

Inductive Step.

1 + a′
by (5)

= (1 + a)′

by inductive
assumption

= (a + 1)′

by (4)
= (a′)′

by (4)
= a′ + 1.

¤

Theorem 4.3. Assume that + is a binary operation which satisfies conditions
(4) and (5). Then + is commutative, that is,

a + b = b + a
17 c© 2008 Alexandre V. Borovik



Metamathematics 1–3 Nesin Mathematics Village, Şirince, 23 Jul 2008

for all a and b.

Proof. We shall prove the theorem by induction on b.
Basis of Induction: Theorem 4.2.
Inductive Assumption:

a + b = b + a.

Inductive Step.

a + b′
by (5)

= (a + b)′

by inductive
assumption

= (b + a)′

by (4)
= (b + a) + 1

by Theorem 4.1
= b + (a + 1)

by Theorem 4.2
= b + (1 + a)

by Theorem 4.1
= (b + 1) + a

by (4)
= b′ + a.

¤

5. Dark clouds

Notice that I was careful to formulate Theorems 4.1–4.3 in the most cautious
way, by emphasising their conditional nature:

if + is a binary operation which satisfies conditions (4) and (5)
then . . .

The reason for my restraint is that writing down conditions (4) and (5) does not
mean to define a function.

Another problem is that if you look at the proofs of Theorems 4.1–4.3, you
notice that they do not refer to Axioms 3 and 4 and are based entirely on the
Induction Axiom, Axiom 5. Therefore if we can exhibit a “toy version” of a system
of natural numbers where we have a distinguished element 1, and the successor
function S, and the Induction Axiom, but have no Axioms 3 and 4, we shall still
should be able to define addition by conditions (4) and (5), and perhaps some other
functions.

David Pierce [22] suggests to take for such “toy model” a system of residues
Z/nZ modulo n, with residue 1 in the role of the distinguished element, and with
a successor function

David Pierce makes an incisive comment:
Indeed, if one thinks that the recursive definitions of addition and
multiplication—

n + 0 = n,

n + (k + 1) = (n + k) + 1;

n · 0 = 0,

n · (k + 1) = n · k + n
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—are obviously justified by induction alone, then one may think the
same for exponentation, with

n0 = 1

nk+1 = nk · n.

However, while addition and multiplication are well-defined on Z/nZ
(which admits induction), exponentiation is not; rather, we have

(x, y) 7→ xy

(Z/nZ)∗ × Z/φ(n)Z → Z/nZ,

where (Z/nZ)∗, as usual, denotes the group of invertible elements of the residue
ring Z/nZ.

Indeed, the recursive definition of exponentiation fails in Z/3Z:

n n2 n3 n3 × n n4

2 1 2 1 2

but holds in Z/6Z:

n n2 n3 n4 n5 n6 n7

1 1 1 1 1 1 1
2 4 2 4 2 4 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 1 5 1 5 1 5
6 6 6 6 6 6 6

The former is an exception rather than rule, as clarified by David Pierce’s
theorem.

Theorem 5.1. (David Pierce [22]) The identities

(6) a1 = a, ab+1 = ab × a

hold on Z/nZ if and only if n ∈ {0, 1, 2, 6}.
I share David Pierce’s indignation at the state of affairs [22]:

Yet the confusion continues to be made, even in textbooks intended
for students of mathematics and computer science who ought to be
able to understand the distinction. Textbooks also perpetuate related
confusions, such as suggestions that induction and ‘strong’ induction
(or else the ‘well-ordering principle’) are logically equivalent, and that
either one is sufficient to axiomatize the natural numbers. [. . . ]

This is one example to suggest that getting things straight may
make a pedagogical difference.

But I have to admit that I shared the widespread ignorance until David Pierce
brought my attention to the issue—despite the fact that, in a calculus course that
I took in the first year of my university studies, the lecturer (Gleb Pavlovich Ak-
ilov) explicitly proved the existence of a function of natural argument defined by a
recursive scheme [1].

To save our theory from collapse, in the next section we shall prove the existence
of addition.
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Exercises.

Exercise 5.1. Prove Theorem 5.1 for prime values of n. You may wish to use
Fermat’s Theorem:

If p is a prime integer and 0 < a < p < then

ap ≡ a mod p.

Exercise 5.2. Then try to prove Theorem 5.1 in full generality.

6. Landau’s proof of the existence of addition

I decide to borrow verbatim a proof of the existence of addition from Edmund
Landau’s famous book Grundlagen der Analysis [18]. Also, I picked up from his
book notation

S(n) = n′

which I had already used in my proofs. Although this is not emphasised by Landau,
the proof of consistency of addition is not using Axioms 3 and 4. Are these axioms
of any use at all? We shall return to this question later.

Theorem 6.1. [18, Theorem 4] To every pair of numbers x, y, we may assign
in exactly one way a natural number, called x + y, such that

(1) x + 1 = x′ for every x,
(2) x + y′ = (x + y)′ for every x and every y.

Proof. (A) First we will show that for each fixed x there is at most one
possibility of defining x + y for all y in such a way that x + 1 = x′ and
x + y′ = (x + y)′ for every y.

Let ay and by be defined for all y and be such that

a1 = x′, b1 = x′, ay′ = (ay)′, by′ = (by)′ for every y.

Let M be the set of all y for which

ay = by.

(I) a1 = x′ = b1; hence 1 belongs to M.
(II) If y belongs to M, then ay = by, hence by Axiom 2,

(ay)′ = (by)′,

therefore
ay′ = (ay)′ = (by)′ = by′ ,

so that y′ belongs to M.
Hence M is the set of all natural numbers; i.e. for every y we have ay = by.

(B) Now we will show that for each x it is actually possible to define x+ y for
all y in such a way that

x + 1 = x′ and x + y′ = (x + y)′ for every y.

Let M be the set of all x for which this is possible (in exactly one way, by (A)).
(I) For x = 1, the number x + y = y′ is as required, since
x + 1 = 1′ = x′,
x + y′ = (y′)′ = (x + y)′.
Hence 1 belongs to M.

20 c© 2008 Alexandre V. Borovik



Metamathematics 1–3 Nesin Mathematics Village, Şirince, 23 Jul 2008

(II) Let x belong to M, so that there exists an x+y for all y. Then the number
x′ + y = (x + y)′ is the required number for x′, since

x′ + 1 = (x + 1)′ = (x′)′

and
x′ + y′ = (x + y′)′ = ((x + y)′)′ = (x′ + y)′.

Hence x′ belongs to M. Therefore M contains all x. ¤
Landau’s book is characterised by a specific austere beauty of entirely formal

axiomatic development, dry, cut to the bone, streamlined. Not surprisingly, it is
claimed that logical austerity and precision were Landau’s characteristic personal
traits.6

Grundlagen der Analysis opens with two prefaces, one intended for the student
and the other for the teacher; we already quoted Preface for the Teacher, it is a
remarkable pedagogical document. The preface for the student is very short and
begins thus:

1. Please don’t read the preface for the teacher.
2. I will ask of you only the ability to read English and to think

logically-no high school mathematics, and certainly no higher
mathematics. [...]

3. Please forget everything you have learned in school; for you
haven’t learned it.
Please keep in mind at all times the corresponding portions of
your school curriculum; for you haven’t actually forgotten them.

4. The multiplication table will not occur in this book, not even
the theorem,

2× 2 = 4,

but I would recommend, as an exercise for Chap. I, section 4,
that you define

2 = 1 + 1,

4 = (((1 + 1) + 1) + 1),

and then prove the theorem.

Exercises.

Exercise 6.1. Follow Edmund Landau’s advise and prove from the axioms of
Peano arithmetic that

2× 2 = 4.

7. Numbers in computer science

On of the contributors to my blog, a professional computer scientist, once left
the following comment:

I would caution everyone . . . not to confuse “mathematical think-
ing” with “The thinking done by computer scientists and program-
mers”.

Unfortunately, most people who are not computer scientists
believe these two modes of thinking to be the same.

6Asked for a testimony to the effect that Emmy Noether was a great woman mathematician,
Landau famously said: “I can testify that she is a great mathematician, but that she is a woman,
I cannot swear.”
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The purposes, nature, frequency and levels of abstraction com-
monly used in programming are very different from those in math-
ematics.

This statement may appear to be extreme, but let us not to jump to conclusions
and look first at a very simple example.

Later in my lectures I will show you some tricks with an ordinary hand held
calculator, but in my examples her I suggest to have a look at its more advanced
big brother, MATLAB, an industry standard software package for mathematical
(mostly numerical) computations. The following fragment of text is a screen dump
of me playing with natural numbers in MATLAB.
>> t= 2

t = 2

>> 1/t

ans = 0.5000

What you see here is a basic calculation which uses floating point arithmetic
for computations with rounding; lines starting with >> are my input, unmarked
lines are MATLAB’s response.

Next, let us make the same calculation with a different kind of integers:
>> s=sym(’2’)

s = 2

>> 1/s

ans = 1/2

Here we use “symbolic integers”, designed for use as coefficients in symbolic ex-
pressions. You can see that in the first example 1/2 was rounded as 0.5000, in the
second case 1/2 is written as it is, as a fraction.

Since MATLAB keeps in its memory the values of the variables s and t, we
may force it to combine the two kinds of integers in a single calculation:
>> 1/(s+t)

ans = 1/4

We observe that the sum s + t of a floating point number t and a symbolic integer
s is treated by MATLAB a symbolic integer.

Examples involving analytic functions are even more striking:
>> sqrt(t)

ans = 1.4142

>> sqrt(s)

ans = 2^(1/2)

22 c© 2008 Alexandre V. Borovik



Metamathematics 1–3 Nesin Mathematics Village, Şirince, 23 Jul 2008

>> sqrt(t)*sqrt(s)

ans = 2

We see that MATLAB can handle two absolutely different representations of inte-
gers, remembering, however, the intimate relation between them.

MATLAB is written in C++. When represented in C++, even the simplest
mathematical objects and structures appear in the form of (a potentially infinite
variety of) classes linked by mechanisms of inheritance and polymorphism. This is
a manifestation of one of the paradigms of the computer science: if mathematicians
instinctively seek to build their discipline around a small number of “canonical”
structures, computer scientists frequently prefer to work with a host of similarly
looking structures, each one adapted for a specific purpose. We shall look in the
next lectures how they keep control of this bestiary. For a time being, we have only
to take note that we have to be prepared to look at many different number systems
satisfying the Dedekind-Peano axioms.

8. Counting sheep

The last observation is nothing new if we turn our attention from computer
languages to the natural human lore: we already dealt with “named” numbers.
But “named” numbers can come in a much more extreme form, as numerals used
for counting specific types of objects (most likely, they historically precede the
emergence of the universal number system as we know it). In England, a popular
slander about Yorkshiremen is that they use special numerals for counting sheep.
Judging by the Lakeland Dialect Society website [23], local people proudly admit to
sticking to the old ways. In Wensleydale, for example, the first ten sheep numerals
are said to be

yan, tean, tither, mither, pip, teaser, leaser, catra, horna, dick.

If we turn to more modern times, it is entertaining to compare sheep numerals
with Richard Feynman’s joke [11]:

You see, the chemists have a complicated way of counting: in-
stead of saying “one, two, three, four, five protons”, they say,
“hydrogen, helium, lithium, beryllium, boron.”

This a joke but we have to learn some lessons from it.
One lesson is that we have to distinguish between ordinal numerals, which

express relative order of objects,

first, second, third, . . .

and cardinal numerals which express the cardinality of a set, the number of
elements:

one, two, three, . . .

To my eye, in Feynman’s joke the words

hydrogen, helium, lithium,. . .

look more like ordinal numerals.
In languages around the world, there is a remarkable diversity of systems of

numerals, both ordinal and cardinal.
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The Japanese language provides one on more striking examples. Here, different
numerals are used for counting, for example, flat objects (like sheets of paper) and
long slender objects (like pencils). I give a table of some of them:

regular simple flat long
numbers objects things slender

things

1 ichi hitotsu ichimai ippo
2 ni futatsu nimai nihon
3 san mittsu sanmai sanbon
4 shi or yon yottsu yonmai yohon
5 go itsutsu gomai gohon
6 roku muttsu rokumai roppon
7 shichi or nana nanatsu nanamai nanahon
8 hachi yatsu hachimai happon
9 ku or kyu kokonotsu kyumai kyuhon
10 ju or jyu tou jumai jyuppon
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