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Introduction

Toutes les grandes personnes ont d’abord été des enfants
(Mais peu d’entre elles s’en souviennent.)

Antoine de Saint-Exupéry, Le Petit Prince.

These lectures is an attempt to gain a better understanding of the specific na-
ture of mathematical practice by looking at mathematics from a new and somewhat
unusual point of view. I propose to systematically record and analyse mathemat-
ically logical difficulties experienced—and occasionally overcome—by children in
their early learning of mathematics. This explains the title of the course: according
to a widely accepted understanding of this term, metamathematics is mathematics
applied to study of mathematics. In my case I apply mathematics for the sake of
better understanding of the practice of elementary school mathematics.

Quite naturally, the real life material in my research is limited to analysis of
recollections of my fellow mathematicians about their childhood. Unfortunately,
only mathematicians posses an adequate language which allows them to describe
in some depths their personal experiences of learning mathematics. So far my
approach is justified only by warm welcome it found in some of my mathematician
friends, and I am most grateful to them for their support.

I am a mathematician and restrict myself to clearly describing hidden structures
of elementary mathematics which may intrigue and—like shadows in the night—
sometimes scare an inquisitive child. I hope that my notes could be useful to
specialists in mathematical education and in psychology of education. But I refrain
from making any recommendations on mathematics teaching. For me, the primary
aim of my project is to understand the nature of hardcore mainstream “research”
mathematics.

I hope that my proposal provides an answer to frequently asked question: “Is
mathematics special?” Of course it is! The emphasis on child’s experiences makes
my programme akin to linguistic and cognitive science. However, when a linguist
studies formation of speech in a child, he studies language, not the structure of
linguistic as a scientific discipline. When I propose to study formation of mathe-
matical concepts in a child, I wish to get insights into interplay of mathematical
structures in mathematics. Mathematics has an astonishing power of reflection,
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Figure 1. L’Evangelista Matteo e l’Angelo. Guido Reni, 1630–
1640. Pinacoteca Vaticana. Source: Wikipedia Commons. Public
domain. Guido Reni was one of the first artists in history of visual
arts who paid attention to psychology of children. Notice how the
little angel counts on his fingers the points he is sent to communi-
cate to St. Matthew.

and a self-referential study of mathematics by mathematical means plays an in-
creasingly important role within mathematical culture. I simply suggest to make a
step further (or aside, or back in life) and take a look back in time, in one’s child
years.

The lectures are also an attempt to trigger the chain of memories in my listeners:
every, even most minute, recollection of difficulties and paradoxes of their early
mathematical experiences are most welcome. Please write to me at

borovik@manchester.ac.uk.
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1. “Named” numbers

1.1. Dividing apples between people. I take the liberty to tell a story
from my own life1; I believe it is relevant for the principal theme of the paper.

When, as a child, I was told by my teacher that I had to be careful with
“named” numbers and not to add apples and people, I remember asking her why
in that case we can divide apples by people:

(1) 10 apples : 5 people = 2 apples.

Even worse: when we distribute 10 apples giving 2 apples to a person, we have

(2) 10 apples : 2 apples = 5 people

Where do “people” on the right hand side of the equation come from? Why do
“people” appear and not, say, “kids”? There were no “people” on the left hand
side of the operation! How do numbers on the left hand side know the name of the
number on the right hand side?

There were much deeper reasons for my discomfort. I had no bad feelings about
dividing 10 apples among 5 people, but I somehow felt that the problem of deciding
how many people would get apples if each was given 2 apples from the total of 10,
was completely different. (My childhood experience is confirmed by experimental
studies, see Bryant and Squire [6].)

In the first problem you have a fixed data set: 10 apples and 5 people, and you
can easily visualize giving apples to the people, in rounds, one apple to a person at
a time, until no apples were left. But an attempt to visualize the second problem
in a similar way, as an orderly distribution of apples to a queue of people, two
apples to each person, necessitated dealing with a potentially unlimited number of
recipients. In horror I saw an endless line of poor wretches, each stretching out his
hand, begging for his two apples. This was visualization gone astray. I was not
in control of the queue! But reciting numbers, like chants, while counting pairs
of apples, had a soothing, comforting influence on me and restored my shattered
confidence in arithmetic.

I did not get a satisfactory answer from my teacher and only much later did I
realize that the correct naming of the numbers should be

(3) 10 apples : 5 people = 2
apples
people

, 10 apples : 2
apples
people

= 5 people.

It is a commonplace wisdom that the development of mathematical skills in a
student goes alongside the gradual expansion of the realm of numbers with which

1Call me AVB; I am male, have a PhD in Mathematics, teach mathematics at a research-led
university.
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Figure 2. The First Law of Arithmetic: you do not add fruit and
people. Giuseppe Arcimboldo, Autumn. 1573. Musée du Louvre,
Paris. Source: Wikipedia Commons. Public domain.

he or she works, from natural numbers to integers, then to rational, real, complex
numbers:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

What is missing from this natural hierarchy is that already at the level of elementary
school arithmetic children are working in a much more sophisticated structure, a
graded ring

Q[x1, x
−1
1 , . . . , xn, x−1

n ].

of Laurent polynomials in n variables over Q, where symbols x1, . . . , xn stand for
the names of objects involved in the calculation: apples, persons, etc. This explains
why educational psychologists confidently claim that the operations (1) and (2) have
little in common [6]—indeed, operation (2) involves an operand “apple/people” of
a much more complex nature than basic “apples” and “people” in operation (1):
“apple/people” could appear only as a result of some previous division.

Usually, only Laurent monomials are interpreted as having physical (or real
life) meaning. But the addition of heterogeneous quantities still makes sense and
is done componentwise: if you have a lunch bag with (2 apples + 1 orange), and
another bag, with (1 apple + 1 orange), together they make

(2 apples + 1 orange) + (1 apple + 1 orange) = (3 apples + 2 oranges).
4 c© 2008 Alexandre V. Borovik
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Notice that this gives a very intuitive and straightforward approach to vectors.[2]
Of course, there is no need to teach Laurent polynomials to kids; but it would

not harm to teach them to teachers. I have an ally in François Viéte who in 1591
wrote in his Introduction to the Analytic Art [23] that

If one magnitude is divided by another, [the quotient] is hetero-
geneous to the former . . . Much of the fogginess and obscurity
of the old analysts is due to their not paying attention to these
[rules].

1.2. Dimensions. Physicists love to work in the Laurent polynomial ring

R[length±1, time±1, mass±1]

because they love to measure all physical quantities in combinations (called “di-
mensions”) of the three basic units: for length, time and mass. But then even
this ring becomes too small since physicists have to use fractional powers of basic
units. For example, velocity has dimensions length/time, while electric charge can
be meaningfully treated as having dimensions

mass1/2length3/2

time
.

Indeed if we choose our units in such a way that the permittivity ε0 of free space
is dimensionless, then from Coulomb’s law

F =
1

4πε0

q1q2

r2

applied to two equal charges q1 = q2 = q, we see that q2/r2 has the dimensions of
force.

It pays to be attentive to the dimensions of quantities involved in a physical
formula: the balance of names of units (dimensions) on the left and right hand sides
may suggest the shape of the formula. Such dimensional analysis quickly leads to
immensely deep results, like, for example, Kolmogorov’s celebrated “5/3 Law” for
the energy spectrum of turbulence.

Exercises.

Exercise 1.1. To scare the reader into acceptance of the intrinsic difficulty of
division, I refer to paper Division by three [10] by Peter Doyle and John Conway.
I quote their abstract:

We prove without appeal to the Axiom of Choice that for any
sets A and B, if there is a one-to-one correspondence between
3 × A and 3 × B then there is a one-to-one correspondence be-
tween A and B. The first such proof, due to Lindenbaum, was
announced by Lindenbaum and Tarski in 1926, and subsequently
‘lost’; Tarski published an alternative proof in 1949.

2By the way, this “lunch bag” approach to vectors allows a natural introduction of duality
and tensors: the total cost of a purchase of amounts g1, g2, g3 of some goods at prices p1, p2, p3

is a “scalar product”-type expression
∑

gip
i. We see that the quantities gi and pi could be of

completely different nature. The standard treatment of scalar (dot) product in undergraduate
linear algebra usually conceals the fact that dot product is a manifestation of duality of vector
spaces, creating immense difficulties in the subsequent study of tensor algebra.

5 c© 2008 Alexandre V. Borovik
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Here, of course, 3 is a set of 3 elements, say, {0, 1, 2}. An exercise for the reader:
prove this in a naive set theory with the Axiom of Choice.

Exercise 1.2. Theoretical physicists occasionally love to use a system of mea-
surements based on fundamental units:

• speed of light c = 299, 792, 458 meters per second,
• gravitational constant G = (6.67428± 0.00067)× 10−11 m3kg−1s−2 and
• Planck’ constant h = 6.62606896× 10−34 m2kg · s−1.

Express the more common physical units: meter, kilogram, second in terms of c,
G, h.

2. The triumph of “named numbers”: Kolmogorov’s “5/3” Law

To demonstrate the power of “named numbers”, I reproduce what remains
the most striking and beautiful example of dimensional analysis in mathematics.
The deduction of Kolmogorov’ seminal “5/3” law for the energy distribution in the
turbulent fluid [14] is so simple that it can be done in a few lines. I was lucky to
study at a good secondary school where my physics teacher (Anatoly Mikhailovich
Trubachov, to whom I express my eternal gratitude) derived the “5/3” law in one
of his improvised lectures. In my exposition, I borrow some details from Arnold [2]
and Ball [3] (where I have also picked the idea of using a woodcut by Katsushika
Hokusai, Figure 3, as an illustration).

Figure 3. Multiple scales in the motion of a fluid, from a woodcut

by Katsushika Hokusai The Great Wave off Kanagawa (from the series

Thirty-six Views of Mount Fuji, 1823–29). This image is much beloved

by chaos scientists. Source: Wikipedia Commons. Public domain.
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2.1. Turbulent flows: basic setup. The turbulent flow of a liquid consists
of vortices; the flow in every vortex is made of smaller vortices, all the way down the
scale to the point when the viscosity of the fluid turns the kinetic energy of motion
into heat (Figure 3). If there is no influx of energy (like the wind whipping up
a storm in Hokusai’s woodcut), the energy of the motion will eventually dissipate
and the water will stand still. So, assume that we have a balanced energy flow, the
storm is already at full strength and stays that way. The motion of a liquid is made
of waves of different lengths; Kolmogorov asked the question, what is the share of
energy carried by waves of a particular length?

Here it is a somewhat simplified description of his analysis. We start by making
a list of the quantities involved and their dimensions. First, we have the energy
flow (let me recall, in our setup it is the same as the dissipation of energy). The
dimension of energy is

mass · length2

time2

(remember the formula K = mv2/2 for the kinetic energy of a moving material
point). It will be convenient to make all calculations per unit of mass. Then the
energy flow ε has dimension

energy
mass · time

=
length2

time3

For counting waves, it is convenient to use the wave number, that is, the number of
waves fitting into the unit of length. Therefore the wave number k has dimension

1
length

.

Finally, the energy spectrum E(k) is the quantity such that, given the interval
∆k = k1−k2 between the two wave numbers, the energy (per unit of mass) carried
by waves in this interval should be approximately equal to E(k1)∆k. Hence the
dimension of E is

energy
mass · wavenumber

=
length3

time2 .

2.2. Subtler analysis. To make the next crucial calculations, Kolmogorov
made the major assumption that amounted to saying that3

The way bigger vortices are made from smaller ones is the same
throughout the range of wave numbers, from the biggest vortices
(say, like a cyclone covering the whole continent) to a smaller one
(like a whirl of dust on a street corner).

Then we can assume that the energy spectrum E, the energy flow ε and the
wave number k are linked by an equation which does not involve anything else.
Since the three quantities involved have completely different dimensions, we can
combine them only by means of an equation of the form

E(k) ≈ Cεx · ky.

Here C is a constant; since the equation should remain the same for small scale and
for global scale events, the shape of the equation should not depend on the choice
of units of measurements, hence C should be dimensionless.

3This formulation is a bit cruder than most experts would accept; I borrow it from Arnold [2].
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Let us now check how the equation looks in terms of dimensions:

length3

time2 =
(

length2

time3

)x

·
(

1
length

)y

.

After equating lengths with lengths and times with times, we have

length3 = length2x · length−y

time2 = time3x,

which leads to a system of two simultaneous linear equations in x and y,

3 = 2x− y

2 = 3x

This can be solved with ease and gives us

x =
2
3

and y = −5
3
.

Therefore we come to Kolmogorov’s “5/3” Law :

E(k) ≈ Cε2/3k−5/3.

We have done it!
It is claimed in the specialist literature that the dimensionless constant C can

be determined from experiments and happens to be pretty close to 1.

2.3. Discussion. The status of this celebrated result is quite remarkable. In
the words of an expert on turbulence, Alexander Chorin [7],

Nothing illustrates better the way in which turbulence is suspended
between ignorance and light than the Kolmogorov theory of tur-
bulence, which is both the cornerstone of what we know and a
mystery that has not been fathomed.

The same spectrum [. . . ] appears in the sun, in the oceans, and
in manmade machinery. The 5/3 law is well verified experimentally
and, by suggesting that not all scales must be computed anew in
each problem, opens the door to practical modelling.

Arnold [2] reminds us that the main premises of Kolmogorov’s argument remain
unproven—after more than 60 years! Even worse, Chorin points to the rather
disturbing fact that

Kolmogorov’s spectrum often appears in problems where his as-
sumptions clearly fail. [. . . ] The 5/3 law can now be derived
in many ways, often under assumptions that are antithetical to
Kolmogorov’s. Turbulence theory finds itself in the odd situa-
tion of having to build on its main result while still struggling
to understand it.

2.4. History of dimensional analysis. It would be interesting to have an
account of the history of dimensional analysis. It can be traced back at least to
Froude’s Law of Steamship Comparisons used to great effect in D’Arcy Thompson’s
book On Growth and Form [21, p. 24] for the analysis of speeds of animals:

the maximal speed of similarly designed steamships is propor-
tional to the square root of their length.

8 c© 2008 Alexandre V. Borovik
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William Froude (1810–1879) was the first to formulate reliable laws for the
resistance that water offers to ships and for predicting their stability. And here is
the deduction for his law adapted from [21, p. 24].

We use the property of that, at small speeds, the drag F (force of resistance)
offered by water to the ship is proportional to the area of cross section of the ship
(and hence to the square L2 of its typical linear size L) and to the velocity V of
the ship. We shall write it symbolically as

F ∼ L2V.

To sustain constant speed, the ship has to produce power FV . Now we have to
recall that we are talking about steamships, powered by an engine inside, this engine
being fed by coal, carried by the ship, etc. Therefore it is reasonable to assume
that the power produced by the ship is proportional to its volume, and therefore

FV ∼ L3.

Combining the two proportions together, we have

L2V 2 ∼ L3

and therefore
V ∼ L1/2.

D’Arcy Thompson applied the same derivation to fish because of the validity of the
principal assumption: the energy is produced internally.

Exercises.

Exercise 2.1. How would Froude’s Law look for solar powered ships?

Exercise 2.2. Why does a mouse have (relatively) slimmer body build than
an elephant?

Exercise 2.3. Prove the following corollary of Froude’s Law:
The relative speed of a fish (that is, speed measured in numbers
of its lengths covered by the fish per unit of time) is inverse
proportional to the square root of its length.

This explains a well-known phenomenon: little fish in a stream appear to be very
quick.

Exercise 2.4. Estimate, who is relatively faster: an ant or a racehorse?

Exercise 2.5. Analyse the following quote from Greenhill [12, p. 233]:
Thus treating a man’s leg as swinging like a pendulum through
a fixed definite angle, the length of a pace is proportional to
his height, but the number of paces a minute is inversely as the
square root of the height; so that his pace of walking and getting
over the ground will vary as the square root of his height, as in
Froude’s Law again.

Using dimensional analysis, prove:
• the number of swings of a pendulum a minute is inversely as the square

root of the length of the pendulum;
and use this fact to derive Greenhill’s conclusion:

9 c© 2008 Alexandre V. Borovik
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Figure 4. Walking on stilts increases speed (for Exercise 2.5).

• his pace of walking and getting over the ground will vary as the square
root of his height (or of length of legs, see Figure 4).

Investigate further:

• how do the frequency of a pendulum’s swings and the pace of a man’s
walking depend on the acceleration of gravity? (Read more on that in
[22].)

Exercise 2.6. Building on ideas from Exercise 2.2, develop a method for esti-
mation of a maximal possible height of a tree of given species.

The problem is of serious practical value. To explain it to an Englishman, you
have to mention just one word: Leylandii. For a foreigner, Wikipedia provides an
explanation:

The Leyland Cypress, X Cupressocyparis leylandii, is often re-
ferred to as just Leylandii. It is a fast-growing evergreen tree
much used in horticulture, primarily for hedges and screens.

The Leyland Cypress is a hybrid between the Monterey Cy-
press, Cupressus macrocarpa, and the Nootka Cypress, Cupres-
sus nootkatensis. The hybrid has arisen on nearly 20 separate
occasions, always by open pollination. [. . . ]

Leyland Cypresses are commonly planted in gardens to pro-
vide a quick boundary or shelter hedge. However, their rapid
growth (up to a metre per year), heavy shade and great poten-
tial height (often over 20 m tall in garden conditions, they can
reach at least 35 m) make them a problem. In Britain they have
been the source of a number of high profile disputes between
neighbours, even leading to violence (and in one recent case,
murder), because of their capacity to cut out light.

The problem is that no-one knows the maximal height of some of the latest hybrids—
all known specimens continue to grow. . .

10 c© 2008 Alexandre V. Borovik



Metamathematics 1–2 Nesin Mathematics Village, Şirince, 23 Jul 2008

Figure 5. X Cupressocyparis leylandii, 35 meters and still growing.

3. Adding one by one

My colleague EHK4 told me about a difficulty she experienced in her first
encounter with arithmetic, aged 6. She could easily solve “put a number in the
box” problems of the type

7 + ¤ = 12,

by counting how many 1’s she had to add to 7 in order to get 12 but struggled with

¤ + 6 = 11,

because she did not know where to start. Worse, she felt that she could not com-
municate her difficulty to adults. Her teacher forgot to explain to her that addition
was commutative.

Another one of my colleagues, AB5, told me how afraid she was of subtraction.
She could easily visualise subtraction of 4 from 100, say, as a stack of 100 objects;

4For the record: EHK is female, has a PhD in Mathematics, teaches mathematics at a highly
selective secondary school.

5AB is female, has a PhD in Mathematics, teaches mathematics in a research-led university.

11 c© 2008 Alexandre V. Borovik
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after removing 4 objects from the top (by reverse counting: 100, 99, 98, 97), 96 are
left. But what happens if we remove 4 objects from the bottom of the stack?

A brief look at axioms introduced by Dedekind (but commonly called Peano
axioms) provides some insight in EHK’s and AB’s difficulties.

3.1. Dedekind-Peano axioms. Recall that the Dedekind-Peano axioms de-
scribe the properties of natural numbers N in terms of a “successor” function S(n).
(There is no canonical notation for the successor function, in various books it is
denoted s(n), σ(n), n′, or even n++, as in popular computer languages C and C++.)

Axiom 1: 1 is a natural number.
Axiom 2: For every natural number n, S(n) is a natural number.

Axioms 1 and 2 define a unary representation of the natural numbers: the number
2 is S(1), and, in general, any natural number n is

Sn−1(1) = S(S(· · ·S(1) · · · )) (n− 1 times).

As we shall soon see, the next two axioms deserve to be treated separately; they
define the properties of this representation.

Axiom 3: For every natural number n other than 1, S(n) 6= 1. That is,
there is no natural number whose successor is 1.

Axiom 4: For all natural numbers m and n, if S(m) = S(n), then m = n.
That is, S is an injection.

The final axiom (Axiom of Induction) has a very different nature and is best un-
derstood as a method of reasoning about all natural numbers.

Axiom 5: If K is a set such that:
• 1 is in K, and
• for every natural number n, if n is in K, then S(n) is in K,

then K contains every natural number.
Thus, Dedekind-Peano arithmetic is a formalisation of that very counting by one
that little EHK did, and addition is defined in precisely the same way as EHK
learned to do it: by a recursion

m + 1 = S(m)
m + S(n) = S(m + n).

Commutativity of addition is a non-trivial (although still accessible to a beginner)
theorem. To force you to feel some sympathy to poor little EHK and to poor little
AB, I will prove it to you in the next section.

3.2. A brief digression: is 1 a number? Having postponed more serious
work, we can spend a few minutes discussing Axiom 1: 1 is a natural number.

Even this axiom is not self-evident as it appears to be. In many languages,
including English, the word ‘number’ can denote some collection or ensemble of
objects with tacit understanding that it contains at least a few, and in any case
more than one, objects. For example, a phrase

“A number of people feel that 1 is not a number”
makes sense and means that more than one person thinks that 1 is not a number.
Such usage reflects an earlier stage of development of the system of numerals when
1 was not a number; numbers were made of ones, of basic units; but one is not
made of ones.

12 c© 2008 Alexandre V. Borovik
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Figure 6. Guido Reni. A fragment of ??? Musée du Louvre.
Source: Wikipedia Commons. Public domain.

What is very important for history of mathematics, it appears that, for similar
reasons, 1 was not a number for ancient Greek mathematicians, as evidenced in
Euclid’s Elements by careful separation of the use of words ‘number’ and ‘unit’.

And, as a digression within digression, I want to mention the issue of collective
nouns—I shall discuss them again in later lectures, so the present deviation is not
waste of time. The English language has a peculiar tendency to form or find a
special word to denote groups of particular animals. For example, Englishmen say

a herd of cows,
a flock of sheep,
a pack of dogs,
a school of fish.

To illustrate how far things go, it will suffice to mention that ducks, while on water,
form a paddling, while in flight they are a flush. Some nouns are absolutely obscure;
for example, I found in Wikipedia a sedge of bitterns, but I do not even know what
bitterns are.

Invention of collective nouns for groups of people from various professional
groups is a popular genre of English humor; to my taste,

a number of mathematicians

appears to be one of the more obvious solutions.

4. Properties of addition

There are several alternative forms of notation for the successor function: S(n),
s(n), σ(n), n′ and even n++, the latter used in programming languages C and

13 c© 2008 Alexandre V. Borovik
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C++. I shall use notation n′; as the reader will soon see, it is very convenient—
and natural—to write a symbol for the successor function after the number that
has to be incremented.

In this new notation, the recursive rule for addition looks like

n + 1 = n′(4)
n + m′ = (n + m)′.(5)

I will also use Axiom 5 in a more conventional form, obviously equivalent to
the original one.

Axiom 5: Assume that a certain statement about numbers If K is a set
such that:
• the statement is true for 1 (Basis of Induction)
• if the statement is true for a natural number n (Inductive Assump-

tion) then it is true for the next number n′ (Inductive Step).
Then the statement is true for all natural numbers.

I will prove two canonical properties of addition.

4.1. Associativity of addition.

Theorem 4.1. Assume that + is a binary operation which satisfies conditions
(4) and (5). Then + is associative, that is,

(a + b) + c = a + (b + c)

for all a, b, c.

Proof. The proof will use induction on c.
Basis of Induction.

(a + b) + 1
by (4)

= (a + b)′

by (5)
= a + b′

by (4)
= a + (b + 1).

Inductive Assumption:

(a + b) + c = a + (b + c).

Inductive Step.

(a + b) + c′
by (5)

= ((a + b) + c)′

by inductive
assumption

= (a + (b + c))′

by (5)
= a + (b + c)′

by (5)
= a + (b + c′).

¤
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4.2. Commutativity of addition. We shall start with a very special, but
crucially important case.

Theorem 4.2. Assume that + is a binary operation which satisfies conditions
(4) and (5). Then

1 + a = a + 1
for all a.

Proof. We shall prove the theorem by induction on a.
Basis of Induction.

1 + 1 = 1 + 1.

There is nothing to prove here.
Inductive Assumption:

1 + a = a + 1.

Inductive Step.

1 + a′
by (5)

= (1 + a)′

by inductive
assumption

= (a + 1)′

by (4)
= (a′)′

by (4)
= a′ + 1.

¤
Theorem 4.3. Assume that + is a binary operation which satisfies conditions

(4) and (5). Then + is commutative, that is,

a + b = b + a

for all a and b.

Proof. We shall prove the theorem by induction on b.
Basis of Induction: Theorem 4.2.
Inductive Assumption:

a + b = b + a.

Inductive Step.

a + b′
by (5)

= (a + b)′

by inductive
assumption

= (b + a)′

by (4)
= (b + a) + 1

by Theorem 4.1
= b + (a + 1)

by Theorem 4.2
= b + (1 + a)

by Theorem 4.1
= (b + 1) + a

by (4)
= b′ + a.

¤
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5. Dark clouds

Notice that I was careful to formulate Theorems 4.1–4.3 in the most cautious
way, by emphasising their conditional nature:

if + is a binary operation which satisfies conditions (4) and (5)
then . . .

The reason for my restraint is that writing does not mean to define a function. If
you look at the proofs of Theorems 4.1–4.3, you notice that they do not refer to
Axioms 3 and 4 and are based entirely on the Induction Axiom, Axiom 5.

David Pierce [20] makes an incisive comment:
Indeed, if one thinks that the recursive definitions of addition and
multiplication—

n + 0 = n,

n + (k + 1) = (n + k) + 1;

n · 0 = 0,

n · (k + 1) = n · k + n

—are obviously justified by induction alone, then one may think the
same for exponentation, with

n0 = 1

nk+1 = nk · n.

However, while addition and multiplication are well-defined on Z/nZ
(which admits induction), exponentiation is not; rather, we have

(x, y) 7→ xy

(Z/nZ)∗ × Z/φ(n)Z → Z/nZ,

where (Z/nZ)∗, as usual, denotes the group of invertible elements of the residue
ring Z/nZ.

Indeed, the recursive definition of exponentiation fails in Z/3Z:

n n2 n3 n3 × n n4

2 1 2 1 2
but holds in Z/6Z:

n n2 n3 n4 n5 n6 n7

1 1 1 1 1 1 1
2 4 2 4 2 4 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 1 5 1 5 1 5
6 6 6 6 6 6 6

The former is an exception rather than rule, as clarified by David Pierce’s
theorem.

Theorem 5.1. David Pierce [20]) The identities

(6) a1 = a, ab+1 = ab × a

hold on Z/nZ if and only if n ∈ {0, 1, 2, 6}.
I share David Pierce’s indignation at the sate of affairs [20]:
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Yet the confusion continues to be made, even in textbooks intended
for students of mathematics and computer science who ought to be
able to understand the distinction. Textbooks also perpetuate related
confusions, such as suggestions that induction and ‘strong’ induction
(or else the ‘well-ordering principle’) are logically equivalent, and that
either one is sufficient to axiomatize the natural numbers. [. . . ]

This is one example to suggest that getting things straight may
make a pedagogical difference.

But I have to admit that I shared the widespread ignorance until David Pierce
brought my attention to the issue—despite the fact that, in a calculus course that
I took in the first year of my university studies, the lecturer (Gleb Pavlovich Ak-
ilov) explicitly proved the existence of a function of natural argument defined by a
recursive scheme [1].

To save our theory from collapse, in the next section we shall prove the existence
of addition.

Exercises.

Exercise 5.1. Prove Theorem 5.1 for prime values of n. You may wish to use
Fermat’s Theorem:

If p is a prime integer and 0 < a < p < then

ap ≡ a mod p.

Exercise 5.2. Then try to prove Theorem 5.1 in full generality.

6. Landau’s proof of the existence of addition

I decide to borrow verbatim a proof of the existence of addition from Edmund
Landau’s famous book Grundlagen der Analysis [17]. Also, I picked up from his
book notation

S(n) = n′

which I had already used in my proofs. Although this is not emphasised by Landau,
the proof of consistency of addition is not using Axioms 3 and 4. Are these axioms
of any use at all? We shall return to this question later.

Theorem 6.1. [17, Theorem 4] To every pair of numbers x, y, we may assign
in exactly one way a natural number, called x + y, such that

(1) x + 1 = x′ for every x,
(2) x + y′ = (x + y)′ for every x and every y.

Proof. (A) First we will show that for each fixed x there is at most one
possibility of defining x + y for all y in such a way that x + 1 = x′ and
x + y′ = (x + y)′ for every y.

Let ay and by be defined for all y and be such that

a1 = x′, b1 = x′, ay′ = (ay)′, by′ = (by)′ for every y.

Let M be the set of all y for which

ay = by.

(I) a1 = x′ = b1; hence 1 belongs to M.
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(II) If y belongs to M, then ay = by, hence by Axiom 2,

(ay)′ = (by)′,

therefore
ay′ = (ay)′ = (by)′ = by′ ,

so that y′ belongs to M.

Hence M is the set of all natural numbers; i.e. for every y we have ay = by.

(B) Now we will show that for each x it is actually possible to define x+ y for
all y in such a way that

x + 1 = x′ and x + y′ = (x + y)′ for every y.

Let M be the set of all x for which this is possible (in exactly one way, by (A)).
(I) For x = 1, the number x + y = y′ is as required, since
x + 1 = 1′ = x′,
x + y′ = (y′)′ = (x + y)′.
Hence 1 belongs to M.
(II) Let x belong to M, so that there exists an x+y for all y. Then the number

x′ + y = (x + y)′ is the required number for x′, since

x′ + 1 = (x + 1)′ = (x′)′

and
x′ + y′ = (x + y′)′ = ((x + y)′)′ = (x′ + y)′.

Hence x′ belongs to M. Therefore M contains all x. ¤

Landau’s book is characterised by a specific austere beauty of entirely formal
axiomatic development, dry, cut to the bone, streamlined. Not surprisingly, it is
claimed that logical austerity and precision were Landau’s characteristic personal
traits.6

Grundlagen der Analysis opens with two prefaces, one intended for the student
and the other for the teacher; we already quoted Preface for the Teacher, it is a
remarkable pedagogical document. The preface for the student is very short and
begins thus:

1. Please don’t read the preface for the teacher.
2. I will ask of you only the ability to read English and to think

logically-no high school mathematics, and certainly no higher
mathematics. [...]

3. Please forget everything you have learned in school; for you
haven’t learned it.
Please keep in mind at all times the corresponding portions of
your school curriculum; for you haven’t actually forgotten them.

4. The multiplication table will not occur in this book, not even
the theorem,

2× 2 = 4,

6Asked for a testimony to the effect that Emmy Noether was a great woman mathematician,
Landau famously said: “I can testify that she is a great mathematician, but that she is a woman,
I cannot swear.”
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but I would recommend, as an exercise for Chap. I, section 4,
that you define

2 = 1 + 1,

4 = (((1 + 1) + 1) + 1),

and then prove the theorem.

Exercises.

Exercise 6.1. Follow Edmund Landau’s advise and prove from the axioms of
Peano arithmetic that

2× 2 = 4.

7. Numbers in computer science

I quote a professional computer scientist who left the following comment on my
blog:

I would caution everyone . . . not to confuse “mathematical think-
ing” with “The thinking done by computer scientists and program-
mers”.

Unfortunately, most people who are not computer scientists
believe these two modes of thinking to be the same.

The purposes, nature, frequency and levels of abstraction com-
monly used in programming are very different from those in math-
ematics.

I would like to illustrate the validity of these words on a very simple example.
Let us look at a simple calculation with MATLAB, an industry standard soft-

ware package for mathematical computations.
>> t= 2

t = 2

>> 1/t

ans = 0.5000

What is shown in this screen dump is a basic calculation which uses floating
point arithmetic for computations with rounding.

Next, let us make the same calculation with a different kind of integers:
>> s=sym(’2’)

s = 2

>> 1/s

ans = 1/2

Here we use “symbolic integers”, designed for use as coefficients in symbolic expres-
sions.

Next, let us try to combine the two kinds of integers in a single calculation:
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>> 1/(s+t)

ans = 1/4

We observe that the sum s + t of a floating point number t and a symbolic integer
s is a symbolic integer.

Examples involving analytic functions are even more striking:
>> sqrt(t)

ans = 1.4142

>> sqrt(s)

ans = 2^(1/2)

>> sqrt(t)*sqrt(s)

ans = 2

We see that MATLAB can handle two absolutely different representations of inte-
gers, remembering, however, the intimate relation between them.

The example above is written in C++. When represented in C++, even the
simplest mathematical objects and structures appear in the form of (a potentially
infinite variety of) classes linked by mechanisms of inheritance and polymorphism.
This is a manifestation of one of the paradigms of the computer science: if math-
ematicians instinctively seek to build their discipline around a small number of
“canonical” (actually) infinite structures, computer scientists frequently prefer to
work with a host of similarly looking structures. We shall look in the next lectures
how they keep control of their bestiary. For a time being, we have to notice that
Dedekind-Peano axioms allow for a variety of realisations.
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