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PRELIMINARIES

1. Sets and Mappings

2. Sequences and Subsequences

0.1 Sets and Mappings

Let X be any set, by 2X we denote the set of all subsets of X. A ⊆ X ⇔ A ∈ 2X .

If A ⊆ X by AC we shall denote the complement of A in X.

AC = {x ∈ X, x /∈ A} = X − A

Now let I be an index set. Suppose that for each α ∈ I, we have a set Aα.

Then the collection of Aα, α ∈ I is said to be a family of sets.

For such a family, if I �= ∅ , for α ∈ I, ∪Aα and ∩Aα are defined by:

∪Aα = {x : ∃α ∈ I 	 x ∈ Aα}

∩Aα = {x : ∀α ∈ I 	 x ∈ Aα}
Now suppose that Aα ⊆ X . Then,

(∪Aα)C = ∩AC
α

(∩Aα)C = ∪AC
α

(De Morgan’s Law)

Now let Y be another set and f : X → Y be a mapping.

1
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For any A ⊆ X we define the direct image of A under f by

f (A) = {y ∈ Y : y = f (x) for some x ∈ A}

For any B ⊆ X,we define the inverse image of B under f by

f−1 (B) = {x ∈ X : f(x) ∈ B}

Example 0.1.1 : If X = Y = R, f(x) = sin x,

B = {0} , f−1 (B) = {x ∈ R:f(x) = 0} = πZ

Example 0.1.2 if X = Y = R, f(x) = x2, f−1([0,∞[) = {x ∈ R : f(x) ∈ [0,∞[}

Properties: Let (Aα)α∈I be a family of subsets of X and f : X → Y be any mapping, then:

1. f (∪α∈IAα) = ∪α∈If (Aα)

2. f (∩α∈IAα) ⊆ ∩α∈If (Aα)

Example 0.1.3 (for property 2): Let X = R2, Y = R and if f : R2 → R, f((x, y)) = x (the
first projection)

Let A1 = {(x, x) : x ∈ R} , A2 = {(x, 2x) : x ∈ R}
Now, f(A1) = R on the other hand, f(A2) = R. But A1 ∩ A2 = {(0, 0)}

f (A1 ∩ A2) = 0 �= f(A1) ∩ f(A2) = R

Proposition 0.1.4 Let f : X → Y be a mapping and {Bα}α∈Ibe a family of subsets of Y .
Then:

1. f−1 (∪α∈IBα) = ∪α∈If
−1(Bα)

2. f−1 (∩α∈I) Bα = ∩α∈If
−1(Bα)

Proposition 0.1.5 Let f : X → Y be a mapping. A ⊆ X , B ⊆ Y two sets.
Then:

1. f−1(f(A)) ⊇ A (Equality holds if f is 1-to-1)

2. f (f−1 (B)) ⊆ B (Equality holds if f is onto)

Example 0.1.6 Let f : R → R , f(x) = sin x Take A = {π} =⇒ f(A) = 0
f−1({0}) = πZ ⊃ A
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Example 0.1.7 Let f : R → R , f(x) = x2

B = [0, +∞[ =⇒ f−1(B) = R
Then f (f−1 (B)) = f(R) = B

Example 0.1.8 Let f : R → R , f(x) = sin x Let B = {0, 2} f−1(B) = πZ
f (f−1(B)) = f(πZ) = {0} ⊂ {0, 2}

Remark: Let f : X → Y be a mapping.

If A ⊆ X =⇒ f(Ac) �= f(A)c (= if f is bijective)

But for B ⊆ Y f−1(Bc) = f−1(B)C

0.2 Sequences and Subsequences

The set N = {1, 2, ....} is the set of the positive integers.

Definition 0.2.1 Let X be any set, X �= Ø. Any mapping Γ : N → X is said to be a
sequence in X.

Let for each n ∈ N , xn = Γ(n). Then instead of Γ(n) we usually write (xn)n∈N and say
that (xn)n∈N is a sequence in X.

The set Γ (N) = {xn : n ∈ N} ⊆ X is the range of Γ.

Remark: Do not confuse Γ which is a mapping with its range. It is a set !

Example 0.2.2 Let X = R, Γ : N → R

Γ(n) = n2 Γ(n) = n Γ(n) = ln(n + 1) Sequences in R.

0.2.1 Infinite subsets of N

Let � =
{
F ∈ 2N : F is an infinite set

}
. What is card�?

Let p & q be two prime numbers, (p �= q), then ∀n,m ∈ N \ {0} , pn �= qm (∗)

Let p0, p1, p2, . . . , pk, . . . be distinct prime numbers.

Let for each k = 0, 1, 2, . . . , Fk =
{
pn+1

k : n ∈ N
}
. If pk = 2 =⇒ Fk = {2,22,23, . . . .}

Hence (∗) shows that for i �= j, Fi ∩ Fj = ∅. Moreover, each Fi is an infinite set.
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Let also �0 = {A ∈ 2n : A is finite}

�0 ∩ � = ∅

�0 ∪ � = 2N

Proposition 0.2.3 �0 is countable.

Proof 0.2.4 For every n ∈ N, Nn = N × N × N× · · ·×N is a countable set.

So, Y = ∪n∈NNn is also countable.

Now we define a mapping f : �0 → Y as follows:

Let A ∈ �0. So A is of the form: A = {n1, n2, n3, . . . , nk, . . .}

f(A) = (n1, n2, . . . , nk) ∈ Nk. Clearly f is 1 − to − 1. As Y is countable , so is �0.

Conclusion: The set �is uncountable.
Thus in N there are uncountably many infinite subsets.

Definition 0.2.5 A mapping Γ : N → N is said to be strictly increasing if whenever
n < m we have Γ(n) < Γ(m)

Example 0.2.6 Let
Γ : N → N, Γ(n) = 2n
Γ : N → N, Γ(n) = 3n + 1
Γ : N → N, Γ(n) = n2 + n + 1

are strictly increasing mappings.

Question: How many strictly increasing mappings Γ : N → N do we have?

*If Γ : N → N is strictly increasing, then the set � = Γ(N) is an infinite set.

**Now let � ⊆ N be an infinite set. So � is of the form � = {n0, n1, ....} with n0 <
n1 < n2 < . . .

To �, we associate the mapping Γ : N → N ,Γ(k) = nk so that Γ(N) = �.

The above two points “*” and “**” show that there are uncountably many strictly increasing
mappings.
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0.2.2 Subsequences of a Given Sequence

Definition 0.2.7 Let Γ : N → X be any sequence and Ψ : N → N be a strictly increasing
mapping. Γ◦Ψ : N → X is also a sequence. The sequence Γ◦Ψ is said to be a subsequence
of Γ.

Hence any sequence Γ has uncountably many subsequences.

Practical notation for subsequences: Let Γ = (xn)n∈N be a sequence. (Γ : N → X,
xn = Γ(n))

Let Ψ : N → N be a strictly increasing mapping.

Let nk = Ψ(k) so that n0 < n1 < n2 < . . . < nk < . . . then, Γ ◦ Ψ(k) = xnk
, and

k → ∞ =⇒ nk → ∞

So, (xnk
)k∈N is a subsequence of (xn)n∈N

If we put yk = xnk
is a sequence of its own , i.e. (yk)k∈N is a sequence.

So, if (xn)n∈N is a sequence in a set and n0 < n1 < n2 < . . . < nk are given integers.

Taking yk = xnk
we obtain a new sequence (yk)k∈N. This later sequence is said to be a

subsequence of (xn)n∈N .

Observe that {xn0 , xn1 , xn2 , .........} ⊆ {x0,x1,x2........}

Example 0.2.8 If X = R, xn = 1
n2+1 and n0 < n1 < n2 < . . . < nk < . . . is any sequence

of integers.

yk = 1
(nk)2+1 , is a subsequence of xn.

So, for instance, if nk = 3k + 5 ⇒ n0 = 5, n1 = 8, n2 = 11,. . .

then, xnk
=

1

(3k + 5)2 + 1
and it takes such values for given nk’s.
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x0 = 1 xn0 =
1

26

x1 = 1
2

xn1 =
1

65

x2 = 1
5

xn2 =
1

122

Example 0.2.9 • Consider the sequence (xn)n∈N that goes as follows:

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, . . .

Give at least three subsequences of that sequence.

1. x0 → xn0

2. x5 → xn1

3. x10 → xn2

• For the sequence xn = (−1)n Find at least three subsequences.

(x2n)n∈N is a subsequence

(x2n+1)n∈N is a subsequence

(x3n+2)n∈N is a subsequence

Remark:

• Let (xn)n∈N be a sequence in X. If x0 = x1 = x2 = . . . = xk = . . ., then we say that,
(xn)n∈N is a constant sequence.

• If there exists N ∈ N 	 ∀n ≥ N, xN = xn = xn+1 = . . . then we say, (xn)n∈Nis almost
constant.
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0.2.3 Exercises I

The letters X,Y, Z will denote sets and the letters f, g, h will denote the mappings.

1. Let (Aα)α∈I be a family in 2X and A ∈ 2X .

Show that (∪α∈IAα)\A = ∪α∈I(Aα\A) and A\(∪α∈IAα) = ∩α∈I(A\Aα).

2. Let (An)n∈N be a sequence of sets. Let B0 = A0, B1 = A1\A0, ..., Bn = An\∪k<nAk, ...

Show that the sets Bn are pairwise disjoint, ∪k≤nBk = ∪k≤nAk and ∪n∈NBn = ∪n∈NAn.

Deduce from this another proof of the fact that the countable union of countably many
sets is at most countable.

3. Prove that f : X → Y , is one-to-one iff it is left invertible, i.e. there exists a mapping
g : Y → X such that g ◦ f = IX .

Show that such g is onto.

4. Prove that f : X → Y , is onto iff it is right invertible, i.e. there exists a mapping
g : Y → X such that f ◦ g = IY .

Show that such a g is one-to-one.

5. Let f : X → Y be a mapping. Let F : 2X → 2Y be the mapping defined by

F (A) = f(A).

Show that F is one-to-one (onto) iff f is one-to-one (onto).

6. Let f : X → Y and g : Y → Z be two mappings. Show that

(a) If g ◦ f is one-to-one, then f is one-to-one.

(b) If g ◦ f is onto, then g is onto.

(c) If g ◦ f is onto and g is one-to-one, then f is onto.

(d) If g ◦ f is one-to-one and f is onto, then g is one-to-one.

7. Let f and g be as in 6. If f and g are both bijective, then show that g ◦ f is bijective
and (g ◦ f)−1 = f−1 ◦ g−1.

8. If f : X → Y , and g : X → Z, are such that the implication

(g(x) = g(y) ⇒ f(x) = f(y)) holds, then show that there exists a mapping

h : Z → Y , such that h ◦ g = f .

9. If f : Z → X is a mapping and g : Y → X is a one-to-one mapping, then show that,

there exists a mapping h : Z → Y such that f = g ◦ h iff f(Z) ⊆ g(Y ).
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10. For A ⊆ X, let χA : X → {0, 1} be the mapping defined by χA(x) =

{
1 if x ∈ A
0 if x /∈ A

Show that the following holds.

(a) χA = 0 iff A = ∅.
(b) χA = 1 iff A = X.

(c) χA = χB iff A = B.

(d) χA∪B = χA + χB − χA × χB and χA∩B = χA × χB.

(e) χAc = 1 − χA.

(f) χA∆B = |χA − χB|, where A∆B = (A\B) ∪ (B\A).

(g) χA∆B = χA + χB (mod 2)

11. Let F (X; {0, 1}) be the set of the mappings f : X → {0, 1}.
Show that there exists a bijection between the sets F (X; {0, 1}) and 2X .

12. Let S be the set of all the sequences in the set {0, 1}. Show that the set S is uncount-
able.

13. Let F = {A ∈ 2N : both A, and Ac, are infinite}. Show that the set F is uncountable.

14. Suppose that the sets X and Y are infinite and f : X → Y is an onto mapping such
that, for each y ∈ Y , the set f−1({y}) is countable.

Show that then Card(X) = Card(Y ).

15. Let F = {A ∈ 2N : A �= ∅ and finite}. Let ϕ : F → N, ϕ(A) =
∑
n∈A

n.

Show that ϕ is onto and that, for each n ∈ N (n ≥ 1), the set ϕ−1(n) is finite.

From this deduce another proof of the fact that F is countable.

16. Suppose that X is infinite and F is the set of the finite subsets of X. Show that
Card(X) = Card(F ).

17. Show that A is infinite iff it has a proper subset B such that Card(A) = Card(B).

18. Let p1, p2, . . . be prime numbers. Let Fk = {(pk)
n+1 : n ∈ N}.

Show that the sets F1, F2, ... are infinite and pairwise disjoint.

Deduce that any sequence (xn)n∈N in a set X has infinitely many subsequences with
pairwise disjoint index sets.

19. Let A0, A1, ... be nonempty subsets of X. Put A∗ = ∩n∈N∪k≥nAk and A∗ = ∪n∈N∩k≥nAk.
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(a) Show that A∗ ⊆ A∗ and that A∗ = A∗ if the sequence of the sets (An)n∈N is
monotone.

(b) Let x ∈ X be a given point. Show that

i. x ∈ A∗ iff x ∈ An for infinitely many n ∈ N.

ii. x ∈ A∗ iff x ∈ An for all but finitely many n ∈ N.

(c) Explain the difference between the sentences in 19(b)i and 19(b)ii.

20. Let (X,≤) be an ordered set such that for any two elements x, y in X, sup{x, y} and
inf{x, y} exist.

Let f : X → X be a mapping. Show that f is increasing iff f(inf{x, y}) ≤ inf f({x, y}),
for every x, y in X.

21. Let (xn, yn)(n,n)∈N×N be a sequence in X × X and A and B be two infinite subsets of
N.

Is the sequence (xk, yp)(k,p)∈A×B a subsequence of (xn, yn)(n,n)∈N×N?
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0.3 Some Notes:

Definition 0.3.1 Let X (�= ∅) be a set and ≤ be a binary relation in X.
≤ is said to be an order relation, if it is reflexive, antisymmetric, transitive.

The set X equipped with an order relation is said to be an ordered set.

Example 0.3.2 1. N, Z, Q, R are ordered under the usual “less than”, ≤.

2. Let E be any set and X = 2E

For A,B ∈ X let A � B iff A ⊆ B then, � is a n order relation on X, known as
inclusion relation.

3. Let X = F (N,N) be the set of all mappings: Γ : N→N.

We define a binary relation � on X as follows:

Γ ≤ Ψ iff Γ(n) ≤ Ψ(n) ∀ n ∈ N. Then ≤ is an order relation on N.

Definition 0.3.3 Now, let (X,�) be an ordered set and A ⊆ X, (A �= ∅).We say that,

1. A is bounded from above, if there is an m ∈ X 	 ∀a ∈ A, a � m.

Such an m is said to be an upper bound for A. Of course any m′ ∈ X, m � m′ is
also an upper bound.

For instance, Q and N are not bounded from above.

Now let A = {x ∈ Q, x2 � 2} Then, A is bounded from above.

2. A is bounded from below if ∃n ∈ X 	 ∀a ∈ A, n � a

In this case, n is said to be a lower bound for A. Of course any n′ � n is also a
lower bound for A.

For instance, N is bounded from below.

But Q and Z are not bounded from below.

3. A is bounded, if A ⊆ X is both bounded from above and below.

Hence, A is bounded if ∃n,m ∈ X, ∀x ∈ A, n � x � m

4. A has a greatest element if there is an element α ∈ A 	 ∀x ∈ X, x � α

A has a a smallest element if there is an element β ∈ A 	 ∀x ∈ A, β � x

Example 0.3.4 If X = Q, A = N then A has a smallest element namely β = 0 but it has
no greatest element.

If X = N, A ⊆ N A �= ∅ then A has a smallest element



0.3. SOME NOTES: 11

Definition 0.3.5 Let A ⊆ X be a set.We say that, A has a least upper bound

if ∃α ∈ X 	
{

i) ∀x ∈ A, x ≤ α

ii) ∀β ∈ Xsatisfying “ ∀x ∈ A, x ≤ β”, α ≤ β.

In this case ,we write, α = sup A or α = lubA

Thus, α = sup A ⇔
{

(1) ∀x ∈ A, x ≤ α

(2) ∀β ∈ X, if for all x ∈ A, x ≤ β then α ≤ β.

If X = Q, A = {x ∈ Q : x2 ≤ 2}. Does A have a least upper bound?

Definition 0.3.6 Let A ⊆ X we say that A has a greatest lower bound if

∃β ∈ X 	:

{
(i) ∀x ∈ A, x ≥ β,

(ii) ∀γ ∈ X satisfying “ ∀x ∈ A, x ≥ γ” γ ≤ β.

If A has a greatest element α, then α = sup A, conversely, if α = sup A and α ∈ A ⇒ α
is the greatest element of A.

Similarly, if A has a smallest element β then β = inf A.
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0.3.1 Exercises II

1. Find at least 3 different subsequences of the sequence

x0 x1 x2 x3 x4 .......................................
↓ ↓ ↓ ↓ ↓
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, ...

2. Find at least 2 different subsequences of the sequence

x0 x1 x2 x3 ......................
↓ ↓ ↓ ↓
1, 1

2
, 3, 1

4
, 5, 1

6
, 7, 1

8
, ...

3. Let x, y, z be 3 real numbers. Put x+ = max{x, 0} and x− = min{−x, 0}.
Prove the following:

(a) x = x+ − x−

(b) |x| = x+ + x−

(c) x + y = max{x, y} + min{x, y}
(d) sup{x, y} + z = sup{x + z, y + z}
(e) min{x, y} + z = min{x + z, y + z}
(f) x ≤ y iff x+ ≤ y+ and x− ≤ y−

(g) sup{x, y} = − inf{−x,−y}
(h) max{x, y} = max{x − y, 0} + y = (x − y)+ + y =

|x − y| + x + y

2
.

(i) min{x, y} = min{x − y, 0} + y = −(x − y)− + y =
x − y − |x − y|

2
.

4. Let X be an infinite set. Let F be the set of all the finite subsets of X.

Show that CardF = CardX.

5. Show that N contains infinitely many infinite sets A0, A1, ..., An, ... such that Ai∩Aj = ∅
for i �= j.

6. Let a = (a1, ..., an) ∈ Rn be a fixed element, 1 ≤ p < ∞ and ||x||p = [|a1|p + ... + |an|p]
1
p .

Show that limp→∞||a||p = max{|a1|, |a2|, ..., |an|}.
7. Let A and B be 2 nonempty subsets of R.

Let A + B = {a + b : a ∈ A, b ∈ B}, A × B = {a × b : a ∈ A, b ∈ B}. Show that

(a) if A and B are bounded from above (or below), then so are the sets A + B, A ×
B, A ∪ B, A ∩ B.
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(b) if A is bounded from above, then so is every nonempty subsets of A.

8. Let A and B be 2 nonempty subsets of R. Assume that both of them are bounded.
Show that

(a) if A ⊆ B, then sup A ≤ sup B and inf A ≥ inf B.

(b) sup(A + B) = sup A + sup B.

(c) sup{|a| × |b| : a ∈ A, b ∈ B} ≤ sup{|a| : a ∈ A} × sup{|b| : b ∈ B}.

Give an example showing that in 8c in general we do not have equality.
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Chapter 1

The Real Number System

1. Axiomatic definition and basic Properties of R

2. Convergence in R and monotone sequences

3. Bolzano-Weierstrass Theorem

4. Cauchy sequences

5. lim sup, lim inf

6. Elementary topology of R

“ God created the real numbers, we learn its properties.”

1.1 Axiomatic Definition and Basic Properties of R

There exists a set R called the set of real numbers, satisfying the following axioms:

Axiom 1.1.1 (Algebraic Structure) (R, +, .) is a field and it contains Q as a subfield.

We denote the natural element of R for + by 0.

The inverse for x �= 0 for multiplication by
1

x
, for addition by −x.

Axiom 1.1.2 (Order Structure) There exists an order relation on (R,≤) extending that
of Q, which is total (i.e., ∀x, y ∈ R, x ≤ y or y ≤ x) and which is consistent with the
algebraic structure. This means that,

1. x ≤ y =⇒ (∀z ∈ R) x + z ≤ y + z

2. x ≤ y and z ≥ 0 =⇒ xz ≤ yz

15
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Axiom 1.1.3 (Supremum) Any nonempty set A ⊆ R, which is bounded from above, has
a supremum α ∈ R i.e. there is a number α ∈ R such that:

1. ∀ x ∈ A, x ≤ α

2. ∀ ε > 0, ∃ xε ∈ A, xε > α − ε

For any A ⊆ X,

α = sup A ⇐⇒
{

1) ∀ x ∈ A,x ≤ α
2) ∀ β ∈ X, if ∀x ∈ A, x ≤ β, then α ≤ β

This α is said to be the supremum of A and denoted by α = sup A. Thus,

α = sup A ⇐⇒
{

1) ∀ x ∈ A, x ≤ α
2) ∀ ε > 0, ∃ xε ∈ A, 	 xε > α − ε

Example 1.1.4 Let A = {x ∈ Q : x2 < 2}. Then, A ⊆ R. A is bounded from above, hence
by the supremum axiom, A has a supremum in R. Let α = sup A.

Let us see that x =
√

2.

1. ∀x ∈ A, x <
√

2

2. Let ε > 0 be any number. So, for xε ∈ A, xε >
√

2 − ε.

2 > x2
ε >

(√
2 − ε

)2

= 2 − 2
√

2ε + ε2︸ ︷︷ ︸
ε
(
2
√

2 − ε
)

> 0︸ ︷︷ ︸
2
√

2 − ε > 0

ε < 2
√

2

You can always find xε ∈ A 	 xε >
√

2 − ε. So, sup A =
√

2.

Example 1.1.5 Let A =

{
n

n + 1
: n = 1, 2, 3, ..

}
. Then A is bounded from above, so

α = sup A exists. Let us see that α = 1. Indeed,

1. ∀n ≥ 0,
n

n + 1
≤ 1

2. Let ε � 0 be any number, then the inequality
n

n + 1
> 1 − ε has a solution nε. Then,

xε =
nε

nε + 1
> 1 − ε.

Proposition 1.1.6 A nonempty subset B ⊆ R, which is bounded below has an infimum
β ∈ R.
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Proof 1.1.7 We are going to show that, there is a number β ∈R such that:

1. ∀x ∈ B, β ≤ x

2. ∀ ε > 0, ∃ xε ∈ B : xε < β + ε

Let A = {−x : x ∈ B} . Then A is bounded from above, so by supremum axiom 1.1.3
∃α ∈ R 	 α = sup A.

=⇒ 1)∀x ∈ B,−x ≤ α
2)∀ε > 0,∃ x

ε
∈ B : −x

ε
≥ α − ε

This is equivalent to,

=⇒ 1)∀x ∈ B, x ≥ −α
2)∀ ε � 0,∃ x

ε
∈ B : −x

ε
≤ −α + ε

Hence −α is the infimum of B.

At the same time we have proved that,

sup (−B) = − inf(B) (for any set B bounded from below)
inf (−A) = − sup(A) (for any set A bounded from above)

Proposition 1.1.8 Given any x ∈ R, x ≥ 0, there is a unique n ∈ N 	 n − 1 < x ≤ n.

Proof 1.1.9 Let A = {n ∈ N : n ≥ x}. Then, A �= ∅.

A ⊆ N =⇒A has a smallest element, call it n.

Thus, n ∈ A, but n − 1 /∈ A. So, n ≥ x, but n − 1 < x, i.e. n − 1 < x ≤ n

Proposition 1.1.10 (Archimedian Property of R): Given any ε > 0, there is N ∈ N
such that N.ε > 1.

Proof 1.1.11 Observe that, N.ε > 1 is equivalent to
1

N
< ε.

Let in the Proposition 1.1.8, x =
1

ε
. Then, there is n ∈ N such that N − 1 ≤ 1

ε
< N.

Hence,
1

N
< ε.

Proposition 1.1.12 (Density of Q in R): Given any x ∈ R and any ε > 0 there is an
r ∈ Q such that |x − r| < ε.

Proof 1.1.13 If x ∈ Q, then take r = x. Suppose x > 0.

By the Proposition 1.1.10, there is an N ∈ N 	 1

N
< ε. Consider the number Nx.

By the Proposition 1.1.8, applies to Nx, there is an integer n ∈ N, 	 n < Nx ≤ n + 1.

Let r =
n

N
, then r ∈ Q and

n

N
≤ x − r ≤ n

N
+

1

N
. Thus, 0 ≤ x − r ≤ 1

N
< ε.

Hence, |x − r| < ε. If x < 0 then −x > 0.

So, by what proceeds, there is r ∈ Q 	 |−x − r| = |x − (−r)| < ε
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Proposition 1.1.14 Given any two real numbers, a, b ∈ R with a < b, there is at least one
r ∈ Q 	 a < r < b

Proof 1.1.15 Let x =
a + b

2
. Let ε > 0 be 	, a < x − ε < x < x + ε < b(

e.g. let 0 < ε <
b − a

2

)
.

Then by the Proposition 1.1.12, there is r ∈ Q 	 |x − r| < ε =⇒ −ε < x − r < ε.

So, x − ε < r < x + ε. Hence a < r < b. Now,

if we take b = r, there is r1 ∈ Q 	 a < r1 < r.

if we take b = r1 there is r2 ∈ Q 	 a < r2 < r1.

if we take b = r2 there is r3 ∈ Q 	 a < r3 < r2.

So that in between a and b there are infinitely many rational numbers.

1.2 Intervals

For any a, b ∈ R, a ≤ b, we define [a, b] = {x ∈ R:a ≤ x ≤ b}.
There are finite, closed or open intervals.

1. [a,∞[ = {x ∈ R : x ≥ a} is closed infinite interval.

2. ]a,∞[ = {x ∈ R : x > a} is open infinite interval.

3. ]a, b[ = {x ∈ R : a < x < b} is open finite interval.

4. [a, b[ , ]a, b] are half open half closed intervals.

Definition 1.2.1 Let A ⊆ R be a nonempty set. Then, A is an interval ⇔ ∀ a, b ∈ A, if
a < b and for r ∈ R, we have a < r < b, then r ∈ A ⇔ ∀ a, b ∈ A, a < b, [a, b] ⊆ A.

Hence, N, Z, Q, ]−1, 0[ ∪ ]1, 2[ are not intervals.

Properties:

1. If a = b, ]a, b[ = ∅, and [a, b] = a. (]a, b[ and [a, b] are degenerated intervals.)

2. A subset A from R is bounded from below ⇔ A is contained in an interval of the form
[α,∞[.

3. A subset A from R is bounded from above ⇔ A is contained in [−∞, β[.

4. A subset A from R is bounded ⇔ A is contained in [α, β[ ⇔ A ⊆ [−M,M ] for some
M > 0.
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1.2.1 More About Supremum and Infimum:

• If A = ]0, 1[, then sup A = 1, inf A = 0, 1 /∈ A, 0 /∈ A.

• If A = [0, 1], then sup A = 1, inf A = 0, 1 ∈ A, 0 ∈ A.

• If A = ]0, 1], then sup A = 1, inf A = 0, 1 ∈ A, 0 /∈ A.

Definition 1.2.2 Let X �= ∅ be any set and f : X → R be a function. Then, A = f(X) is
a subset of R.

If f(X) is bounded from above, we say that f is bounded from above in X.

In this case, α = sup f(X) exists. Thus, supx∈Xf(x) = supx∈X {f(x) : x ∈ X}.
If f(X) is bounded from below, β = inf f(X) exists. β = infx∈Xf(x).

Example 1.2.3 Let X = ]0, 1], f(x) =
1

x
. Then, f(x) =

{
1

x
: 0 < x ≤ 1

}
. It is clear that

f(x) is not bounded from above. But bounded from below, i.e. infx∈Xf(x) = 1.

Example 1.2.4 Let X = ]0,∞[ , f(x) =
x

x + 1
. f is bounded in X.

supx∈Xf(x) = 1, � x0 ∈ X 	 f(x0) = 1
infx∈Xf(x) = 0, � y0 ∈ X 	 f(y0) = 0

Example 1.2.5 If X = N, then f : N → R is a sequence. xn = f(n), if f is bounded then
(xn)n∈N is a bounded sequence, i.e. |xn| ≤ M, ∀n ∈ N for some M > 0, then the range
A = {x0, x1, ..., xk, ...} = f(N) is a bounded set.

For instance,

⎧⎨
⎩ xn = en is not a bounded sequence.

xn =
1

en
is a bounded sequence.

Proposition 1.2.6 Let X be a nonempty set and f, g : X → R be two bounded functions.
Then,

1. supx∈X (f(x) + g(x)) ≤ supx∈Xf(x) + supx∈Xg(x)

2. infx∈X (f(x) + g(x)) ≤ infx∈Xf(x) + infx∈Xg(x)

3. supx∈X |f(x) × g(x)| ≤ supx∈X |f(x)| × supx∈X |g(x)|

Proof 1.2.7 Since f and g are bounded, α = sup f(x), β = sup g(x) exists.

1. In particular, ∀x ∈ X f(x) ≤ α, g(x) ≤ β. Hence, adding them we get,

f(x) + g(x) ≤ α + β, ∀x ∈ X.

Hence, sup (f(x) + g(x)) ≤ α + β = sup f(x) + sup g(x)
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2. to prove 2 apply 1 to −f and −g as we know that inf(−A) = − sup(A)

3. ∀x ∈ X,

{
|f(x)| ≤ sup |f(x)|
|g(x)| ≤ sup |g(x)| =⇒ Multiplying them, we get:

|f(x)| × |g(x)| ≤ sup |f(x)| × sup |g(x)|
Hence, |f(x) × g(x)| ≤ sup |f(x)| × sup |g(x)|

Example 1.2.8 Let X = N, f(n) = (−1)n, g(n) = (−1)n+1.

Then sup f(n) = 1, sup g(n) = 1, sup f(n) + sup g(n) = 2. f(n) + g(n) = 0, ∀n ∈ N.
Hence, sup (f(n) + g(n)) = 0 < 2.

Example 1.2.9 Let X =
]
0,

π

2

[
, f (x) = sin x, g(x) = cos x. So, sup f(x) = 1, and

sup g(x) = 1.

sin x × cos x =
1

2
sin 2x. Then supx∈X

(
1

2
sin 2x

)
=

1

2
.

∀ x ∈ ]0, π
2

[
, supx∈Xf(x) × supx∈Xg(x) > supx∈X (f(x) × g(x))

Proposition 1.2.10 Let f : X → R be a function. Suppose that for some α > 0, f(x) ≥
α, ∀ x ∈ X. Then,

1

f(x)
≤ 1

α
and, supx∈X

(
1

f(x)

)
=

1

infx∈Xf(x)

Proof 1.2.11 Let β = sup

(
1

f(x)

)
⎧⎪⎨
⎪⎩

1)∀ x ∈ X ,
1

f(x)
< β

2)∀ ε > 0, ∃ xε ∈ X,	 1

f(xε)
> β − ε

Hence, β × f(x) ≥ 1, ∀x ∈ X. This implies that, inf f(x) ≥ 1

β
, so

1

inf f(x)
≤ β

from (2),
1

f(xε)
> β − ε =⇒ f(xε) <

1

β − ε
.

This implies that inf f(x) ≤ 1

β − ε
and

1

inf f(x)
≥ β − ε =⇒ β − ε ≤ 1

inf f(x)
≤ β.

As inf f(x) does not depend on ε, letting ε → 0, we get that β =
1

inf f(x)
.

Proposition 1.2.12 Let X,Y be two sets. f : X → R, g : Y → R be two bounded functions.
Then,

1. supx∈X,y∈Y (f(x) + g(y)) = supx∈Xf(x) + supy∈Y g(y)

2. infx∈X,y∈Y (f(x) + g(y)) = infx∈Xf(x) + infy∈Y g(y)
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Proof 1.2.13

∀x ∈ X, f(x) ≤ supx∈Xf(x)
∀y ∈ Y, g(y) ≤ supy∈Y g(y)

}
=⇒ f(x) + g(y) ≤ sup

x∈X
f(x) + sup

y∈Y
g(y)

This implies that,

supx∈X (f(x) + g(y)) ≤ supx∈Xf(x) + supy∈Y g(y)
supx∈X,y∈Y (f(x) + g(y)) ≤ supx∈Xf(x) + supy∈Y g(y) ∗

But supx∈X,y∈Y (f(x) + g(y)) ≥ f(x) + g(y), ∀x ∈ X, ∀ y ∈ Y .

Hence, passing to supremum on X and Y , we get,

sup
x∈X,y∈Y

(f(x) + g(y)) ≥ sup
x∈X

f(x) + sup
y∈Y

g(y) ∗∗

* and ** prove 1. To prove 2, replace f by −f and g by −g.
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1.2.2 Exercises I

1. Let E be a nonempty subset of R. Complete the sentence: E is an interval iff......................

Is Q an interval? Is R\Q an interval?

2. Let X,Y be 2 nonempty sets and ϕ : X × Y → R be a bounded function. Show that
we have:

supy∈Y [supx∈Xϕ(x, y)] = supx∈X

[
supy∈Y ϕ(x, y)

]
= sup(x,y)∈X×Y ϕ(x, y)

3. Let X be a nonempty set and g, f : X → R be 2 bounded functions. Show that

(a) supx∈X(f(x) + g(x)) ≤ supx∈Xf(x) + supx∈Xg(x).

(b) infx∈X(f(x) + g(x)) ≥ infx∈Xf(x) + infx∈Xg(x).

(c) infx∈X(f(x) + g(x)) ≤ infx∈Xf(x) + supx∈Xg(x).

(d) supx∈X |f(x) × g(x)| ≤ supx∈X |f(x)| × supx∈Xg(x).

(e) supx∈X |f(x)|n = (supx∈X |f(x)|)n (∀n ∈ N).

(f) supx∈Xsupy∈Y (f(x) + g(y)) = supx∈Xf(x) + supy∈Y g(y).

(g) For c ∈ R fixed,
supx∈X(f(x) + c) = supx∈Xf(x) + c, and infx∈X(f(x) + c) = infx∈Xf(x) + c.

(h) supx∈X(−f(x)) = −infx∈Xf(x).
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1.3 Convergence in R and Monotone Sequences

Definition 1.3.1 Let (xn)n∈N be a sequence in R.

• (xn)n∈N is convergent if there is a number L that satisfies the condition:

∀ε > 0,∃ N ∈ N, ∀n > N =⇒ |xn − L| < ε

Equivalently, ∀ε > 0, xn ∈ ]L − ε, L + ε[ for all but finitely many n ∈ N

• In this case we write, xn → L, as n → ∞, L = limn→∞xn

• If (xn)n∈N does not converge to any L ∈ R, then we say that (xn)n∈N diverges.

Example 1.3.2 Let xn = (−1)n. There is no L ∈ R that satisfies the condition of con-
vergence. Indeed, if it was convergent there would be an L ∈ R satisfying the convergence

condition. Now let ε =
1

2
. Then for N corresponding to this ε, ∀n ≥ N, |xn − L| <

1

2
.

Now for n odd ⇒ xn = −1 and |−1 − L| <
1

2

for n even ⇒ xn = 1 and |1 − L| <
1

2

So we have
−1

2
< 1 + L <

1

2
and

−1

2
< 1 − L <

1

2
, and adding these we get −1 < 2 < 1

which is nonsense. Hence xn is divergent (does not mean that it goes to infinity.) as,
|xn| = 1 ∀ n ∈ N.

Example 1.3.3 Let xn = n2 + 1. If it is convergent to some L ∈ R then,
∀ ε > 0, ∃N ∈ N, ∀n > N, |n2 + 1 − L| < ε. i.e. L − ε < n2 + 1 < L + ε ∀, n ∈ N.
But this is not possible, since N is not bounded from above.

Example 1.3.4 (xn)n∈N =

{
0, 1,

1

2
, 3,

1

4
, ...

}
. This sequence does not converge either.

Example 1.3.5 Let xn =
1

n
, then the Archimedian property just means that

1

n
→ 0, as

n → ∞.(
∀ ε > 0 ∃ N ∈ N

1

N
< ε =⇒ ∀n ≥ N,

1

n
< ε =⇒ 1

n
→ 0

)

Theorem 1.3.6 Properties of the Convergent Sequences:

1. Uniqueness of the Limit: A sequence (xn)n∈N cannot converge to more than one
limit.
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2. Boundaries of Convergent Sequences: Every convergent sequence (xn)n∈N in R
is bounded.

3. Passage to Absolute Value: If xn → L, then |xn| → |L|.
4. Convergence and Inequalities: If xn ≥ c, ∀n ∈ N and xn → L, then L ≥ c.

5. If xn ≤ yn ∀n ∈ N, xn → L, yn → S, then L ≤ S.

6. Sandwich Theorem: xn ≤ yn ≤ zn for all n ∈ N, and xn → L, zn → L, then
yn → L.

7. If xn → L, and L �= 0, then |xn| ≥ |L|
2

for all but finitely many n ∈ N.

8. If xn → L and yn → S, then

(a) xn+ yn → L + S

(b) xn × yn → L × S

(c) If S �= 0,
xn

yn

→ L

S

Proof 1.3.7 1. For a contradiction, suppose that xn → S and xn → L, (L �= S). Say
L < S. Let ε be small enough to have ]L − ε, L + ε] ∩ ]S − ε, S + ε[ = ∅. So,

0 < ε <
S − L

3
. Since xn → L , xn ∈ ]L − ε, L + ε[ for all but finitely many n. As

xn → S , xn ∈ ]S − ε, S + ε[ for all but finitely many n, too. This is not possible.
Hence the limit is unique.

2. Let, xn → L, as n → ∞. So, we have: ∀ε > 0, ∃N ∈ N,∀n ≥ N, |xn − L| < ε.

Hence, since ||xn| − |L|| ≤ |xn − L| < ε, ∀n ≥ N |xn| ≤ |L| + ε.

Let M = max {|x0| , |x1| , ..., |xn| , |L| + ε}. Then ∀n ∈ N |xn| ≤ M .

Remark: Converse of this result is false. Let xn = (−1)n. Then |xn| ≤ 1 ∀n ∈ N,
but (xn)n∈N does not converge.

3. As xn → L, we have ∀ε > 0 ∃N ∈ N, ∀n ≥ N |xn − L| < ε. As ||xn| − |L|| ≤
|xn − L|, we see that ∀n ≥ N ||xn| − |L|| < ε. This means that |xn| → |L|.

4. For a contradiction, suppose that L < c. Let ε be small enough to have L + ε < c.

(e.g. let ε =
c − L

2
). Write the definition of convergence for this ε. Then, there is

N ∈ N 	 ∀n ≥ N, |xn − L| < ε. So, L − ε ≤ xn ≤ L + ε. As xn ≥ c, and L + ε < c.
Contradiction.

In particular, if xn ≥ 0 ∀n ∈ N, then L ≥ 0.

Remark:
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• If xn > c and xn → L, we can not say L > c, all we can say is L ≥ c. e.g. Let

xn =
1

n
, then xn > 0∀n ≥ 1, but limn→∞xn = 0.

• If L ≥ c, we can not say that xn ≥ c for all n ∈ N.

5. For a contradiction, suppose L > S. Let ε > 0 be small enough to still have L − ε >
S + ε. For this ε > 0, we write the fact that xn → L, yn → S. Then, there is
N1 ∈ N, ∀n ≥ N1, |xn − L| < ε. Then, there is N2 ∈ N, ∀n ≥ N2, |xn − S| < ε.

Let N = max {N1, N2}. So ∀n ≥ N, L − ε ≤ xn ≤ L + ε, and S − ε ≤ yn ≤ S + ε.
As S < L − ε < xn ≤ yn < S + ε < L − ε is not possible, this is contradiction.

6. Let ε > 0, then xn → L, zn → L.
∃N ∈ N 	 ∀n ≥ N L − ε ≤ xn ≤ L + ε

L − ε ≤ zn ≤ L + ε

∀n ≥ N, L − ε < xn ≤ yn ≤ zn < L + ε.

So, ∀n ≥ N, L − ε < yn < L + ε =⇒ |yn − L| < ε. Then, yn → L.

7. Let ε =
|L|
2

. So ε > 0.

Corresponding to this ε there is an N ∈ N such that ∀n ≥ N, |xn − L| < ε.

As ||xn| − |L|| ≤ |xn − L| < ε, we have

|L| − ε︸ ︷︷ ︸ < |xn| < |L| + ε

=
|L|
2

=⇒ ∀n ≥ N, |xn| ≥ |L|
2

8. (a)
∀ε > 0∃N ∈ N ∀n ≥ N, |xn − L| <

ε

2
∀ε > 0∃N ∈ N, ∀n ≥ N |yn − S| <

ε

2
Then, ∀n ≥ N, |xn + yn − (S + L)| ≤ |xn − L| + |yn − S| < ε.

Hence, xn + yn → S + L

(b) xn × yn − L × S = (xn − L) × yn + L × yn − L × S.

Hence, |xn × yn − L × S| ≤ |xn − L| × |yn| + |L| × |yn − S|
As (yn)n∈N converges, it is bounded, say |yn| ≤ M ∀n ∈ N

Then, n ≥ N, |xn × yn − L × S| < M
ε

2
+ |L| ε

2
≤ M + |L|2.

Hence, xn × yn → L × S.

(c)
xn

yn

− L

S
=

xnS − ynL

ynS

Since S �= 0, by ref2.3.7 |yn| ≥ |S|
2

for all but finitely many n ∈ N. Then,
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∣∣∣∣xnS − ynL

ynS

∣∣∣∣ ≤ 2

∣∣∣∣xnS − ynL

|S|2
∣∣∣∣→ 2

∣∣∣∣SL − SL

|S|2
∣∣∣∣ = 0.

Hence,

∣∣∣∣xn

yn

− L

S

∣∣∣∣→ 0,
xn

yn

→ L

S
.

1.4 Monotone Sequences

Definition 1.4.1 A sequence (xn)n∈N in R is said to be

1. increasing if x0 ≤ x1 ≤ ... ≤ xn ≤ ...

2. decreasing if x0 ≥ x1 ≥ ... ≥ xn ≥ ...

e.g. xn =
1

n
is decreasing,

xn =
n

n + 1
is increasing

Remark:

• Any increasing sequence is bounded from below.

• Any decreasing sequence is bounded from above.

So an increasing sequence is bounded iff it is bounded from above.

• Also, (xn)n∈N is increasing iff (−xn) is decreasing.

Example 1.4.2 Let xn = 1 +
1

2!
+ · · · + 1

n!
. Then, clearly, xn is increasing.

3! ≥ 22. Hence,
1

3!
≥ 1

22

4! ≥ 23. Hence
1

4!
≥ 1

23

5! ≥ 24. Hence
1

5!
≥ 1

24

...

n! ≥ 2n. Hence
1

n!
≥ 1

2n−1
.

Hence, xn ≤ 5

2
+

1

22
+

1

23
+

1

24
+ · · · + 1

2n−1︸ ︷︷ ︸
=

1

22

[
1 +

1

2
+

1

22
+

1

23
+

1

24
+ · · · + 1

2n−3

]

=
1

22

1 − (
1

2
)n−2

1 − 1

2

≤ 1

2

So, xn ≤ 5

2
+

1

2
=⇒ xn ≤ 3, ∀n ∈ N =⇒ xn is bounded.
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Example 1.4.3 Let xn = 1 +
1

2!
+ · · · + 1

n!
and yn = xn +

1

n!
.

So, yn−1 − yn = xn−1 − xn +
1

(n − 1)!
− 1

n!
= − 2

n!
+

1

(n − 1)!
=

n − 2

n!
≥ 0, ∀n ≥ 2.

Hence, yn−1 ≥ yn. So, (yn)n∈N is decreasing.

Example 1.4.4 1 +
1

22
+

1

32
+ · · · + 1

n2
. Then, x1 ≤ x2 ≤ ... ≤ x3 ≤ ...

As n2 ≥ n(n − 1),
1

n2
≤ 1

n(n − 1)
=

1

n − 1
− 1

n

i.e.
1

22
≤ 1

1
− 1

2
1

32
≤ 1

2
− 1

3
...
1

n2
≤ 1

n − 1
− 1

n

Then, xn ≤ 2 − 1

n
≤ 2, ∀n ≥ 1, xn ≤ 2.

Theorem 1.4.5 (Convergence of monotone sequences): A monotone sequence (xn)n∈N

is convergent iff it is bounded. In this case,

1. if xn is increasing, then limn→∞xn = sup {x0, x1, x2, . . . , xn, . . .}
2. if xn is decreasing, then limn→∞xn = inf {x0, x1, x2, . . . , xn, . . .}

Proof 1.4.6 Suppose x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ . . .
We know that every convergent sequence is bounded.
Conversely, suppose that (xn)n∈N is bounded. Then the set A = {x0, x1, x2, ..., xn, . . .} is

bounded. So by the supremum axiom, ∃α ∈ R, 	 α = sup A

=⇒
{

1) ∀n ∈ N, xn ≤ α
2) ∀ε ≥ 0, ∃ xN ∈ A 	 xN > α − ε

ε > 0 being given. For every n ≥ N α − ε < xN ≤ xn ≤ α ≤ α + ε.
So, ∀n ∈ N, |xn − α| < ε, i.e. limn→∞xn = α

Example 1.4.7 1. Let xn = 1 +
1

1
+

1

2
+ · · · + 1

n
. We have seen that xn is not bounded.

So it diverges by the theorem 1.4.5.

2. Let xn = 1 +
1

1!
+

1

2!
+ · · · + 1

n!
. We have seen that xn ≤ 3 ∀n ∈ N. This sequence is

increasing, so it converges.

Let e = limn→∞xn. Since xn ≤ 3 ∀n ∈ N, e ≤ 3.

As x2 = 2.5, we see that 2.5 ≤ e ≤ 3.



28 CHAPTER 1. THE REAL NUMBER SYSTEM

Remark: If the sequence (xn)n∈N is strictly increasing, i.e. x0 < x1 < x2 < . . . < xn < . . .
and L is the limit, then xn ≤ L, ∀n ∈ N. Hence xn < e in above example.

Now, let yn = xn +
1

n!
. This sequence is decreasing and bounded from below by 0. So, it

converges. Hence, yn − xn =
1

n!
→ 0 also converges. limn→∞yn = e.

Theorem 1.4.8 The number e is not rational.

Proof 1.4.9 Let as in the last example, xn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
and yn = 1 +

1

1!
+

1

2!
+

· · · + 1

n!
+

1

n!
. Then, for any n ∈ N xn < e < yn.

For a contradiction, suppose e is rational. So, e =
p

q
, (p > 0, q > 0, p, q ∈ N)

Let n ≥ q, 1 +
1

1!
+

1

2!
+ · · · + 1

n!
<

p

q
< 1 +

1

1!
+

1

2!
+ · · · + 1

n!
+

1

n!
.

Multiplying by n!; n! +
n!

1!
+

n!

2!
+ · · · + 1 <

pn!

q
< n! +

n!

1!
+

n!

2!
+ · · · + 1 + 1

n! +
n!

1!
+

n!

2!
+ · · · + 1 = N

n! +
n!

1!
+

n!

2!
+ · · · + 1 + 1 = N + 1, and

pn!

q
= M

N < M < N + 1. Hence, N and M are integers. As there is no integer between two
consecutive integers, this is not possible.

Hence e is not rational

This theorem says that Q is not closed under the “limit” operation. Indeed, although
every xn ∈ Q, lim xn = e /∈ Q.
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1.4.1 Exercises II

1. Let (xn)n∈N be a sequence in R and c ∈ R a number. If 0 ≤ xn ≤ c for infinitely many
n and xn → L show that then L ≤ c.

2. Let (xn)n∈N, (yn)n∈N be two convergent sequences. If xn ≤ yn for all but finitely many
n ∈ N , show that then limn→∞xn ≤ limn→∞yn.

3. Let (xn)n∈N, (yn)n∈N be two convergent sequences with 0 ≤ xn ≤ yn for all but finitely
many n ∈ N. If yn → 0 ,then show that xn → 0.

4. Show that 1 +
1

2
+ · · · + 1

2k−1
= 2(1 − 1

2k
).

5. Let xn = 1 +
1

2
+ · · · + 1

2n−1
. Show that limn→∞xn = 2.

6. Let (xn)n∈N be a sequence.

(a) if |xn+1 − xn| ≤ 1

2
|xn − xn−1| then show that (xn)n∈N converges.

(b) if, for some M > 0 and 0 < r < 1, |xn+1 − xn| ≤ Mrn (∀ n ∈ N). Show that
(xn)n∈N converges.

(c) if, for some x ∈ R and 0 < r < 1, |xn+1 − x| ≤ r|xn − x| for all n ∈ N. Show that
then xn → x.

7. If (xn)n∈N is a convergent sequence and L = limn→∞xn with L > 0, show that then
xn > 0 for all but finitely many n ∈ N.

What about if L = 0? Can you say that xn ≥ 0 for all but finitely many n ∈ N?

8. Let (xn)n∈N be a sequence such that for all n ≥ 1, |xn+1 − xn| <
1

n
.

Is this sequence convergent? What difference is there between this and the one in the
question 6b above?
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1.5 Convergence of Subsequences

1.5.1 Cluster points of a Sequence

Let xn be a sequence and n1 < n2 < n3 < . . . < nk < . . . be integers, and yk = xnk
.

Then, yk is a sequence itself. Suppose that yk converges as k → ∞ to some L ∈ R.
Hence, ∀ε > 0, ∃ k0 ∈ N, ∀ k ≥ k0, yk ∈ ]L − ε, L + ε[.
Equivalently since yk = xnk

, ∀ k ≥ k0, xnk
∈ ]L − ε, L + ε[.

This shows that ∀ε > 0, xn ∈ ]L − ε, L + ε[ for infinitely many n ∈ N.

Definition 1.5.1 1. Let (xn)n∈N be any sequence in R and L ∈ R. We say that L is a
cluster point of xn iff for each ε > 0, xn ∈ ]L − ε, L + ε[ for infinitely many n ∈ N.

2. In mathematical languages, L is a cluster point of xn ⇔ ∀ ε > 0, ∀ p ∈ N, ∃n ≥ p
such that xn ∈ ]L − ε, L + ε[.

Proposition 1.5.2 In the definition 1.5.1, 1⇔2

Proof 1.5.3 • Suppose 1 holds. Let ε > 0 and p ∈ N be arbitrary.

As by 1, xn ∈ ]L − ε, L + ε[ for infinitely many n. Among these, ‘n’s there are at least
one n ≥ p. So, for this n, xn ∈ ]L − ε, L + ε[.

• Suppose 2 holds. Let ε > 0 be arbitrary.

In 2, let p = 0. Then, ∃n0 ≥ 0 : xn0 ∈ ]L − ε, L + ε[.

Let

p = n0 + 1, then by 2 ∃ n1 ≥ n0 + 1 : xn1 ∈ ]L − ε, L + ε[
p = n1 + 1, then ∃ n2 ≥ n1 + 1 : xn2 ∈ ]L − ε, L + ε[
...

In this way we get, n1, n2, ..., nk such that for all k ∈ N, xnk
∈ ]L − ε, L + ε[. So,

xn ∈ ]L − ε, L + ε[ for infinitely many n, p ∈ N. Actually we have proved the following
theorem.

Theorem 1.5.4 Let (xn)n∈N be any sequence in R and L ∈ R. Then, L is a cluster point
of xn iff xn has a subsequence yk = xnk

that converges to L as k → ∞.

Proof 1.5.5 (⇒) Suppose L is a cluster point, so we have ∀ε > 0, xn ∈ ]L − ε, L + ε[ for
infinitely many n ∈ N.

Let ε =
1

20
. There are infinitely many n such that xn ∈ ]L − 1, L + 1[. Let n0 be the

smallest of these integers. xn0 ∈ ]L − 1, L + 1[

Let ε =
1

2
. There are infinitely many n ∈ N such that xn ∈

]
L − 1

2
, L +

1

2

[
. Let among

these n’s n1 > n0 be any integer such that: xn1 ∈
]
L − 1

2
, L +

1

2

[
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Next, let ε =
1

22
. There are infinitely many n such that xn ∈

]
L − 1

4
, L +

1

4

[
.

Let among these n’s n2 > n1 be any integer. So, xn2 ∈
]
L − 1

4
, L +

1

4

[
.

Let ε =
1

23

...
In this way we construct a sequence of integers n0 < n1 < n2 < . . . < nk < ... such that,

∀k ∈ N, xnk
∈
]
L − 1

2k
, L +

1

2k

[
.

Hence, |xnk
− L| <

1

2k
. As k → ∞, xnk

→ L.

(⇐) Suppose that xn has a subsequence ynk
that converges to L as k → ∞.

So ∀ε > 0,∃ k0 ∈ N, ∀ k ≥ k0, yk ∈ ]L − ε, L + ε[. Hence, as we have seen above, this
means ∀ε > 0, xn ∈ ]L − ε, L + ε[ for infinitely many n ∈ N. So, L is a cluster point.

Example 1.5.6 Let xn = (−1)n. This sequence is not convergent, but it has convergent
subsequences. Indeed, L = 1 and L = −1 are cluster points.

Let L = 1. Then, ∀ε > 0, x2n ∈ ]1 − ε, 1 + ε[ for all n ∈ N. So, L = 1 is a cluster point.

Example 1.5.7 (xn)n∈N = 0, 1,
1

2
, 3,

1

4
, 5,

1

6
, 7, ...

Here L = 1 is a cluster point of this sequence. Indeed the subsequence

(
1

2
,
1

4
,
1

6
, · · · ,

1

2n
, · · · ) → 0

Example 1.5.8 Let xn = 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, .... Then, 1, 2, 3, 4 are cluster points.

Example 1.5.9 Let [0, 1] ∩ Q = {x0, x1, ..., xn, ...} in any order. Consider the sequence
(xn)n∈N. ∀L ∈ [0, 1] , ∀ε > 0, the interval ]L − ε, L + ε[ contains infinitely many rational
numbers. So, xn ∈ ]L − ε, L + ε[ for infinitely many n. Hence, any L ∈ [0, 1] is a cluster
point of (xn)n∈N.

Example 1.5.10 xn = en, ∀n ∈ N. xn has no cluster points.

Theorem 1.5.11 Let xn be a sequence in R. xn → L iff L is the only cluster point of xn.

Proof 1.5.12 (=⇒) If xn → L, then every subsequence of xn converges to the same L. So,
x2n → L and x2n+1 → L

(⇐=) Suppose that x2n → L and x2n+1 → L. So, we have:
∀ε > 0, ∃ N1 ∈ N : ∀n ≥ N |x2n − L| < ε.
∀ε > 0, ∃ N2 ∈ N ∀n ≥ N |x2n+1 − L| < ε
Let, N ′ = max {N1, N2} and N = 2N ′ + 1. Then n ≥ N |xn − L| < ε =⇒ xn → L
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Lemma 1.5.13 Bolzano-Weierstrass Theorem: Every sequence (xn)n∈R has a mono-
tone subsequence.

Proof 1.5.14 Let

F0 = {x0, x1, ..., xn, ...}
F1 = {x1, x2, ..., xn, ...}
...
Fn = {xn, xn+1, ...}

Clearly, F0 ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fn ⊇ . . .

There are two possibilities:

1. Every Fn has a smallest element.

2. There is p ∈ N, such that Fp does not have a smallest element.

• Suppose 1 holds: So, every Fn has a smallest element. Let xn0 be the smallest element
of F0. Then consider the set Fn0+1. Then Fn0+1 has a smallest element call it xn1.
Obviously, n1 > n0 and xn0 ≤ xn1, since F0 ⊆ Fn0+1. Next, let consider the set
Fn1+1. Then Fn1+1 has a smallest element call it xn2. So n2 > n1 and xn1 ≤ xn2.
Next, let consider the set Fn2+1, it has a smallest element call it xn3 , ... so on. Then,
n0 < n1 < n2 < ... < nk < ... and xn0 ≤ xn1 ≤ xn2 ≤ . . . ≤ xnk

≤ . . .. So, (xnk
)k∈N

is
an increasing subsequence of the initial subsequence.

• Suppose 2 holds: So, for some p ∈ N, Fp has no smallest element. But then, for any
n ≥ p, Fp = {xp+1,...,xn−1} ∪ Fn. Fn can not have a smallest element either. Hence,
∀n ≥ p, Fn has no smallest element.

Let xn0 be any element in Fp. Consider Fn0+1. Fn0+1 has no smallest element. So,
there is an element call it xn1 ∈ Fn0+1 	 xn1 < xn0 (Clearly n1 > n0). Now consider
Fn1+1, it has no smallest element. So, there is an element call it xn2 ∈ Fn1+1 	 xn2 <
xn1. Consider Fn2+1, . . . and so on. In this way, we get xn0 > xn1 > xn2 > . . . and
n0 < n1 < n2 < . . . < nk < . . . So, (xnk

)k∈N
is a decreasing subsequence of (xn)n∈N.

Theorem 1.5.15 (Fundamental Theorem of Real Analysis) Every bounded sequence
(xn)n∈N in R has at least one convergent subsequence. (Or equivalently at least one cluster
point.)

Proof 1.5.16 By the lemma 1.5.13, xn has a monotone subsequence. Since every bounded
monotone sequence converges, we conclude that xn has a convergent subsequence.

Let xn = sin n. Then xn has a convergent subsequence.
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1.5.2 Cauchy Sequences

Let xn∈N be a sequence. Suppose we only know that, |xn+1 − xn| =
1

2n
. Does such a sequence

converge? Let xn = 1 +
1

2
+ · · · + 1

n
. Then, |xn+1 − xn| =

1

n + 1
. So, |xn+1 − xn| → 0. But

(xn)n∈N diverges.

Let xn = 1 +
1

22
+

1

32
+ · · · +

1

n2
. Then |xn+1 − xn| =

1

(n + 1)2
→ 0. This time as we

know (xn)n∈N converges. Now let xn be a sequence that converges to some L ∈ R. So we
have:

∀ ε > 0, ∃N ∈ N∀n ≥ N |xn − L| <
ε

2
Hence,∀n ≥ N, ∀m ≥ N ,

|xn − xm| = |xn − L + L − xm| ≤ |xn − L|︸ ︷︷ ︸ + |xm − L|︸ ︷︷ ︸ < ε

<
ε

2
<

ε

2
i.e., if xn converges, we have:

∀ε > 0, ∃n ∈ N, ∀n ≥ N, ∀m ≥ N, |xn − xm| < ε

This is a necessary condition for convergence.

Definition 1.5.17 A sequence in R is said to be a Cauchy sequence if it satisfies the
Cauchy condition, that is:

∀ε > 0, ∃N ∈ N 	 ∀n ≥ N, ∀m ≥ N |xn − xm| < ε

n and m are independent from each other.

This condition is equivalent to :

∀ε > 0, ∃N ∈ N 	 ∀n ≥ N ∀ p ∈ N |xn+p − xn| < ε.

Again it is equivalent to limn→∞, m→∞ |xn − xm| = 0

Example 1.5.18 Prove or disprove that the following sequences are Cauchy sequences.

1. xn = 1 +
1

2
+ · · · + 1

n

2. xn = 1 +
1

2
+ · · · + 1

2n

3. |xn+1 − xn| ≤ 1

2n

1. x2n − xn =
1

n + 1
+ · · · + 1

2n
≥ 1

2n
=

1

2

|x2n − xn| ≥ 1

2
. Let ε =

1

4
. Contradiction. Then the sequence is not Cauchy.
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2. |xn+p − xn| =
1

2n+1
+· · ·+ 1

2n+p
=

1

2n+1

(
1 +

1

2
+ · · · + 1

2p−1

)
=

1

2n+1

⎛
⎜⎜⎝

1 −
(

1

2

)p

1 − 1
2

⎞
⎟⎟⎠ ≤

1

2n
.

∀n ≥ 0, ∀ p ≥ 0, |xn+p − xn| ≤ 1

2n
.

1

2n
→ 0. So, ∀ε > 0, ∃N ∈ N ∀n ≥ N,

1

2n
< ε.

Hence, ∀n ≥ N, ∀ p ∈ N, |xn+p − xn| < ε, so (xn)n∈N is Cauchy.

3. Our sequence (xn)n∈N satisfies the condition |xn+1 − xn| ≤ 1

2n
.

Hence,

|xn+p − xn| = |xn+p + xn+p−1 − xn+p−1 + xn+p−2 − xn+p−2 − xn|
≤ |xn+p − xn+p−1| + |xn+p−1 − xn+p−2| + . . . + |xn+1 − xn|
≤ 1

2n+p−1
+

1

2n+p−2
+ · · · + 1

2n

Since |xn+p − xn+p−1| ≤ 1

2n+p−1
, |xn+p−1 − xn+p−2| ≤ 1

2n+p−2
, |xn+1 − xn| ≤ 1

2n
.

As
1

2n
→ 0, ∀ ε > 0, ∃N ∈ N, ∀n ≥ N

1

2n
< ε. So ∀n ≥ N, ∀ p ∈ N, |xn+p − xn| < ε.

Hence, (xn)n∈N is Cauchy.

Note: Concerning any sequence (xn)n∈N, there are two basic questions:

1. Does (xn)n∈N converge?

2. If it does, what is limn→∞xn?

Proposition 1.5.19 Every Cauchy sequence (xn)n∈N in R is bounded.

Proof 1.5.20 As xn is Cauchy, we have ∀ε > 0, ∃N ∈ N ∀n,m ≥ N, |xn − xm| < ε. Fix
m = N . Then, |xn| = |xn − xN + xN | ≤ ε + |xN | ∀n ≥ N . Hence, sup {|xn| : n ∈ N} ≤
sup {|x0| , . . . , |xN | : ε + |xN |}. So, xn is bounded.

Theorem 1.5.21 (R is complete): A sequence xn in R is convergent iff it is Cauchy.

Proof 1.5.22 We have already seen that every convergent sequence is Cauchy.
Conversely, assume xn is Cauchy. So it is bounded. Hence, by Bolzano Weierstrass

Theorem xn has a convergent subsequence, yk = xnk
.

Let limk→∞yk = L. Let us see not only xnk
, but the whole sequence converges to L.

Indeed yk → L means that:
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∀ ε > 0, ∃ k0 ∈ N 	 ∀ k ≥ k0 |xnk
− L| <

ε

2
*

As xn is Cauchy, we also have: ∀ε > 0, ∃N ∈ N 	 ∀n,m ≥ N |xn − xm| <
ε

2
.

Let k ≥ k0 be such that nk ≥ N .

Then ∀n ≥ N ,

|xn − L| = |xn − xnk
+ xnk

− L| ≤ |xn − xnk
|︸ ︷︷ ︸ + |xnk

− L|︸ ︷︷ ︸ ≤ ε

≤ ε

2
(by Cauchy) ≤ ε

2
(by * )

Hence xn → L.
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1.5.3 Exercises III

1. Let (xn)n∈N be a sequence in R. Show that xn → x iff there exists a decreasing sequence
(tk)k∈N, tk ≥ 0, tk → 0 such that |xn − x| ≤ tn for n large.

2. Let (xn)n∈N and (yn)n∈N be two convergent sequences with limn→∞xn = a = limn→∞yn.
Consider the ”mixed sequence” zn : x0, y0, x1, y1, x2, y2, . . . Show that zn → a too.

3. Show that given any x in R there exists a sequence of rational numbers (rn)n∈N and
a sequence of irrational numbers (sn)n∈N such that rn → x and sn → x.

4. Let (xn)n∈N be a sequence in R. Assume xn ∈ Z for each n ∈ N. Show that (xn)n∈N is
convergent iff (xn)n∈N is almost constant i.e. ∃ N ∈ N, ∀n ≥ N, ∀m ≥ N, xn = xm.

5. Let (xn)n∈N be a positive sequence. If xn → 0 show that then xn

1+xn
→ 0 too.

Conversely, if xn

1+xn
→ 0 show that then xn → 0 too.

6. Let xn = ln(n + 1). Show that |xn+1 − xn| → 0 as n → ∞.

Is (xn)n∈N Cauchy? Is (xn)n∈N convergent?

7. For 0 ≤ b ≤ a, find limk→∞(ak + bk)
1
k .

8. If xn > c for all n ∈ N and xn → x, can you say that x > c?
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1.6 lim sup, lim inf

Let (xn)n∈N be a bounded sequence. Say a ≤ xn ≤ b (∀n ∈ N). Bolzano Weierstrass’
Theorem says that xn has at least one cluster point, say L. Then, a ≤ L ≤ b. We also
know that xn may have uncountably many cluster points. Let F be the set of all the cluster
points. F �= ∅ and F ⊆ [a, b].

We are going to show that F has a smallest element which we call lim inf xn, and a largest
element which we call lim sup xn. Next, we are going to prove the existence of these cluster
points.

Let F0 = {x0, x1, x2, . . . , xn}
F1 = {x1, x2, x3, . . . , xn}
F2 = {x2, x3, x4, . . . , xn}
...
Fn = {xn, xn+1, . . .}

F0 ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fn ⊇ . . . and Fn ⊆ [a, b] (∀n ∈ N).
By the supremum axiom, sup Fn and inf Fn exist. Let yn = inf Fn, zn = sup Fn. Since

F1 ⊇ F2 ⊇ . . . ⊇ Fn ⊇ . . . , y0 ≤ y1 ≤ . . . ≤ yn ≤ . . . ≤ b and z0 ≥ z1 ≥ . . . ≥ zn ≥ . . . ≥ a.
Hence we have two monotone bounded sequences: yn, zn.
Hence l = limn→∞yn and L = limn→∞zn exists.
Moreover, l = supn∈Nyn and L = infn∈Nzn. As yn = infk≥nxk, and zn = supk≥nxk, so that

l = supn∈N infk≥nxk and L = infn∈N supk≥nxk

Example 1.6.1 Let xn = (−1)n. Then Fn = {xn, xn+1, . . .} = {−1, 1} , ∀n ∈ N.
Hence, yn = −1, zn = 1. So, yn → −1, and zn → 1.
Hence, lim sup xn = 1, lim inf xn = −1.

Example 1.6.2 Let xn = 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, . . .. Then ∀n ≥ 0, Fn = {0, 1, 2, 3, 4}.
Then yn = 0, zn = 4. Hence, lim sup xn = 4, lim inf xn = 0.

Theorem 1.6.3 Let xn be a bounded sequence: l = limn→∞infn∈N xn, L = limn→∞supn∈Nxn.
Then

1. l and L are cluster points of xn.

2. l is the smallest cluster point and L is the largest cluster point of xn.

Proof 1.6.4 First observe that limn→∞supn∈N (−xn) = −limn→∞infn∈Nxn. Hence, it is
enough to prove the theorem for L.

To show that L is a cluster point, we have to show that given:
1 ∀ε > 0, xn ∈ ]L − ε, L + ε[ for infinitely many n ∈ N.
Let ε > 0 be given. Since zn → L, by the definition of the convergence,
∃N ∈ N 	 ∀n ≥ N |zk − L| < ε. As zk = inf {xk, xk+1, . . .}, we conclude that:
2 ∀k ≥ N, ∃nk ≥ k : xnn ∈ ]L − ε, L + ε[
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1 ⇔ 2 So, L is a cluster point.
Let us see that L is the largest of the all cluster points of xn.
If not, for some cluster point S of xn you would have S > L. Let ε > 0 be such that

]S − ε, S + ε[ ∩ ]L − ε, L + ε[ = ∅. As S is a cluster point xn ∈ ]S − ε, S + ε[ for infinitely
many n ∈ N. In particular, zn = sup {xn, xn+1, . . .} ≥ L + ε ∀n ∈ N. As zn → L, this is not
possible. So L is the largest cluster point of xn.

Main interest of lim sup, lim inf is that they always exist whereas limn→∞xn exists only
exceptionally.

Theorem 1.6.5 Let (xn)n∈N be a bounded sequence. Then, xn converges iff
limn→∞supn∈Nxn = limn→∞infn∈Nxn

Proof 1.6.6 If xn → L, then L is the only cluster point of xn.
So limn→∞supn∈N = limn→∞infn∈N = L.
Conversely, if lim sup = lim inf, then this implies that xn has only one cluster point,

namely S = lim sup = lim inf.
To finish the proof it is enough to prove the following result.

Proposition 1.6.7 If xn is bounded and has only one cluster point, (L) then, xn → L.

Proof 1.6.8 If xn does not converges to L then, ∃ε > 0 	 xn /∈ ]L − ε, L + ε[ for infinitely
many n ∈ N. Suppose xn ≥ L+ε for infinitely many n ∈ N : n0 < n1 < n2 < . . . < nk < . . .

So that ,yk ≥ L + ε, where yk = xnk
.

yk is a subsequence of xn. As xn is bounded so is yk. Hence by the Bolzano Weierstrass’
theorem yk has a convergent subsequence. ykp → S, and since yk ≥ L + ε, in particular,
S �= L but as S is also a cluster point of xn we have contradiction. So, xn → L.

Remark: If xn is not bounded, the preceding lemma is false.

Example 1.6.9 Let xn = 1, 1
2
, 3, 1

4
, 5, 1

6
, . . . Then, 0 is the only cluster point of xn. But xn

does not converges to 0. Hence, a sequence xn diverges iff xn is unbounded (for example:
xn = en) or xn is bounded but has more than one cluster points.(for example: xn = (−1)n)

Theorem 1.6.10 Let xn and yn be two bounded sequences.

1. lim sup (xn + yn) ≤ lim sup xn + lim sup yn

2. lim inf (xn + yn) ≥ lim inf xn + lim inf yn

3. If xn ≥ 0 and yn ≥ 0, then lim sup (xnyn) ≤ lim sup xn × lim sup yn

4. If xn or yn converges, then the above inequalities become equality.

Proof 1.6.11 Let An = {xn, xn+1, . . .}, Bn = {yn, yn+1, . . .}, Cn = {xn + yn, xn+1 + yn+1, . . .}.
Then,
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1. sup Cn ≤ sup An + sup Bn

Let X = {n, n + 1, . . .} , f : X → R, f(n) = xn, g : X → R, g(n) = yn. Hence,
passing to limits, lim sup(xn + yn) ≤ lim sup xn + lim sup yn

2. infCn ≥ inf An + inf Bn. Similarly, lim sup(xnyn) ≤ lim sup xn × yn

3. As xn, yn > 0, xn×yn > 0, so sup(xn×yn) ≤ sup xn×sup yn. Hence, passing to limits,
lim sup (xnyn) ≤ lim sup xn × lim sup yn

4. Suppose xn → L.

• Let S = lim sup yn. Since S is a cluster point of yn, ∃ a subsequence

ynk
→ S. Then, since xn → L, xnk

→ L too.

xnk
+ ynk

→ L + S. Hence, L + S is a cluster point of xn + yn

Since lim sup(xn + yn) ≤ lim sup xn + lim sup yn = L + S

Hence L + S = lim sup(xn + yn)

• Similarly, let s = lim inf yn. Since s is a cluster point of yn, ∃ a subsequence

ynk
→ s. Then, since xn → L, xnk

→ L too.

xnk
+ ynk

→ L + s. Hence, L + s is a cluster point of xn + yn

Since lim inf(xn + yn) ≥ lim inf xn + lim inf yn = L + s

Hence L + s = lim inf(xn + yn)

• As above let S = lim sup yn. Since S is a cluster point of yn, ∃ a subsequence

ynk
→ S. Then, since xn → L, xnk

→ L too.

xnk
× ynk

→ L × S. Hence, LS is a cluster point of xn × yn

Since lim sup(xn × yn) ≤ lim sup xn × lim sup yn = LS

Hence LS = lim sup(xn × yn)

Example 1.6.12 Let xn = (−1), yn = (−1)n+1. Then xn + yn = 0.
So, lim sup(xn + yn) = 0 < lim sup xn + lim sup yn = 2

1.7 Elementary Topology of R

Definition 1.7.1 Let A ⊆ R be any set. We say that, ”A is closed in R” if whenever we
take a sequence xnin A, that converges to some L ∈ R, L ∈ A that is ”A is closed under
limit operation.”

There are two problems:

1. Which sets are closed?

2. How stable they are? (i.e. ∪,∩ of closed sets are closed.)
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Example 1.7.2 Prove or disprove that the following subsets of R are closed in R.

1. A = [a, b]

2. A = [a,∞[

3. A = [a, b[

4. A = N

5. A = Z

6. A = Q

7. A = R \ Q

Solution:

1. [a, b] Let xn be a sequence in A that converges to some x ∈ R. Is x ∈ A? As,
a ≤ xn ≤ b∀n ∈ N and as we have seen, a ≤ x ≤ b so, A is closed.

2. [a,∞[ Let xn be in A and xn → x, x ∈ R. As xn ≥ a∀n ∈ N then x ≥ a. So x ∈ A
so, A is closed.

3. [a, b[ let xn = b − 1
n

then xn ∈ A but limn→∞xn = b, b /∈ A. A is not closed.

4. A = N, xn in N a sequence where xn → x Since xn → x, xn is Cauchy. ∀ε > 0, ∀n ≥
N, ∀p ∈ N |xn+p − xn| < ε. Take 0 < ε < 1, as xn+p − xn < 1 then, xn+p = xn. So,
∀n ≥ N, xn = xn+1 = . . . = xn+p = . . .

Hence, any convergent sequence in N is almost constant, so, N is closed in R

5. A = Z same as above, Z is closed in R.

6. A = Q: we have seen that 1
1!

+ 1
2!

+ . . . + 1
n!

∈ R

xn ∈ Q but xn → e, /∈ Q then, Q is not closed in R.

7. A = R \ Q let xn =
√

2
n+1

, ∀n ∈ N then xn ∈ R \ Q but limn→∞ xn = 0 ∈ Q then R \ Q
is not closed in R.

Proposition 1.7.3 (Properties of closed sets): A and B are two closed sets in R.
Then,

1. A ∪ B is also closed.

2. A ∩ B is also closed.

Proof 1.7.4 1. Let xn be a sequence in A∪B, that converges to x ∈ R. We need to show
that, x ∈ A ∪ B too. For xn there are three possibilities:
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(a) xn ∈ A for all but finitely many n. Then, x ∈ A

(b) xn ∈ B for all but finitely many n. Then, x ∈ B

(c) xn ∈ A for infinitely many n and xn ∈ B for infinitely many n Then x ∈ A ∩ B

So at any case, x ∈ A ∪ B, hence A ∪ B is closed.

2. Let xn in A ∩ B, that converges to some x ∈ R \ Q. As xn ∈ A, xn ∈ B for all n ∈ N.
Since A and B are closed, x ∈ A and x ∈ B then x ∈ A ∩ B then A ∩ B is closed.

Remark:

1. ∪n≥1

[
1

n
.1 − 1

n

]
= ]0, 1[

This shows that, the union of infinitely many closed sets need not be closed.

2. Any finite set F ⊆ R is closed.

F = {a1, a2, . . . , an}
F = {a1} ∪ {a2} ∪ . . . ∪ {an}. As each {ai} is a closed set, F is closed.

3. The intersection of any family, (finite or not) of closed sets (Fα)α∈I is closed.

F = ∩α∈IFα

Theorem 1.7.5 Let A ⊆ R be a bounded set ( �= ∅) and α = sup A, β = inf A. Then, if A
is closed, α ∈ A and β ∈ A.

Proof 1.7.6 α = sup A ⇔
{ ∀x ∈ A,α ≥ x

∀ε > 0,∃xε ∈ A : xε > α − ε

Now let ε = 1, 1
2
, 1

3
, . . . , 1

n
. Denote xn ∈ A that correspond to ε = 1

n
so that xn > α − 1

n
.

In that way we get a sequence, (xn)n≥1 in A such that, α − 1
n

< xn ≤ α. Then, xn → α as
xn in A and A is closed α ∈ A.

Similarly, β ∈ A.

Remark: Converse is false.

Example 1.7.7 Let A = {−1} ∪ ]0, 1[ ∪ {2}
sup A = 2, xn =

1

n
∈ A, but limn→∞ xn = 0 /∈ A

inf A = −1

Finding Approximating sequences: Let A ⊆ R be a set and x ∈ R.
Problem: When is there a sequence xn in A converges to x?

Theorem 1.7.8 Let A ⊆ R be any set and L ∈ R be any point. Then there exists a sequence
xn in A : xn → L ⇔ ∀ε > 0, ]L − ε, L + ε[ ∩ A �= ∅
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Proof 1.7.9 (=⇒) Suppose that there exists a sequence xn in A that converges to L. So we
have ∀ε > 0,∃N ∈ N, ∀n ≥ N, xn ∈ ]L − ε, L + ε[ ∩ A �= ∅

(⇐=) Suppose that, ∀ε > 0, ]L − ε, L + ε[ ∩ A �= ∅. So for ε = 1 this intersection is not
empty. Take any point in it and call it x1.

For ε =
1

2
, this intersection is not empty. Take any point in it and call it x2.

...

For ε =
1

n
, this intersection is not empty. Take any point in it and call it xn. In this

way, construct a sequence xn such that xn ∈
]
L − 1

n
, L +

1

n

[
∩ A, ∀n ≥ 1. Hence, xn ∈ A

and |xn − L| <
1

n
so xn → L.

Example 1.7.10 We have seen that, ∀ε > 0, ∀x ∈ R, ]x − ε, x + ε[ ∩ Q �= ∅
Hence, ∀x ∈ R, ∃xn ∈ Q : xn → x

Example 1.7.11 We have seen that, ∀ε > 0, ∀x ∈ R. ]x − ε, x + ε[ ∩ (R/Q) �= ∅.
Hence, ∀x ∈ R, ∃ qn ∈ (R/Q) : qn → x

Exercise: Show that given x ∈ R there exists a sequence xn in the set A =
{
a + b

√
2 : a, b ∈ Z

}
.

That converges to x.

Definition 1.7.12 A subset A of R is said to be an open set if AC = R/A is closed in R.

Example 1.7.13 Q is not open since R/Q is not closed. So Q and R/Q are neither open
nor closed.

Example 1.7.14 The set A = ]a, b[ is an open set, since R/A = ]∞, a] ∪ [b,∞[ is closed.
(]∞, a] is closed and [b,∞[ is closed.) Hence A is open.

Theorem 1.7.15 Let A ⊆ R be any set then A is open ⇔ ∀x ∈ A, ∃ε > 0 such that
]x − ε, x + ε[ ⊆ A.

Proof 1.7.16 (=⇒) Suppose A is open and x ∈ A. For a contradiction, suppose ∀ε > 0
]x − ε, x + ε[ � A i.e. ∀ε > 0, ]x − ε, x + ε[ ∩ AC �= ∅.
By the above theorem there exists a sequence xn in AC that converges to x as AC is closed.

x ∈ AC so x /∈ A.
Hence, ∃ ε > 0 : ]x − ε, x + ε[ ⊆ A
(⇐=) Suppose that ∀x ∈ A, ∃ε > 0 : ]x − ε, x + ε[ ⊆ A. Let us see that A is open, i.e.

AC is closed. Let (xn)n∈N be a sequence in AC that converges to some x ∈ R. If x /∈ AC

then x ∈ A. So for some ε > 0, ]x − ε, x + ε[ ⊆ A. As xn → x, xn ∈ ]x − ε, x + ε[ for all
but finitely many n. So, xn ∈ A for all but finitely many n.(contradiction). So, x ∈ AC and
AC is closed. So, A is open.
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Consequences:

1. A countable set can not be open.

2. A subset A ⊆ R is open iff A is a union of open intervals; A = ∪α∈I ]aα, bα[

3. A = [a, b[ is neither open nor closed.

4. If A is open and bounded, if α = sup A, and β = inf A then neither α ∈ A nor β ∈ A

Example 1.7.17 A = ]a, b[

1.8 Closure and Interior of a Set

Definition 1.8.1 Given any set A ⊆ R,

1. The closure of A is the smallest closed set that contains A.

2. The interior of A is the largest open set contained in A.

Question: Do these sets exist?
Remark: Let (xn)n∈N be any bounded sequence. Let l = lim inf xn and L = lim sup xn.

Then, ∀ε > 0, ∃n ∈ N, ∀n ≥ N, L − ε ≤ xn ≤ L + ε

Let Ā =
{
x ∈ R : x = limn→∞an, for some sequence (an)n∈N in A

}
.

Thus, x ∈ Ā ⇔ ∃ an ∈ A, an → x.

Theorem 1.8.2 For any set A

1. Ā is closed in R.

2. Ā ⊇ A.

3. Ā = A iff A is closed in R.

4. Ā is the smallest closed set that contains A.

Proof 1.8.3 1. First remark that if A = ∅, Ā = ∅, then A is closed. So, suppose
A �= ∅. Let us see that the set O, where O = R/Ā is open. (As we know, O is open
⇔ ∀x ∈ O, ∃ ε > 0, ]x − ε, x + ε[ ⊆ O ).

Let x ∈ O. We want to prove that there is ε > 0 such that ]x − ε, x + ε[ ⊆ O. If this was
not the case we would have, ∀ε > 0 ]x − ε, x + ε[ ∩ Ā �= ∅. Then by “Approximation
Theorem”, there exists a sequence (xn)n∈N in Ā that converges to x.

So, ∀ε > 0, xn ∈ ]x − ε, x + ε[ for all but finitely many n. Fix one of these n’s.
Say n = p, so that xp ∈ ]x − ε, x + ε[. Then choose ε′ > 0 small enough such that
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]xp − ε′, xp + ε′[ ⊆ ]x − ε, x + ε[. Since xp ∈ Ā, there is a sequence yk in A that
converges to xp. So, yk ∈ ]xp − ε′, xp + ε′[ for all but finitely many k ∈ N. This implies
that, ]x − ε, x + ε[ ∩ A �= ∅ ∀ε > 0. Again by “Approximation Theorem”, there exists
a sequence (an)n∈N in A that converges to x. So, x ∈ Ā (Contradiction). So for some
ε > 0, ]x − ε, x + ε[ ⊆ O. Hence O is open, Ā is closed.

2. Let x ∈ Ā. Let a constant sequence a0 = a1 = a2 = . . . = an = . . . = x. Then an → x.
So, x ∈ Ā, hence Ā ⊇ A

3. If Ā = A, then A is closed, since Ā is closed. If A is closed, then Ā = A.

4. Let B be a closed set that contains A. So if an ∈ A, and (an)n∈N converges to some x,
then x ∈ B. Hence Ā ⊆ B.

Definition 1.8.4 The set Ā is said to be the closure of A.

Example 1.8.5 Find Q and R/Q.
Q = {x ∈ R : x = limn→∞rn for some rn ∈ Q} = R
R/Q = {x ∈ R : x = limn→∞rn for some rn ∈ R/Q} = R.

∀A ⊆ R ∀x ∈ R, ∃ an ∈ A : an → x ⇔ ∀ε > 0 ]x − ε, x + ε[ ∩ A �= ∅

Example 1.8.6 Let A = ]a, b[. Then, Ā = [a, b]. (bn = b − 1
n
∈ A)

Example 1.8.7 Let A =

{
1

n
: n = 1, 2, ...

}
. Then, Ā = A ∪ {0}.

Example 1.8.8 Let A =

{
1

n
+

1

m
: n = 1, 2, . . . , m = 1, 2, . . .

}
.

Then, Ā = A ∪
{

1

m
: m = 1, 2, . . .

}
∪ {0}

Example 1.8.9 Let A =

⎧⎨
⎩ 1

n
+

1

m
+

1

q
:

n = 1, 2, . . .
m = 1, 2, . . .
q = 1, 2, . . .

⎫⎬
⎭.

Then Ā = A ∪
{

1

m
+

1

n
: m = 1, 2, . . . , n = 1, 2, . . .

}
∪ {0}

Definition 1.8.10 (Interior of a Set A) Let A ⊆ R be any set. Define
◦
A as follows:

◦
A is the union of all open intervals ]a, b[ contained in A. a = b =⇒ ]a, b[ = ∅. So, there

is always (empty or not) some open interval in A. Of course if A = ∅, then A◦ = ∅. This

set
◦
A is called the interior of A.

Theorem 1.8.11 1.
◦
A is open.
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2. A ⊇ ◦
A

3. A =
◦
A⇔ A is open.

4.
◦
A is the largest open set contained in A.

Proof 1.8.12 1. As the union of any open sets is open, it is open.

2. A ⊇ ◦
A is obvious.

3. If A =
◦
A, then A is open, since

◦
A is open. If A is open, then A is a union of open

intervals (=
◦
A)

4. Let B ⊆ A, 	 B is open. Let x ∈ B. Then, as B is open ∃ε > 0 such that

]x − ε, x + ε[ ⊆ B. Then, ]x − ε, x + ε[ ⊆ A. So x ∈ ◦
A. Hence B ⊆ ◦

A.

Example 1.8.13 Find
◦
Q,

◦
N and

◦
R/Q.

•
◦
Q= ∅, since Q does not contain any open interval.

•
◦

R/Q= ∅, since R/Q does not contain any open interval.

• ◦
N= ∅, since N does not contain any open interval.

• ◦
Z= ∅, since Z does not contain any open interval.

•
◦

[a, b]= ]a, b[
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1.8.1 Exercises IV

1. Let X = {a0, a1, . . . , an, . . .}, where (an)n∈N is a convergent sequence in R with L =
limn→∞an.

F be the set of the cluster points of (an)n∈N. Show that X = X ∪ F .

2. Let X = {tan n : n ∈ N}. Find X.

3. Let X = Q\N. Find X.

4. Let X = Q\Z. Find X.

5. Let X =
{

1
n

+ 1
m

: n = 1, 2, 3, . . . , m = 1, 2, 3, . . .
}
. Find X.

6. Let (an)n∈N and (bn)n∈N be two convergent sequences in R with

L = limn→∞an and S = limn→∞bn. Put A = {an + bn : n ∈ N}, B = {an + bm : n ∈
N, m ∈ N}. Find A and B.

7. For A = { n
m

: n ∈ N, m = 1, 2, 3 . . .}, find A.

8. Let A and B be two nonempty subsets of R. Show that A + B ⊇ A + B and A × B ⊇
A × B. Here A + B = {a + b : a ∈ A, b ∈ B} and A × B = {a × b : a ∈ A, b ∈ B}.

9. Show that for any countable subset
◦
A= ∅.

10. Let A be a closed subset of R. Show that
◦
A= ∅ iff R\A = R.

11. Let A be any nonempty proper subset of R and B = Ā\ ◦
A. Show that B is closed and

◦
B= ∅.

12. Let O be an open subset of R and A be an arbitrary subset of R. Show that

(a) If O ∩ A = ∅, then O ∩ Ā = ∅ too.

(b) We have O ∩ Ā ⊆ O ∩ A ⊆ Ō ∩ Ā.

13. Let A be a subset of R. Show that
◦
Ā= ∅ iff given any interval ]a, b[ there exists a

subinterval ]c, d[ of ]a, b[ such that ]c, d[ ∩ A = ∅.

14. Let A = {x ∈ R : x2 > 2} and B = {x ∈ R : x2 ≥ 2}. Show that Ā = B and
◦
B= A.

15. Let A be a nonempty bounded subset of R and δ(A) = δ(Ā). Is δ(A) = δ(
◦
A)?

16. Let O1 and O2 be two open sets with O1 = R and O2 = R. Show that O1 ∩ O2 = R.



Chapter 2

Minkowski and Hölder Inequalities

For 1 ≤ p ≤ ∞ there is a unique q ∈ ]1,∞[ 	 1

p
+

1

q
= 1.

So, pq = p + q the number p is said to be the “conjugate of q”
If p = 2 =⇒ q = 2.

If p =
√

2 =⇒ q =

√
2√

2 − 1
.

If p = 1, then we take q = ∞.
If q = 1, then we take p = ∞.

So, ∀ p ∈ ]1,∞[ , ∃ q ∈ ]1,∞[ 	 1

p
+

1

q
= 1

Now, let a, b ∈ R+. Then, (a − b)2 ≥ 0. So, a2 + b2 ≥ 2ab. Equivalently,

1

2
a2 +

1

2
b2 ≥ ab Eq 3.1

As
1

2
+

1

2
= 1, we can expect that,

1

p
ap +

1

q
bq ≥ ab,

(
1 < p < ∞
1

p
+

1

q
= 1

)

Lemma 2.0.14 For a, b ∈ R+ 1 < p < ∞ and
1

p
+

1

q
= 1. The inequality,

ap

p
+

bq

q
≥ ab

holds.

Proof 2.0.15 If a = 0 or b = 0, there is nothing to prove. So, Suppose a > 0 and b > 0,
then dividing the inequality (Eq 3.1) by bq, we obtain

apb−q

p
+

1

q
≥ ab1−q Eq 3.2

Put x = ab1−q (so, x > 0). Then xp = apbp−qp. Hence, Eq 3.2 becomes

xp

p
+

1

q
≥ x Eq 3.3

47
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Let f : [0,∞[ → R, f(x) =
xp

p
+

1

q
− x. (Eq 3.2) is equivalent to

f(x) ≥ 0, ∀x ∈ [0,∞[ Eq 3.4

Now, f ′(x) = xp−1 − 1 = 0. So, x = 1. Hence, at x = 1, f has an extremum.
As f ”(x) = (p − 1)xp−2 and f ”(x) = p − 1 > 0, we conclude that f has an absolute

minimum at x = 1.

As f(1) =
1

p
+

1

q
− 1 = 0, we see that f(x) ≥ 0, ∀x ∈ [0,∞[. So, (Eq 3.4) holds, so (Eq

3.1) holds. For x = (x1, x2, x3, . . . , xn) ∈ Rn, we define the p-norm of xn as:

‖x‖ p = sup {|x1| , |x2| , |x3| , . . . , |xn|}. We want to prove that

{ ‖x + y‖p ≤ ‖x‖p + ‖y‖p and

‖x × y‖1 ≤ ‖x‖p × ‖y‖q

(1 < p < ∞ and
1

p
+

1

q
= 1, (xy = x1y1 + · · · + xnyn))

For 1, ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1 is obvious.
For p = ∞, ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞.

Theorem 2.0.16 (Hölder inequality) For 1 < p < ∞ and x, y ∈ Rn,
‖x × y‖1 ≤ ‖x‖p × ‖y‖q.

Proof 2.0.17 If ‖x‖p = 0 or ‖y‖p = 0, then there is nothing to prove. So, suppose ‖x‖p > 0
and ‖y‖p > 0.

Let ai =
xi

‖x‖p

, bi =
yi

‖y‖p

. Then by the preceding inequality,
1

p

xp
i

‖x‖p
p

+
1

q

yp
i

‖y‖p
p

≥ |xi|
‖x‖p

|yi|
‖y‖p

.

Adding them from p = 1 to p = n, we get:

1

p

n∑
p=1

|xi|p

‖x‖p
p

+
1

q

n∑
p=1

|xi|p

‖y‖p q
≥

n∑
p=1

|xi|p|yi|p

‖x‖p ||y||q

1 ≥

n∑
i=1

|xi| |yi|

‖x‖p ‖y‖q

i.e. ||xy||1 ≤ ‖x‖p ||y||q. For p = q = 2, the Hölder inequality becomes:

n∑
i=1

|xi| |yi| ≤
√

|x1|p + . . . + |xp|p
√

|y1|p + . . . + |yp|p (Cauchy Schwartz Inequality)

Theorem 2.0.18 (Minkowski Inequality) ‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Proof 2.0.19 For p = 1,
‖x + y‖1 = |x1 + y1| + . . . + |xn + yn| ≤ |x1| + |y1| + . . . + |xn| + |yn| ≤ ||x||1 + ‖y‖1

For p = ∞, ‖x + y‖∞ = max{|x1 + y1| , . . . , |xn + yn|} ≤ max{|x1| + |y1| , . . . , |xn| + |yn|}
≤ max{|x1| , . . . , |xn|} + max{|y1| , . . . , |yn|}
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For 1 ≤ p ≤ ∞, ‖xi + yi‖p = |xi + yi|p−1 × |xi + yi| ≤ |xi + yi|p−1 |xi| + |xi + yi|p−1 |yi|,
so that

n∑
i=1

|xi + yi|p ≤
n∑

i=1

|xi + yi|p−1 |xi| +
n∑

i=1

|xi + yi|p−1 |yi|
Now, by Hölder inequality,

n∑
i=1

|xi + yi|p−1 |xi| ≤
(

n∑
i=1

|xi + yi| (p−1)
q

) 1
q
(

n∑
i=1

|xi|p
) 1

p

=

(
n∑

i=1

|xi + yi|p
) 1

q
(

n∑
i=1

|xi|p
) 1

p

.

n∑
i=1

|xi + yi|p−1 |yi| ≤
(

n∑
i=1

|xi + yi| (p−1)
q

) 1
q
(

n∑
i=1

|yi|p
) 1

p

=

(
n∑

i=1

|xi + yi|p
) 1

q
(

n∑
i=1

|yi|p
) 1

p

.

Hence,

(
n∑

i=1

|xi + yi|p
)1

≤
(

n∑
i=1

|xi + yi|p
) 1

q

[‖xp‖ + ‖yp‖]

Hence,

(
n∑

i=1

|xi + yi|p
) 1

p

≤ [‖xp‖ + ‖yp‖] i.e. ‖xp + yp‖ ≤ ‖xp‖ + ‖yp‖.

Example 2.0.20
b∫
a

f(x)g(x)dx ≤
(

b∫
a
|f(x)|p dx

) 1
p

×
(

b∫
a
|g(x)|p dx

) 1
p

.
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Chapter 3

Metric Spaces (Basic Concepts)

1. Metric Spaces: Definition and Properties of the Real Numbers

2. Topology of Metric Spaces (Open Sets, Closed Sets, etc.)

3. Basic topological concepts. (Interior, Closure, boundary of a set etc.)

4. Accumulation Points and Isolated Points of a Set

5. Density and Separability

6. Relativization

7. Lindölf Theorem

3.1 Metrics and Metric Spaces

Let X be any set. ( �= ∅). A mapping d : X × X → [0,∞[ is said to be a “distance” or
“metric” if

1. ∀x, y ∈ X, d (x, y) = 0 ⇐⇒ x = y

2. ∀x, y ∈ X, d (x, y) = d (y, x)

3. ∀x, y ∈ X, d (x, y) ≤ d (x, z) + d (z, y) “triangle inequality”

Then the pair (X, d) is said to be a metric space.

Example 3.1.1 1. X = N, Z, Q or R where metric is d (x, y) = |x − y|. Then (X, d) is
a metric space. This metric d is said to be the ”usual metric” of R.

2. Let X = Rn and for 1 ≤ p ≤ ∞, dp (x, y) = ‖x − y‖p. Then by Minkowski Inequality,
dp is a metric on Rn.

For p = 2, the metric d2 (x, y) =
√
|x1 − y1|2 + · · · + |xn − yn|2 is said to be the “Eu-

clidean metric” on Rn.

51
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3. Let X be any set and d be defined by d (x, y) =

{
1 if x �= y
0 if x = y

.Then d is a metric,

known as the “discrete metric”. Every set has at least the discrete metric. So every
set is a metric space.

4. Let X be any set and f : X → R be a one-to-one function. Put df (x, y) = |f (x) − f (y)|.
Then df is a metric on X. e.g. X = R, f (x) = arctan x.

Then df (x, y) = |arctan (x) − arctan (y)| is a metric on R.

5. Let E be any set and X = B (E) = {f : E → R : f is bounded on E}.
Let d∞ (f, g) = supx∈E |f (x) − g (x)| . d∞ is called the “supremum metric”.

Definition 3.1.2 Let (X, d) be a m.s., x ∈ X and ε > 0 given.

1. The set Bε (x) = {y ∈ X : d (x, y) < ε} is said to be an open ball centered at x with
radius ε.

2. The set B′
ε (x) = {y ∈ X : d (x, y) ≤ ε} is said to be a closed ball.

3. The set Sε (x) = {y ∈ X : d (x, y) = ε} is said to be a sphere.

Example 3.1.3 Let X = R2, d = d2.
Bε (0) = {(x, y) ∈ R2 : x2 + y2 < ε2}
B′

ε (0) = {(x, y) ∈ R2 : x2 + y2 ≤ ε2}
Sε (0) = {(x, y) ∈ R2 : x2 + y2 = ε2}

Example 3.1.4 Let X = R2, d = d1.
B1 (0) = {(x, y) ∈ R2 : |x| + |y| < 1}
d = d∞ : B1 (0) = {(x, y) ∈ R2 : d∞ ((x, y) , (0, 0)) = max {|x| , |y|} < 1}.

3.2 Open Sets and Closed Sets

Definition 3.2.1 Let (X, d) be a metric space and A ⊆ X a set. We say that A is open
⇐⇒ for any x ∈ A, ∃ε > 0 such that Bε (x) ⊆ A.

This is equivalent to say that a set A is open iff A is a union of a family of open balls.
For X = R, d (x, y) = |x − y| Bε (x) = ]x − ε, x + ε[.

Example 3.2.2 On X put the discrete metric d. Then,

Bε (x) = {y ∈ X : d (x, y) < ε} =

{ ∅ if ε ≤ 1
{x} if ε > 1

. Hence, any set A is open for this

metric. ∀x ∈ A, ∃ε > 0 (take ε < 1) Bε (x) = {x} ⊆ A.

Proposition 3.2.3 In any metric space (X, d) , every open ball Bε (x) is an open set.
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Proof 3.2.4 Let y ∈ Bε (x). So d (x, y) < ε. Let 0 < ε′ < ε−d (x, y). Then Bε′ (y) ⊆ Bε (x).
Indeed, for z ∈ Bε′ (y),
d (x, z) ≤ d (x, y) + d (y, z) < d (x, y) + ε′ = d (x, y) + ε − d (x, y) = ε.
Hence, z ∈ Bε (x), i.e. Bε′ (y) ⊆ Bε (x). So Bε (x) is an open set.

Definition 3.2.5 Let (X, d) be a metric space. Let τd be the collection of all open subsets
of X. This collection τd is said to be the “topology of X defined by d”.

Proposition 3.2.6 (Basic Properties of τd) Let (X, d) be any metric space. Then:

1. ∅ ∈ τd and X ∈ τd.

2. O1, O2 ∈ τd =⇒ O1 ∩ O2 ∈ τd.

3. (Oα)α∈I is a family in Υd =⇒ ∪α∈IOα ∈ τd.

Proof 3.2.7 1. ∅ is open by “intuition”.

2. Let O1, O2 be open sets. Let x ∈ O1 ∩ O2. Then x ∈ O1 and x ∈ O2.

Since O1 is open ∃ ε1 > 0 : Bε1 (x) ⊆ O1.

Since O2 is open ∃ε2 > 0 : Bε2 (x) ⊆ O2.

Let ε = min {ε1, ε2}. Then Bε (x) ⊆ O1 ∩ O2. So, O1 ∩ O2 is open.

3. Let (Oα)α∈I be any family of open sets. Let O = ∪α∈IOα. Let x ∈ O, then x ∈ Oα for
some α ∈ I. As Oα is open there is an ε > 0 such that Bε (x) ⊆ Oα ⊆ O. Hence, O is
open.

Remark: The intersection of infinitely many open sets need not to be open. Indeed, let

X = R, d (x, y) = |x − y| . Then, ∩n≥1

]
− 1

n
,
1

n

[
= {0} is closed.

Definition 3.2.8 Let (X, d) be a metric space. A set F ⊆ X is said to be closed if FC is
open.

Theorem 3.2.9 (Characterization of closed sets) Let (X, d) be a metric space and
A ⊆ X a set. Then, A is closed ⇐⇒ ∀x ∈ X\A, ∃ ε > 0 : Bε (x) ∩ A = ∅.

Proof 3.2.10 (=⇒) Suppose that A is closed. Let x ∈ X\A be any point. Then since
O = X\A is open ∃ε > 0 : Bε (x) ⊆ O, i.e. Bε (x) ∩ A = ∅.

(⇐=) Suppose that ∀x ∈ X\A, ∃ ε > 0 : Bε (x) ∩ A = ∅.
This means that ∀x ∈ X\A, ∃ ε > 0 : Bε (x) ⊆ X\A. So X\A is open. Hence, A is

closed.
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Example 3.2.11 In any metric space (X, d), every finite set F = {a1, . . . , an} is closed. By
Theorem 3.2.9 it is enough to show the following:

∀x /∈ F, ∃ ε > 0 : Bε (x) ∩ F = ∅.
Let x /∈ F . So d (x, ai) �= 0. Let ε =

1

2
min {d (x, ai) : i = 1, . . . , n}. Then ε > 0. Now

Bε (x) ∩ F = ∅. Hence F is closed.

Example 3.2.12 Let X = R, d (x, y) = |x − y|.
Then F = [a, b] , F = N, F = Z, F = [a,∞[ are closed.

Proposition 3.2.13 (Properties of Closed Sets) Let (X, d) be any m.s., F be the col-
lection of the closed sets in X. Then;

1. ∅ ∈ F and X ∈ F .

2. F1, F2 ∈ F =⇒ F1 ∪ F2 ∈ F .

3. The intersection of any family of closed sets (Fα)α∈I is closed.

Proof 3.2.14 1. True by definition.

2. Let F1, F2 be two closed sets. Let x ∈ X\(F1 ∪ F2).

=⇒ ∃ε1 > 0 : Bε1(x) ∩ F1 = ∅ and ∃ε2 > 0 : Bε2(x) ∩ F2 = ∅. Let ε = min {ε1, ε2}.
Then Bε(x) ∩ F1 ∪ F2 = ∅. Hence, F1 ∪ F2 is closed.
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3.2.1 Exercises I

1. Let d be a metric on a set X. Show that

(a) ∀x, y, z ∈ X, |d(x, y) − d(y, z)| ≤ d(x, z).

(b) For xn, yn, x, y in X, |d(xn, yn) − d(x, y)| ≤ d(xn, x) + d(yn, y)

2. Let (X, d) be a metric space. For x, y ∈ X, define d′ by d′(x, y) = min{1, d(x, y)}.

(a) Show that d′ is also a metric on X.

(b) For 0 < ε < 1, Bε(x, d) = {y ∈ X : d(x, y) < ε} = Bε(x, d′) where Bε(x, d′) =
{y ∈ X : d′(x, y) < ε}.

(c) Deduce that τd = τd′ .

3. Let (X, d) be a metric space. For x, y in X, define d′ by d′(x, y) =
d(x, y)

1 + d(x, y)
. Show

that

(a) The function ϕ : [0,∞[ → [0,∞[ defined by ϕ(x) =
x

1 + x
is increasing.

(b) For any x, y ∈ [0,∞[ ,
x + y

1 + x + y
≤ x

1 + x
+

y

1 + y
.

(c) d′ is a metric on X.

(d) Fix x ∈ X. ∀ ε > 0, ∃ ε′ > 0 : Bε′(x, d′) ⊆ Bε(x, d).

(e) ∀ ε > 0, ∃ ε′ > 0 : Bε′(x, d) ⊆ Bε(x, d′).

(f) Deduce that τd = τd′ .
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3.3 Basic Topological Concepts

Definition 3.3.1 (Closure of a Set) Let (X, d) be a m.s. and let A ⊆ X be any set. Let
A = {B ⊆ X : B ⊇ A, B is closed}. A �= ∅, since at least X ∈ A. Let A = ∩B∈AB. Then,
A is said to be the closure of A.

Proposition 3.3.2 1. A is closed.

2. A is the smallest closed set containing A.

Proof 3.3.3 1. A is closed, since intersection of any family of closed sets is closed.

2. A ⊇ A since each B ∈ A contains A. So A is the smallest closed set containing A.

Theorem 3.3.4 (Characterization of the closure) Let (X, d) be any m.s., A any set
and x ∈ X be any point. Then x ∈ A ⇐⇒ ∀ε > 0, Bε (x) ∩ A �= ∅.

Proof 3.3.5 Let x ∈ A. If we had some ε > 0 such that Bε (x)∩A = ∅, then we would have
A ⊆ X\Bε (x). Let B = X\Bε (x). Then B is closed and A ⊆ B. So A ⊆ B. This means
that Bε (x)∩A = ∅. This is not possible since x ∈ Bε (x)∩A. This contradiction shows that
∀ε > 0 Bε (x) ∩ A �= ∅.

Conversely, suppose ∀ε > 0, Bε (x) ∩ A �= ∅. Let us see that x ∈ A. Let B ⊇ A and B
closed. We have to show that x ∈ B. If this was not the case, we would have x ∈ BC. As
BC is open, for some ε > 0, Bε (x) ⊆ BC. So B ∩ Bε (x) = ∅. In particular A ∩ Bε (x) = ∅,
which is not possible. So x ∈ B, so x ∈ A.

Example 3.3.6 Let X = R, d (x, y) = |x − y|. Then Q = R and R\Q = R.

Example 3.3.7 Let X = Rn, d =Euclidean metric. Let us see that Qn = Rn.
Let x ∈ Rn and ε > 0. We need to show that Bε (x)∩Qn �= ∅, i.e. ∃ r = (r1, . . . , rn) ∈ Qn

such that (x1 − r1)
2 + · · · + (xn − rn)2 < ε2. Let ri ∈ Q be such that |xi − ri| <

ε√
n
. Then

(x1 − r1)
2 + · · · + (xn − rn)2 < ε2.

Proposition 3.3.8 (Properties of the Closure Operation) Let (X, d) be a metric space
and A,B be two subsets of X. Then,

1. A is closed ⇐⇒ A = A.

2. A = A.

3. A ⊆ B =⇒ A ⊆ B.

4. A ∪ B = A ∪ B.

5. A ∩ B ⊆ A ∩ B.
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Proof 3.3.9 1. Always true from the definition.

2. Follows from 1.

3. If A ⊆ B, then A ⊆ B, too. Hence A ⊆ B.

4. As A ⊆ A ∪ B, B ⊆ A ∪ B. By 3=⇒A ⊆ A ∪ B, B ⊆ A ∪ B =⇒ A ∪ B ⊆ A ∪ B.

For the reverse inclusion; as A ⊆ A, B ⊆ B =⇒ A ∪ B ⊆ A ∪ B. Since the union of
two closed sets is closed, A ∪ B is closed. Hence, by 3, A ∪ B ⊆ A ∪ B.

5. As A ∩ B ⊆ A, A ∩ B ⊆ B. By 3=⇒A ∩ B ⊆ A, A ∩ B ⊆ B =⇒ A ∩ B ⊆ A ∩ B.

Example 3.3.10 We do not have A ∩ B = A ∩ B.
Let X = R, and d be usual metric. (|x − y|).
Let A = Q, B = R\Q. Then A ∩B = ∅. So A ∩ B = ∅. On the other hand A = R, B =

R. So A ∩ B = R.

Definition 3.3.11 (Interior of a Set) Let (X, d) be any metric space and A ⊆ X be
any set. Let A = {B ⊆ X : B is open, B ⊆ A } .A is nonempty since at least ∅ ∈ A. Let
◦
A= ∪B∈AB. This is clearly the largest open set contained in A. This set

◦
A is said to be

“the interior of A”.

Theorem 3.3.12 (Characterization of the interior) Let (X, d) be a m.s. A ⊆ X, x ∈
X. Then x ∈ ◦

A⇐⇒ ∃ε > 0 : Bε (x) ⊆ A.

Proof 3.3.13 (=⇒) Let x ∈ ◦
A. As

◦
A is open, by definition, ∃ε > 0 : Bε (x) ⊆ ◦

A. So
Bε (x) ⊆ A.

(⇐=) Let ε > 0 be such that Bε (x) ⊆ A. Then this Bε (x) ∈ A. So Bε (x) ⊆ ◦
A⊆ A.

Example 3.3.14 1. Let X = R, d (x, y) = |x − y|.
◦
Q= ∅,

◦
R�Q= ∅, ◦

Z= ∅, ◦
N= ∅,

◦
[a, b]= ]a, b[.

2. Let X = Rn, d = d2. A = R × {0} =⇒ ◦
A= ∅.

3. Let X = Rn, d = d2. A = Rn−1 × {0} =⇒ ◦
A= ∅.

Proposition 3.3.15 (Properties of the interior operation)

1. A is open ⇐⇒ ◦
A= A.

2.

◦
◦
A=

◦
A.
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3. A ⊆ B =⇒ ◦
A⊆ ◦

B

4.
◦

(A ∪ B) ⊇ ◦
A ∪ ◦

B

5.
◦

(A ∩ B)=
◦
A ∩ ◦

B

Proof 3.3.16 1. Always true from the definition.

2. Follows from 1.

3. Let A ⊆ B. Then
◦
A⊆ B. Hence

◦
A⊆ ◦

B since
◦
B is the largest open set contained in B.

4. A ⊆ A ∪ B, B ⊆ A ∪ B =⇒ ◦
A⊆

◦
(A ∪ B)

◦
B⊆

◦
(A ∪ B)=⇒ ◦

A ∪ ◦
B⊆

◦
(A ∪ B).

5. As A ∩ B ⊆ A, A ∩ B ⊆ B, =⇒
◦

(A ∩ B)⊆ ◦
A,

◦
(A ∩ B)⊆ ◦

B=⇒
◦

(A ∩ B)⊆ ◦
A ∩ ◦

B.

Conversely,
◦
A ∩ ◦

B⊆ A∩B. As
◦
A ∩ ◦

B is open and contained in A∩B,
◦
A ∩ ◦

B⊆
◦

(A ∩ B).

Example 3.3.17 Let X = R, d (x, y) = |x − y|.
A = Q, B = R\Q =⇒ ◦

A= ∅, ◦
B= ∅. But

◦
(A ∪ B)= R.

Proposition 3.3.18 (Interior-closure connection) Let (X, d) be a m.s. A ⊆ X. Then,

1.
(
A
)C

=
◦(

AC
)

.

2.
( ◦
A
)C

= (AC).

Proof 3.3.19 1. Let x ∈ X be any point. Then, x ∈
◦(

AC
)⇐⇒ ∃ε > 0 : Bε (x) ⊆ AC ⇐⇒

∃ε > 0 : Bε (x) ∩ A = ∅ ⇐⇒ x /∈ A ⇐⇒ x ∈ (A)C .

2. Follows directly from 1.

Definition 3.3.20 Let (X, d) be a m.s. A ⊆ X. The set ∂A = A\ ◦
A is said to be the

boundary of A.

Example 3.3.21 Let X = R2, d = d2. Let A = {(x, y) ∈ R2 : x2 + y2 < 1}. Then,

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and A is open. So
◦
A = A =⇒ ∂A = {(x, y) ∈ R2 : x2 + y2 = 1}.

Example 3.3.22 Let X = R, d =usual metric, A = Q. Then A = R.
◦
A= ∅. So ∂A = R.
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Example 3.3.23 Let X = R, d =usual metric, A = [a, b[. Then A = [a, b] ,
◦
A= ]a, b[. So

∂A = {a, b}.
Proposition 3.3.24 (Properties of the Boundary)

1. For any set A ⊆ X, ∂A is always a closed set. Since ∂A = A\ ◦
A= A∩

( ◦
A
)c

= A∩(Ac)

is closed.

2. ∂A = ∂
(
AC
)
. Clear from 1.

3. A is closed iff ∂A ⊆ A.

4. A is open iff ∂A ∩ A = ∅.

3.4 Accumulation and Isolated Points of a Set

Definition 3.4.1 Let (X, d) be a m.s. and A ⊆ X be a set. We want to classify the points
of A. For x ∈ A and ε > 0 arbitrary, Bε (x) ∩ A �= ∅. So, only one of the following may
happen:

1. ∃ε > 0 : Bε (x) ∩ A = {x}. In this case we say that x is an isolated point of A.

2. ∀ε > 0 : Bε (x) ∩ A\ {x} �= ∅. In this case we say that x is an accumulation point
of A.

Remark: An isolated point of A is always in the set A but an accumulation point may
or may not be in A.

Example 3.4.2 Let X = R, d (x, y) = |x − y|
1. A = N. Then A = N = N. For n ∈ N, if 0 < ε < 1, ]n − ε, n + ε[ ∩ N = {n}. So,

every point of N is an isolated point.

2. A = Q. Then Q = R. Let x ∈ R and ε > 0 be arbitrary.

Since ]x − ε, x + ε[ contains infinitely many rational numbers, certainly ]x − ε, x + ε[∩
Q\ {x} �= ∅.
Hence, every x ∈ R is an accumulation point of Q.

3. A =

{
1

n
: n = 1, 2, 3, . . .

}
. Then A = A ∪ {0} . ∀ε > 0, ]−ε, ε[ ∩ A is an infinite set.

So, 0 is an accumulation point.

For x =
1

n
, for 0 < ε < min

{
1

n
− 1

n + 1
,

1

n − 1
− 1

n

}
,

]
1

n
− ε,

1

n
+ ε

[
∩ A =

{
1

n

}
.

So, that any x =
1

n
is an isolated point.
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Let, for any A ⊆ X, A′ =
{
x ∈ A : x is an accumulation point

}
. Then clearly A = A ∪ A′.

Thus A is closed ⇐⇒ A′ ⊆ A.

Definition 3.4.3 • If A = A′, then we say that A is perfect.

• If every x ∈ A is an isolated point, then we say that A is discrete.

Example 3.4.4 A = [a, b] is a perfect set.

Example 3.4.5 A = N, A = Z is discrete. Any finite set is discrete.

Example 3.4.6 Let A =

{
1

n
+

1

m
: n = 1, 2, . . . , m = 1, 2, . . .

}
. Then

A = A ∪
{

1

n
: n = 1, 2, . . .

}
∪ {0}.

A′ =
{

1
n

: n = 1, 2, . . .
} ∪ {0}. A′′ = {0}. A′′′ = ∅.

Proposition 3.4.7 Let x ∈ A be a point. Then, x is an accumulation point ⇐⇒ ∀ε >
0, Bε (x) ∩ A is infinite.

Proof 3.4.8 (⇐=) is trivial.

(=⇒) For a contradiction suppose, for some ε > 0, Bε (x)∩A is finite, say Bε (x)∩A =
{x0, . . . , xn}. Let O = Bε (x) \F , where F = {x0, . . . , xn} − {x}. Then O is open and
x ∈ O. So for some ε′ > 0, Bε′ (x) ⊆ O. Hence, Bε′ (x) ⊆ Bε (x) and Bε′ (x) ∩ F = ∅
or Bε′ (x) ∩ F = {x}. Hence, Bε′ (x) ∩ A\ {x} = ∅. This contradicts the definition of
accumulation point. So, ∀ε > 0, Bε (x) ∩ A is infinite.
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3.4.1 Exercises II

All the sets below are the subsets of R and on R the metric is its usual metric.

1. Show that, for any set A, A′ is a closed set.

2. If A �= ∅ and bounded and infinite, show that then A′ �= ∅.

3. If A is uncountable, then show that A′ �= ∅.

4. If A is open, then show that A has no isolated point.

5. If A is dense R, then show that A has no isolated point.

6. For A =

{
1

n
+

1

m
+

1

p
: n = 1, 2, 3, . . . , m = 1, 2, 3, . . . , p = 1, 2, 3, . . .

}
, find A,A′, A′′, A′′′

and A′′′′.

7. Show that for any set A, ∂A ⊆ ∂A and ∂A◦ ⊆ ∂A.

8. Let a ∈ A. Show that;

(a) a is an accumulation point of A iff A has a sequence (xn)n∈N with xn �= a for all
n such that xn → a.

(b) a is an isolated point of A iff every sequence (xn)n∈N in A that converges to a is
eventually constant.

9. If a ∈ ∂A, then show that there exist two sequences (xn)n∈N and (yn)n∈N converging
to a such that xn ∈ A for all n ∈ N and yn /∈ A for all n ∈ N.

10. Show that a subset A of R can have at most countably many isolated points. Deduce
that every discrete subset of R is countable.
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3.5 Density and Separability

Definition 3.5.1 Let (X, d) be a m.s. If M ⊆ X and M = X, then we say that M is dense
in X.

Example 3.5.2 Q is dense in R. R\Q is dense in R. Qn is dense in Rn.

Theorem 3.5.3 Let (X, d) be a m.s and M ⊆ X be a set. Then, The followings are equiv-
alent:

1. M = X

2. ∀O ⊆ X, where O is open: O ∩ M �= ∅.
3. ∀x ∈ X, ∀ε > 0 : Bε (x) ∩ M �= ∅.

Definition 3.5.4 A metric space (X, d) is said to be separable, if there is a countable set
M ⊆ X such that M = X.

Example 3.5.5 1. Let X = R, d (x, y) = |x − y|. Then as Q = R and Q is countable, R
is separable.

2. Let X be any set. On X put the discrete metric d (x, y) =

{
1 if x �= y
0 if x = y

. Then

in this metric space (X, d) every set A is at the same time closed and open. So,
∀A ⊆ X, A = A. Hence, the only dense set is X itself.

Conclusion: (X, d) is separable ⇐⇒ X is countable.

3. (Rn, d2) is separable since Qn = Rn

Theorem 3.5.6 Let (X, d) be a m.s. Suppose that we have in this m.s. an uncountable
family (Oα)α∈I of nonempty, pairwise disjoint, open sets. (i.e., ∀α �= β, Oα∩Oβ = ∅). Then
such a metric space cannot be separable.

Proof 3.5.7 Let M ⊆ X be any set such that M = X. By Theorem 3.5.3, M ∩Oα �= ∅. Let
xα ∈ M∩Oα be any point. As Oα∩Oβ = ∅, for α �= β, xα �= xβ. Let N = {xα : α ∈ I}. Then
N is uncountable and N ⊆ M . This means that any dense subset M of X is uncountable.
So (X, d) cannot be separable.

Example 3.5.8 Let E be an infinite set. X = B (E) = {ϕ : E → R : ϕ is bounded}. For
d (ϕ, ψ) = sup |ϕ (x) − ψ (x)| , X becomes a m.s.

Let us see that the m.s. (X, d) is not separable. As, E is infinite, 2E is uncountable.
∀A ∈ 2E, let ϕA = χA. Then ϕA ∈ X. For A �= B, d (ϕA, ϕB) = supx∈E |χA (x) − χB (x)| =

1. Let B 1
2
(ϕA) be the open ball in X with radius

1

2
and center at ϕA. Put OA = B 1

2
(ϕA).

Then OA ∩ OB = ∅ for A �= B. Hence, (OA)A∈2E is an uncountable family of nonempty,
pairwise disjoint, open sets in X. So (X, d) is not separable.

If E = N, then B (E) = {ϕ : N → R : ϕ is bounded} = the space of bounded sequences.
The set B (N) is denoted by l∞.
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3.5.1 Exercises III

All the sets below are subsets of R and the metric on R is its usual metric.

1. Find an uncountable closed set K such that
◦
K= ∅.

2. If K �= ∅, F �= ∅, both are closed and one of them is bounded, show that then, K + F
is closed.

3. Show that the sets F1 = Z and F2 =
√

2Z are closed but F1 + F2 is dense in R.

Hint: First, show that every subgroup G of (R, +) is either dense or discrete.

4. Let A be any set ( �= ∅) and B any open set ( �= ∅). Show that the set A + B is open.

5. Let A �= ∅ be any set. Show that A = ∩k≥1

(
A +

]− 1
k
, 1

k

[)
.

6. From 4 and 5 deduce that every closed subset A of R is the intersection of countably
many open sets and that every open set O is the union of countably many closed sets.

7. Let A = ∪n≥1

[
n + 1

n
, n + 1 − 1

n

]
, N∗ = N\{0}. Show that both A and N∗ are closed,

A ∩ N∗ = ∅ but d(A, N∗) = infa∈Ap∈N∗ |a − p| = 0.

8. Let I �= ∅ be an interval, A any set (∅ �= A �= R). Show that if I ∩ A �= ∅ and
I ∩ AC �= ∅, then I ∩ ∂A �= ∅.

9. Let I = [a, b] and O0, O1, . . . , On, . . . be open sets such that I ⊆ ∪n∈NOn. Show that

there exists N ∈ N such that I ⊆ N∪n=0On.
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3.6 Relativization

Let X = R2, d = d2. Consider R as a subset of R2. (We identify R with x-axis, i.e.
R ≡ R × {0}) Observe that for (x, 0) , (y, 0) in R × {0} . d2 ((x, 0) , (y, 0)) = |x − y|.

So that, the metric induced by d2 on R is just d (x, y) = |x − y|. Hence, we have two
metric spaces (R, d) , (R2, d2) with R ⊆ R2, d2|R = d.

Now, observe also that for (x, 0) in R× {0} , Bε ((x, 0))∩R = ]x − ε, x + ε[× {0}. Now,
let A ⊆ R be a set. We can consider A as a subset of R or as a subset of R2.

In the abstract case, we have a m.s. (X, d) a subset M ⊆ X, so that (M,d) is also a m.s.

Let A ⊆ M . Let A
M

be the closure of A in M , and A be the closure of A in X.

Question: How are these sets related?

• For x ∈ X and ε > 0, Bε (x) = {y ∈ X : d (x, y) < ε}.
• For x ∈ M and ε > 0, B̃ε (x) = {y ∈ M : d (x, y) < ε}

Then, it is clear that B̃ε (x) = Bε (x) ∩ M for x ∈ M .

Proposition 3.6.1 For A ⊆ M, A
M

= A ∩ M .

Proof 3.6.2 Let x ∈ M . Then, x ∈ A
M ⇐⇒ ∀ε > 0, B̃ε (x)∩A �= ∅ ⇐⇒ Bε (x)∩M ∩A =

Bε (x) ∩ A �= ∅ ⇐⇒ x ∈ A ∩ M . Hence, if A ⊆ M : A is closed in M means that A
M

= A.
A is closed in X means that A = A. For x ∈ M, B̃ε (x) is open in M , but it is not open

in X, unless M is open in X.

Proposition 3.6.3 Let (X, d) be a m.s. M ⊆ X and A ⊆ M . Then,

1. A is closed in (M, d) ⇐⇒ there exists a closed set F ⊆ X such that A = F ∩ M .

2. A is open in (M, d) ⇐⇒ there exists an open set O ⊆ X such that A = O ∩ M .

Proof 3.6.4 1. We have seen that A
M

= A ∩M . So if A is closed in M , then A
M

= A,
so that A = A ∩ M , so we take F = A.

Conversely, if A = F ∩ M for some closed set F ⊆ X, then let us see that A is
closed in M . So, let x ∈ M\A. Then x /∈ F . As F is closed in X, there is an
ε > 0 : Bε (x) ∩ F = ∅. Then B̃ε (x) = Bε (x) ∩ M is a neighborhood of x in M and

B̃ε (x) ∩ A = ∅. Hence x /∈ A
M

and A
M

= A, so A is closed in M .

2. Apply 1 to B = M\A.

Example 3.6.5 Let X = R, d (x, y) = |x − y|. Let M = [0, 1[. Then the set A =

[
0,

1

2

[
is

open in M , but not in X. Indeed,

[
0,

1

2

[
=

]
−1,

1

2

[
∩ M, where

]
−1,

1

2

[
is open. The set

A =

[
1

2
, 1

[
is closed in M . Indeed A =

[
1

2
, 1

[
=

[
1

2
, 2

]
∩ M , where

[
1

2
, 2

]
is closed.
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3.6.1 Exercises IV

1. Let (X, d1), (Y, d2) be 2 m.s. and Z = X × Y .

For z1 = (x1, y1) and z2 = (x2, y2) in Z, put d(z1, z2) = d1(x1, x2) + d2(y1, y2) and
d′(z1, z2) = max{d1(x1, x2), d2(y1, y2)}

(a) Show that d and d′ are metrics on Z and d′ ≤ d.

(b) Let zn = (xn, yn) be a sequence in Z. Show that zn → z = (x, y) in (Z, d) iff
xn → x in (X, d1) and yn → y in (Y, d2).

(c) Let A1 ⊆ X,A2 ⊆ Y . Show that in the m.s. (Z, d) we have A1 × A2 = A1 × A2.

(d) Let A1 ⊆ X,A2 ⊆ Y . Show that

i. A1 ×A2 is closed in the m.s. (Z, d) iff A1 is closed in (X, d1) and A2 is closed
in (Y, d2).

ii. A1 × A2 is open in (Z, d) iff A1 is open in (X, d1) and A2 is open in (Y, d2).

(e) Show that (Z, d) is separable iff both spaces (X, d1) and (Y, d2) are separable.
Deduce that (Rn, d1) is separable.

(f) Show that the m.s. (Z, d) is complete iff the spaces (X, d1) and (Y, d2) are com-
plete.

2. Let (X, d1), (Y, d2) and Z = X × Y be as in the question 1 above. Let A ⊆ Z be any
set.

Show that A is closed in (Z, d) iff A is closed in (Z, d′). Deduce that τd = τd′ .



66 CHAPTER 3. METRIC SPACES (BASIC CONCEPTS)

3.7 Lindölf Theorem

Let (X, d) be a metric space.

Lemma 3.7.1 If (X, d) is separable, then there exists countably many open sets (Bn)n∈N

such that every open set O ⊆ X is a union of some of Bn’s.

Proof 3.7.2 Let M = {an : n ∈ N} be a dense subset in X. Consider the collection
{Br (an) : n ∈ N, r > 0, r ∈ Q}. This is a countable set of open sets. Let us see that these

sets satisfy the conclusion of the lemma. Let O ⊆ X be any open set. As M = X, O∩M �= ∅.
Let F = {an ∈ M : an ∈ O} i.e., F = O∩M . Since an ∈ O and O is open, there is a rational
number rn > 0 : Brn (an) ⊆ O. Let us see that ∪an∈F Brn (an) = 0.

Let x ∈ O. Since O is open, for some ε > 0, Bε (x) ⊆ O. Since M = X, B ε
3
(x)∩M �= ∅.

Hence, for some an ∈ F, an ∈ B ε
3
(x). Let rn > 0 rational such that

ε

3
< rn <

ε

2
. Then

x ∈ Brn (an). So, x ∈ ∪an∈F Brn (an). Hence O = ∪an∈F Brn (an).

Example 3.7.3 X = R, d (x, y) = |x − y|. The collection {]a, b[ : a, b ∈ Q} is countable.
Moreover any open set O of R is a union of some of these intervals.

Corollary 3.7.4 If (X, d) is separable, then ∀M ⊆ X the space (M,d) is separable.

Proof 3.7.5 Let (Bn)n∈N be a sequence of open sets as in Lemma 3.7.1.
Let F = {n ∈ N : Bn ∩ M �= ∅}. Let xn ∈ Bn ∩ M be any point for each n ∈ F . Let us

see that A = {xn : n ∈ F} is dense in M . Let Õ = O ∩ M be any nonempty open set of M .
As O is a union of Bn’s, then Õ contains at least one point from A. So A is dense in M .

Theorem 3.7.6 (Lindölf) Let (X, d) be a separable m.s. and (Oα)α∈I any family of open
sets. Then I has a countable subset Ī such that ∪α∈IOα = ∪α∈ĪOα.

Proof 3.7.7 Let (Bn)n∈N be a sequence of open sets as in Lemma 3.7.1. So any Oα is a
union of some of these Bn’s. Now, ∀n ∈ N let In = {α ∈ I : Oα ⊇ Bn}. Some of the In’s are
empty but not all. Let F = {n ∈ N : In �= ∅}. For each n ∈ F , let α ∈ I be any point (Hence
Oαn ⊇ Bn). Let Ī = {αn : n ∈ F}. Let us see that ∪α∈IOα = ∪αn∈ĪOαn. The inclusion ⊇ is
trivial. To prove the other inclusion, let x ∈ ∪α∈IOα. Then x ∈ Oα for some α ∈ I. This
Oα is a union of some Bn’s. So our x is in one of these Bn’s. Then x ∈ Bn ⊆ Oα. Then,
as Bn ⊆ Oαn , x ∈ Oan. So, ∪α∈IOα = ∪αn∈ĪOαn.



Chapter 4

Convergence in a Metric Space

1. Limit and Cluster Points of a Sequence

2. Cauchy Sequences and Completeness

3. lim sup and lim inf Again

4.1 Limit and Cluster Points of a Sequence

Let (X, d) be a metric space and (xn)n∈N be a sequence in X. Then we say that;
xn converges to a ∈ X if we have: ∀ε > 0, ∃N ∈ N : ∀n ≥ N, d (xn, a) < ε.

In this case we write limn→∞xn = a. Then xn → a ⇐⇒ ∀ε > 0, xn ∈ Bε (a) for all but
finitely many n.

Lemma 4.1.1 Limit is unique. If xn → a and xn = b, then a = b.

Proof 4.1.2 Suppose a �= b. Let ε = d(a,b)
3

. Then Bε (a) ∩ Bε (b) = ∅. As, xn → a, xn ∈
Bε (a) for all but finitely many n ∈ N. So Bε (b) can contain at most xn for finitely many n.
So xn � b. Hence a = b.

Example 4.1.3 Let X = Rm, let d = dp, 1 < p < ∞. Then any sequence xn in X is of the
form xn = (an,1, an,2, . . . an,m). What does ”xn → a in Rm” mean?

For a = (a1, . . . , am), dp(xn, a) = (|an,1 − a1|p + . . . + |an,m − am|p)
1
p . Then,

xn → a ⇔ dp(xn, a) → 0 ⇔ an,i → ai, ∀ i = 1, 2, . . . , m. Thus xn → a in Rm iff “xn

converges to a coordinate-wise.”
For p = 1, d1(xn → a) = (an,1 − an) + . . . + |an,m − am| → 0 ⇔ an,i → ai in R.
For p = ∞, d∞(xn, a) = max{|an,i − ai| : 1 ≤ i ≤ m} → 0 ⇔ an,i → ai in R.

Example 4.1.4 Let E be any set. X = B(E) = {f : E → R : f is bounded}. On X we put
the metric d(f, g) = supx∈E|f(x) − g(x)|. Let (fn)n∈N be a sequence in X.

What does “fn → f” mean?

67
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fn → f ⇔ sup
x∈E

|fn(x)−f(x)| → 0 ⇔ ∀ ε > 0, ∃ N ∈ N,∀ n ≥ N, ∀x ∈ E, |fn(x)−f(x)| < ε

Uniform Convergence

Theorem 4.1.5 Let (X, d) be a m.s. A ⊆ X be a set and x ∈ X be a point. Then x ∈ Ā iff
there is a sequence an in A : an → x. So Ā = {x ∈ X : x is the limit of some sequence in A}

Proof 4.1.6 We have seen that x ∈ Ā ⇔ ∀ ε > 0, Bε(x) ∩ A �= ∅.
(⇒) Suppose x ∈ Ā. Hence ∀ ε > 0, Bε(x) ∩ A �= ∅.
Let ε = 1. Then take any point in B1(x) ∩ A, call it a1.

Let ε =
1

2
. Then take any point in B 1

2
(x) ∩ A, call it a2.

Let ε =
1

3
. Then take any point in B 1

3
(x) ∩ A, call it a3

...

Let ε =
1

n
. Then take any point in B 1

n
(x) ∩ A, call it an.

In this way we construct a sequence an in A such that an ∈ B 1
n
(x)∩A, i.e. d(an, x) ≤ 1

n
.

So, d(an, x) → 0, i.e. an → x.
(⇐) Conversely suppose that for some sequence an in A, we have that an converges to

x. Then ∀ ε > 0, an ∈ Bε(x) for all but finitely many n ∈ N. Hence, Bε(x) ∩ A �= ∅. Since
an ∈ A, ∀ n ≥ 0.

Corollary 4.1.7 Let (X, d) be m.s. A ⊆ X. Then,
A is closed ⇔ ∀ convergent sequence an in A, limn→∞an ∈ A.

Proof 4.1.8 A is closed ⇔ Ā = A. Then apply the Theorem 4.1.5.

Example 4.1.9 Let X = R2 with the Euclidean metric. d = d2. Let F be the graph of the

parabola y =
1

x
for x > 0. Is F closed in R2? F = {(x,

1

x
) : x > 0}

Let bn = (an,
1

an

) that converges in R2 to some (x, y) ∈ R2. Then, by the result of the

preceding theorem, an → x and
1

an

→ y. As
1

an

→ y, x cannot be zero. So, y =
1

x
. Hence

(x, y) = (x,
1

x
) ∈ F . So F is closed.

4.2 Cluster Points of a Sequence

Definition 4.2.1 Let (X, d) be a m.s., (xn)n∈N a sequence in X. We say that a point a ∈ X
is a cluster point of the sequence iff for any ε > 0, xn ∈ Bε(x) for infinitely many n ∈ N.

Thus a is a cluster point of xn if ∀ε > 0, ∀ k ∈ N∃n > k : xnk
∈ Bε(x).
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Proposition 4.2.2 If xn → x. Then x is the only cluster point of (xn)n∈N.

Remark: The converse of this proposition is false. Indeed, let xn = 1,
1

2
, 3,

1

4
, 5, . . ..

Then 0 is the only cluster point but xn � 0.

Proposition 4.2.3 Let xn be a sequence in a m.s. (X, d) and a ∈ X. Then a is the only
cluster point of xn iff xn has a subsequence that converges to a.

Proof 4.2.4 Suppose a is a cluster point of xn. So ∀ ε > 0, xn ∈ Bε(a) for infinitely many
n.

Let ε =
1

20
. Let n0 be any integer such that xn0 ∈ B 1

20
(a).

Let ε =
1

2
. Let n1 > n0 be any integer such that xn1 ∈ B 1

21
(a).

...

Let ε =
1

2k
. Let nk > nk−1 be any integer such that xnk

∈ B 1

2k
(a).

In this way we construct a subsequence xnk
of xn such that d(xnk

, a) <
1

2k
→ 0 i.e.

xnk
→ a as k → ∞.
Conversely, suppose that xn has a subsequence xnk

that converges to a. Then ∀ ε >
0, xnk

∈ Bε(a) for all but finitely many k or equivalently ∀ ε > 0, xn ∈ Bε(a) for infinitely
many n. Hence a is a cluster point.

4.3 The set of the cluster points of a sequence xn

Let xn be a sequence in a m.s. (X, d). Put
F0 = {x0, x1, . . .}
F1 = {x1, x2, . . .}
...
Fn = {xn, xn+1, . . .}
...

and let F = ∩n∈N(Fn).

Example 4.3.1 In R. xn = (−1)n, then Fn = {−1, 1}. So Fn = {−1, 1}.
Hence F = ∩n∈N(Fn) = {−1, 1}
Let xn = 1,

1

2
, 3,

1

4
, 5, . . . Then Fn = Fn ∪ {0}. Hence F = ∩n∈N(Fn) = {0}.

Let xn = n. Then Fn = {n, n + 1, . . .}. So Fn = Fn, F = ∩n∈N(Fn) = ∅.
Let xn be an enumeration of the rational numbers in [0, 1], then F = ∩n∈N(Fn) = [0.1]

Theorem 4.3.2 Let xn be a sequence in any m.s. (X, d) and F = ∩n∈N(Fn) as above. Then
a ∈ X is a cluster point of xn, iff a ∈ F .
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Proof 4.3.3 Let a ∈ F be a point. So, a ∈ Fn ∀n ∈ N. Hence ∀ ε > 0, ∀ n ∈ N :
Bε(a) ∩ Fn �= ∅, i.e. ∀ ε > 0, xn ∈ Bε(a) for infinitely many n.

Suppose a is a cluster point of xn. Then ∀ ε > 0, xn ∈ Bε(a) for infinitely many n. Hence
Bε(a) ∩ Fn �= ∅ ∀n ∈ N. So a ∈ Fn ∀ n ∈ N. Hence a ∈ F .

Question: When we have F �= ∅?

Example 4.3.4 Let X = B(E) (E any infinite set), B(E) =space of bounded functions.
d(x, y) = supx∈E|x(x), y(x)|

Let ϕ0, ϕ1, . . . , ϕn, . . . be distinct points of E and ϕn = χ{ϕn}, where χA = { 1 x ∈ A
0 x /∈ A

.

Consider the sequence {ϕn}n∈N in X. (Observe that |ϕn(x)| ≤ 1, ∀ x ∈ E).

Does this sequence have a cluster point in X?

Now, observe that, for n �= m, d(ϕn, ϕm) = supx∈E|χ{ϕn} − χ{ϕm}| = 1. This implies
ϕn has no cluster points. Hence, for this sequence F = ∅. On the other hand, in (R, d)
Bolzano-Weierstrass says that for any bounded sequence xn, the set F �= ∅. Hence, in (R, d)
if xn is a bounded sequence, then F is a nonempty, closed, bounded set.

Hence α = inf F and β = sup F exist and α, β ∈ F.

Thus α = lim inf xn, β = lim sup xn

4.4 Bolzano-Weierstrass in Rm

A sequence xn in Rm, xn = (an,1, an,2, . . . , an,m), is bounded iff

‖x‖n =
√

(an,1)1 + . . . + (an,m)2 ≤ M ∀ n ∈ N (for some M > 0).

So iff each (an,i)n∈N is bounded. (i = 1, 2, ..., m).

A subsequence of xn is of the form: xn,k = (ank,1, ank,2, . . . , ank,m)

Theorem 4.4.1 Every bounded sequence xn in Rm has at least one cluster point.

Proof 4.4.2 (an,1) is bounded in R so by Bolzano-Weierstrass in R. (an,1) has a convergent
subsequence (an1

k,1) that converges to some a1 ∈ R. Then, (an1
k,2) is also bounded in R.

By Bolzano-Weierstrass in R. (an1
k,2) has a convergent subsequence (an2

k,2) that converges
to some a2 ∈ R. Then (anm−1

k ,m) is bounded. By Bolzano-Weierstrass, it has a convergent

subsequence (anm
k ,m) that converges to am ∈ R.

Let xnk
= (anm

k ,1, anm
k ,2, . . . , anm

k ,m). Then (xnk
) is a subsequence of (xn) and

xnk
→ (a1, . . . , am).
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4.5 Cauchy Sequences and Completeness

4.5.1 Complete Metric Spaces

Let (X, d) be a m.s. Let (xn)n∈N be sequence in X. If xn → a, then we have: ∀ ε > 0, ∃ N ∈
N, ∀ n ≥ N d(xn, a) <

ε

2
. So,

∀ ε > 0, ∃ N ∈ N ∀ n ≥ N ∀ m ≥ N d(xn, xm) < ε. Eq 5.1

Hence any convergent sequence satisfies equation Eq 5.1

Definition 4.5.1 Any sequence xn satisfying the condition

∀ ε > 0 ∃ N ∈ N ∀ n ≥ N ∀ m ≥ N d(xn, xm) < ε Eq 5.2

is said to be “Cauchy.” Then every convergent sequence is Cauchy. The converse is false.

Example 4.5.2 Let X = R, d(x, y) = |Arc tan x − Arc tan y|. Now, let xn = n2. Then
d(xn, xm) = |Arc tan n2 − Arc tan m2|. So that limn→∞, m→∞d(xn, xm) → 0.

So, ∀ ε > 0, ∃ N ∈ N, ∀ n ≥ N, ∀ m ≥ N, d(xn, xm) < ε. Hence xn is Cauchy in this
m.s. (R, d).

But, there is no a ∈ R such that d(xn, a) = |Arc tan n2 − Arc tan a| → 0.

Example 4.5.3 Let X = R(N) = {ϕ : N → R : ϕ(n) �= 0 for all but finitely many n},
d(x, y) = supn∈N|ϕ(n) − ψ(n)|.

Let ϕn = (1,
1

2
,
1

3
, . . . ,

1

n
, 0, . . . , 0, . . .). Then,

ϕn+p − ϕn = (0, 0, . . . , 0,
1

n + 1
, . . . ,

1

n + p
, 0, . . . , 0, . . .) so that,

d(ϕn, ϕn+p) = supk∈N|ϕn(k) − ϕn+p(k)| =
1

n + 1
→ 0 as n → ∞∀ p ∈ N.

So, ϕn is Cauchy. But there is no ϕ = (a1, a2, . . . , an, 0, . . . , 0, . . .) ∈ X for which
d(ϕn, ϕ) → 0.

Example 4.5.4 X = Q, (x, y) = |x − y|, xn = 1 +
1

1!
+ · · · + 1

n!
.

Then xn is Cauchy in Q, but does not converge in Q.

Definition 4.5.5 A m.s. (X, d) is said to be complete if every Cauchy sequence xn in X
converges to some x ∈ X.

Example 4.5.6 (R, d) d(x, y) = |x − y| is complete.

1. ∀ m ≥ 1, (R, d) d = d2 =Euclidean metric is a complete m.s. Indeed, xn = (xn,1, xn,2, . . . , xn,m).
xn is Cauchy iff each component sequence (xn,i) is Cauchy in (R, d). So, converges to
xi ∈ R, then xn → (x1, x2, . . . , xm)
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2. Let E be any set and X = B(E) = {Y : E → R: any bounded function}. For φ, ψ ∈ X,
let d(φ, ψ) = supx∈E|φ(x), ψ(x)|

Theorem 4.5.7 (B(E), d) is complete.

Proof 4.5.8 Let φn be a Cauchy sequence in B(E). So we have:

∀ ε > 0, ∃ N ∈ N ∀n ≥ N, ∀m ≥ N, d(φn(x) − φm(x)) < ε (Eq 5.3)

In particular, for each x ∈ E, the sequence φn(x) is Cauchy R. So, since R is complete,
(φn(x))n∈N converges to some αx ∈ R. Let φ : E → R be defined by φ(x) = αx.

Let us see that:

1. φ is bounded, i.e. φ ∈ B(E)

2. d(φn, φ) → 0.

In Eq 5.3, let m = N so that supx∈E|φn(x) − φN(x)| ≤ ε.

Then supx∈E|φn(x)| ≤ ε + supx∈E|φN(x)|, ∀n ≥ N .

i.e., ∀ x ∈ E, |φn(x)| ≤ ε + sup |φN(x)|, ∀ n ≥ N .

Letting n → ∞, we get that: ∀x ∈ E |φ(x)| ≤ ε + sup |φN(x)|. Hence φ is bounded. So
φ ∈ B(E).

Now, let us see that d(φn, φ) → 0. In Eq 5.3, let x ∈ E be any element so that:

∀ ε > 0, ∃ N ∈ N, ∀ n ≥ N, ∀ m ≥ N, d(φn(x)− φm(x)) < ε (Observe that N does not
depend on X )

Now, let m → ∞, we get that: ∀ε > 0, ∃ N ∈ N,∀ n ≥ N, ∀ x ∈ E |φn(x) − φ(x)| < ε

=⇒ ∀ε > 0, ∃ N ∈ N, ∀ n ≥ N, ∀ x ∈ E, sup |φn(x) − φ(x)| < ε.

Hence, d(φn, φ) → 0. So, (B(E), d) is complete.

4.5.2 Cluster Points of a Cauchy Sequence

Theorem 4.5.9 Let (X, d) be a m.s. and (xn)n∈N be a Cauchy sequence in X. Then either
xn has no cluster points, or it has only one cluster point. In this later case, it converges to
this cluster point.

Proof 4.5.10 Suppose xn has a cluster point a ∈ X. Let us see that xn → a. Let us write
what we have:

1. ∀ ε > 0, ∃ N ∈ N,∀n ≥ N, ∀m ≥ N, d(xn, xm) <
ε

2

2. ∀ ε > 0, xn ∈ B ε
2
(a) for infinitely many n ∈ N
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Let m ≥ N be such that xm ∈ Bε

2

(a). Then;

∀ n ≥ N d(xn, a) ≤ d(xn, xm)︸ ︷︷ ︸ + d(xm, a)︸ ︷︷ ︸ < ε

<
ε

2
(1)

<
ε

2
(2)

Hence xn → a.
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Chapter 5

Compactness

1. Definition and Characterization of Compact Sets

2. Sequential and Countable Compactness

3. Totally Bounded Sets:

5.1 Definition and Characterization of Compact Sets

5.1.1 Introduction

E = [0, 2π] and X = B(E) = {f : E → R : f is bounded}.
On X we put the metric d(Φ, Ψ) = supx∈E|Φ(x) − Ψ(x)|. Let Φn(x) = cos(nx). Then

∀ n ∈ N ∀ x ∈ [o, 2π] | cos nx| ≤ 1.
Question: Does Φn have a subsequence Φnk

that converges in (B(E), d)?
No.

Now, let e1, e2, . . . , en, . . . be arbitrary points in [0, 2π] but Ψn = χen . Then Φn ∈
B(E) d(Ψn, Ψm) = 1, ∀ n �= m. Hence no sequence of Ψn is Cauchy. Hence Ψn has no
convergent subsequence. Observe that ∀ n ∈ N, ∀ x ∈ E |Ψn(x)| ≤ 1. Hence the analog of
the Bolzano-Weierstrass Theorem is not true in (B(E), d).

Question: Characterize the subsets K of B(E), for which Bolzano-Weierstrass holds.(i.e.
every sequence Φn in K has a convergent subsequence.)

Definition 5.1.1 Let (X, d) be a m.s. K ⊆ X and (Oα)α∈I be a family of open sets. If
K ⊆ ∪α∈IOα then we say that (Oα)α∈I is any open covering of K.

(i.e. K ⊆ (Oα)α∈I ⇒ K ⊆ Oα1 ∪ Oα2 ∪ . . . ∪ Oαn .)

Definition 5.1.2 A subset K of X is said to be compact if whenever (Oα)α∈I is an open
covering of K, then there exists finitely many α1, α2, . . . , αn ∈ I such that K ⊆ Oα1∪. . .∪Oαn.
(i.e. K ⊆ ∪α∈IOα =⇒ K ⊆ Oα1 ∪ Oα2 ∪ . . . ∪ Oαn)

75
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Example 5.1.3 Let X = R, d(x, y) = |x − y|. Let K = N, On =

]
n − 1

2
, n +

1

2

[
. Then

N ⊆ ∪n∈NOn but whatever n1, . . . , nk N � On1 ∪ . . . ∪ Onk
. So N is not compact.

Example 5.1.4 Let K = ]0, 1] and On =

]
1

n
, 1 +

1

n

[
. Then K ⊆ ∪n≥1On but whatever

n1, . . . , nk, K � On1 ∪ . . . ∪ Onk
. so K is not compact.

K is compact⇔
⎧⎨
⎩

1) K is closed
and

2) Any sequence (xn) in K has a convergent subsequence

5.1.2 Properties of Compact Sets:

Proposition 5.1.5 Let (X, d) be a m.s. Any compact set is closed in X.

Proof 5.1.6 Let K be compact. Take a point x ∈ X\K. We want to show that for some

ε > 0, Bε(x) ∩ K = ∅. Since x /∈ K, for every y ∈ K, d(x, y) > 0. Let εy =
d(x, y)

2
.

Then K ⊆ ∪y∈KBεy(y). As K is compact and Bεy(y) is open, there exist y1, . . . , yn such that

K ⊆ Bεy1
(y1) ∪ . . . ∪ Bεyn

(yn). Let 0 < ε <
1

2
min{εy1 , . . . , εyn}. Then Bε(x) ∩ K = ∅, since

Bε(x) ∩ [Bεy1
(y1) ∪ . . . ∪ Bεyn

(yn)
]

= ∅. Hence K is closed in X.

Theorem 5.1.7 1. The union of two compact sets K1, K2 of X is compact.

2. The intersection of a compact set K with a closed set F is compact.

Proof 5.1.8 1. Let K = K1∪K2. Let for some open family (Oα)α∈I , K ⊆ ∪α∈IOα. Then
K1 ⊆ ∪α∈IOα and K2 ⊆ ∪α∈IOα. As K1 and K2 are compact, K1 = Oα1 ∪ . . . ∪ Oαn

and K2 = Oβ1 ∪ . . . ∪ Oβm for some α1, . . . , αn and β1, . . . , βm in I. Then K ⊆
Oα1 ∪ . . . ∪ Oαn ∪ Oβ1 ∪ . . . ∪ Oβm. Hence K is compact.

2. Let (Oα)α∈I be an open family such that K ∩F ⊆ ∪α∈IOα. Then K ⊆ (∪α∈IOα)∪FC.
As K is compact and FC is open K ⊆ Oα1 ∪ . . . ∪ Oαn ∪ FC for some α1, . . . , αn ∈ I.
Hence K ∩ F ⊆ Oα1 ∪ . . . ∪ Oαn. So K ∩ F is compact.

Example 5.1.9 Let (X, d) any m.s. Then,

1. A one-point set K = {a} is compact.

2. If K = {a1, . . . , an} then K is compact.

3. If (X, d) is discrete, then any compact set K ⊆ X is finite.

Indeed, in any discrete metric space every set A is open and closed. In particular,
∀ x ∈ X, the set {x} is open. If K is compact, from K ⊆ ∪x∈K{x} we get that
K ⊆ {x1} ∪ . . . ∪ {xn} for some x1, . . . , xn ∈ K. Hence K is finite.
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4. For any metric space, if xn ∈ X and xn → x, then the set K = {xn : n ∈ N} ∪ {x} is
a compact set.

Indeed, suppose that K ⊆ ∪α∈IOα, Oα’s are open in X. Then x ∈ Oα′ for some α′ ∈ I.
Hence ∃ N ∈ N : xn ∈ Oα′ ∀ n ≥ N . Then we say x0 ∈ Oα0 , x1 ∈ Oα1 , . . . , xN ∈ OαN

.
Hence, K ⊆ Oα1∪Oα2∪. . .∪OαN

∪Oα′. So K is compact. X is compact ⇐⇒ Whenever
X = ∪α∈IOα, we have X = Oα1 ∪ . . . ∪ Oαn for some α1, . . . , αn ∈ I.

5. Now, let (X, d) be a m.s. and K ⊆ X a set. Then K is compact ⇐⇒ (K, d) is a
compact m.s.

K ⊆ ∪α∈IOα ⇒ K = α ∈ I∪(Oα ∩ K) = ∪α∈IÕα, Õα = Oα ∩ K is open in (K, d).

Hence (K, d) is compact⇔whenever K = ∪α∈IÕα, Õα is open in (K, d),

K = Õα1 ∪ . . . ∪ Õαn for some α1, . . . αn ∈ I. (or K ⊆ Oα1 ∪ . . . ∪ Oαn).

6. If K ⊆ M ⊆ X. Then to say that K is compact in (M, d) is equivalent to saying that
K is compact in X.

Since in either cases, this is equivalent to say that (K, d) is compact. So compactness
is absolute notion.

Example 5.1.10 R ⊆ R2 ⊆ . . . ⊆ Rn ⊆ . . .. K ⊆ R be a set. On Rn we put d2. Then,
K is compact in R ⇔ K is compact in R2

⇔ K is compact in R3

...
⇔ K is compact in Rn

...

Proposition 5.1.11 Any compact m.s. (K, d) is separable.

Proof 5.1.12 Let ε > 0 be given. Then K ⊆ ∪x∈KBε(x). As K is compact, there exists a

finite set Fε = {x1, . . . , xi} such that K ⊆ Bε(x1) ∪ . . . ∪ Bε(xi). Let ε = 1, then ε =
1

2
,

then ε =
1

3
, . . . So that for ε =

1

n
we have a finite set Fn ⊆ K such that K ⊆ ∪x∈FnB 1

n
(x).

Let A = ∪n≥1Fn. Then A is countable and A ⊆ K. Let us see that Ā = K.
Indeed if we had y ∈ K\Ā, there would be an ε > 0 such that Bε(y) ∩ A = ∅ i.e.

Bε(y) ∩ Fn = ∅ ∀ n ≥ 1. Let n be large enough to have
1

n
<

ε

2
. As y ∈ K ⊆ ∪x∈FnB 1

n
(x),

d(x, y) <
1

n
for some x ∈ Fn. But then d(x, y) > ε, so Bε(y)∩Fn �= ∅, which is not possible.

So Ā = K and K is separable.

Proposition 5.1.13 Let (X, d) be any m.s. K ⊆ X compact, Fn ⊆ X closed such that
K ⊇ F0 ⊇ F1 ⊇ . . . ⊇ Fn ⊇ . . . and each Fn �= ∅ then ∩n∈NFn �= ∅ (Nested Interval
Theorem)
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Proof 5.1.14 For a contradiction, suppose that ∩n∈NFn = ∅. Then ∪n∈NFC
n = X. So as

K ⊆ X, K ⊆ ∪n∈NFC
n . As K is compact, K ⊆ FC

0 ∪ . . . ∪ FC
n for some n ∈ N. But

FC
0 ∪ . . . ∪ FC

n = FC
n , since F0 ⊇ . . . ⊇ Fn. so K ⊆ FC

n . Hence Fn ⊆ KC. as Fn ⊆ K,
Fn ⊆ K ∩ KC = ∅, so Fn = ∅, which is not possible.

Hence ∩n∈NFn �= ∅.

Example 5.1.15 Let X = R, d(x, y) = |x − y|. Fn = [n, +∞[, then F0 ⊇ . . . ⊇ Fn ⊇ . . .
each Fn is closed, Fn �= ∅ but ∩n∈NFn = ∅.

Our next aim is to prove the following theorem:

Theorem 5.1.16 Let (X, d) be m.s. and K ⊆ X a set.

Then K is compact ⇐⇒
⎧⎨
⎩

1) K is closed
and
2)Every sequence xn in K has a convergent subsequence xnk

Lemma 5.1.17 Let (X, d) be a m.s. and K ⊆ X a compact set. Then every sequence (xn)
in K has a convergent subsequence (xnk

). (Equivalently every sequence xn has at least one
cluster point x ∈ K).

Proof 5.1.18 Let xn be a sequence in K. Put Fn = {xn, xn+1, . . .} and F = ∩n∈N(Fn).
We have to show that F �= ∅. As K is closed and Fn ⊆ K, Fn ⊆ K. So that we have
K ⊇ F0 ⊇ . . . ⊇ Fn ⊇ . . . and Fn �= ∅ ∀n ∈ N. Hence by the Nested Interval Theorem
F = ∩n∈N(Fn) �= ∅. So xn has a cluster point.

Corollary 5.1.19 Any compact m.s. (X, d) is complete.

Proof 5.1.20 Let (xn)n∈N be a Cauchy sequence in X. As (X, d) is compact, (xn)n∈N has
a cluster point x ∈ X. But then, since any Cauchy sequence in any m.s. that has a cluster
point converges to this point, we conclude that xn → x. So (X, d) is complete.

Example 5.1.21 Consider the m.s. (Q, d), d(x, y) = |x−y|. Let K = {x ∈ Q : 0 ≤ x ≤ 1}.
Then K is not compact, since (K, d) is not complete.

Example 5.1.22 Let xn =
1

3

[
n∑

k=0

1!

k!

]
is Cauchy, xn ∈ K but (xn)n∈N has no cluster point

in K.
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5.2 Second Characterization of Compact Sets

Definition 5.2.1 A m.s. (X, d) (or a subset of it) is said to be sequentially compact if
every sequence (xn)n∈N in X has a cluster point x ∈ X.

Example 5.2.2 In (R, d) every closed and bounded set K is sequentially compact.

Lemma 5.2.3 Every sequentially compact m.s. (X, d) is separable.

Proof 5.2.4 For each ε > 0, let Aε be a maximal subset of X such that for any x �= y in

Aε, d(x, y) ≥ ε.( *)

Claim: Aε is finite. If it was not, we could choose infinite distinct points x0, x1, . . . , xn, . . .

(xi �= xj ∀ i �= j). Then, since (X, d) is sequentially compact, (xn)n∈N would have a
convergent subsequence yk = xnk

. Then (yk)k∈N would be Cauchy. But this is not possible
since for k �= k′ d(yk, yk′) ≥ ε. So Aε is finite.

Next, for ε =
1

n
, denote the corresponding Aε as An(so ∀ x, y ∈ An, x �= y, d(x, y) ≥ 1

n
).

Let A = ∪n≥1An. Then A is countable, since each An is finite. Let us see that Ā = X. If not,
then there is an a ∈ X such that a /∈ Ā. Hence for some ε > 0, Bε(a) ∩ An = ∅. Let n be

such that
1

n
< ε. Since Bε(a)∩A = ∅, Bε(a)∩An = ∅, too. Hence ∀ x ∈ An, d(a, x) ≥ ε >

1

n
.

But then Ān = An ∪ {a} satisfies (*). However this is not possible since An is a maximal

set satisfying (*). Hence Ā = X and X is separable.

Theorem 5.2.5 (Main Theorem): Let (X, d) be a m.s. and K ⊆ X a subset of it. Then
K is compact iff K is closed and every sequence (xn)n∈N in K has a cluster point.

Proof 5.2.6 We have already proved the implication (⇒).

(⇐) Suppose that K is closed and every sequence in K has a cluster point. Then by the
Lemma 5.2.3, the m.s. (K, d) is separable. Now, to prove that K is compact, let (Oα)α∈I

be a family of open sets in X such that K ⊆ ∪α∈IOα. Then K = ∪α∈I(Oα ∩ K) and each
Õα = Oα ∩ K is open in (K, d). Now, as (K, d) is separable, by “Lindölf Theorem” I has a
countable subset J such that K = ∪α∈J(Oα∩K). Relabelling Oα’s we can assume that J = N,
so that K = ∪n∈N(On ∩K). Hence K ⊆ ∪n∈NOn. Then replacing On by Õn = O1 ∪ . . .∪On,
we can assume that O0 ⊆ O1 ⊆ . . . ⊆ On ⊆ . . .

Let us see that K is contained in some On. If not then, for every n ∈ N, K � On, so
there is xn ∈ K\On. In that way we get a sequence (xn)n∈N in K. By hypothesis, (xn)n∈N

has a cluster point x ∈ K. As K ⊆ ∪n∈NOn, x ∈ ON for some N ∈ N. As ON is open and
x ∈ ON , xn ∈ ON for infinitely many n ∈ N. Then ∃n > N such that xn ∈ ON but this is
not possible since xn /∈ On, so xn /∈ Op ∀ p ≤ n, a contradiction.

Hence, K ⊆ On for some n ∈ N, i.e. K is compact.
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Example 5.2.7 1. Compact subsets of R: A subset K of R is compact iff K is closed
and bounded.

Proof: Let K be compact. We have seen that every compact set in any m.s. is closed,
so K is closed. Let us see that K is bounded. If it was not ∀n ∈ N ∃ xn ∈ K : |xn| > n.
Such a sequence CANNOT HAVE a convergent subsequence. Hence K is bounded.

Conversely, suppose that K is closed and bounded. Then by Theorem 5.2.5 and Bolzano
Weierstrass Theorem, K is compact.

2. Compact subsets of (Rn, d) where d is Euclidean metric: A subset K of Rn is
compact iff K is closed and bounded (i.e. supn∈N ||x||2 < ∞). (Same proof as above.)

3. Compact subsets of a discrete m.s. (X, d): A subset K of a discrete m.s. (X, d)
is compact iff K is finite.

e.g. if K ⊆ Z or K ⊆ N, then K is compact iff K is finite.

4. Let E be an infinite set and X = B(E) the space of bounded functions with the metric
d(ϕ, ψ) = supx∈E|ϕ(x) − ψ(x)|.

5. Let K = B′
1(0) = {ϕ ∈ X : supx∈E|ϕ(x) ≤ 1|}.

Remark: In any m.s. (X, d) a set K ⊆ X is said to be bounded iff

δ(K) = supx,y∈Kd(x, y) < ∞ ⇔ ∃R > 0 : K ⊆ BR(x) for some x ∈ X ⇔ For some
x0 ∈ K, supx∈K d(x0, x) < ∞. It is clear that K = B′

1(0) is closed and bounded in (X, d).
But K is NOT COMPACT!

Let x1, . . . , xn, . . . ∈ E (xi �= xj, for i �= j). Let ϕn = χ{xn}. Then;

d(ϕn, ϕm) = supx∈E|ϕn(x) − ϕm(x)| = 1, ∀n �= m (* ).

On the other hand, ϕn ∈ K, ∀ n ∈ N, since |ϕn(x)| ≤ 1, ∀ x ∈ E, (*) shows that no
subsequence of ϕn is Cauchy, so no convergent subsequence of (ϕn)n∈N is convergent. Hence
K is not compact.

5.3 Totally Bounded Sets

Definition 5.3.1 Let (X, d) be a m.s. A subset K ⊆ X is said to be totally bounded if
given any ε > 0, there exist finitely many points x1, . . . , xn ∈ K such that K ⊆ Bε(x1) ∪
. . . ∪ Bε(xn).

Theorem 5.3.2 Let (X, d) be a complete m.s. and K ⊆ X a set. Then;

K is compact ⇐⇒ K is closed and is totally bounded.

To prove this theorem, we need to prove the following lemma:
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Lemma 5.3.3 (Contour’s Nested Interval Theorem) Let (X, d) be a complete m.s.
and F0 ⊇ F1 ⊇ . . . ⊇ Fn ⊇ . . . be nonempty closed sets, such that δ(Fn) → 0 as n → ∞.
Then the intersection ∩n∈NFn is nonempty and contains just one point. (Here δ(Fn) =
sup{d(x, y) : x, y ∈ Fn} is the ′′ diameter of F n”)

Proof 5.3.4 Let for each n ∈ N, xn ∈ F be an arbitrary point. Observe that, as F0 ⊇ F1 ⊇
. . . ⊇ Fn ⊇ . . ., {xn, xn+1, . . .} ⊆ Fn. Let ε > 0 be arbitrary. As δ(Fn) → 0 there is N ∈ N
such that ∀n ≥ N δ(Fn) < ε. Hence ∀n ≥ N ∀ p ∈ N d(xn, xn+p) ≤ δ(Fn) < ε. This shows
that (xn)n∈N is a Cauchy sequence. As (X, d) is complete. (xn)n∈N converges to a point
a ∈ X. As {xn, xn+1, . . . , xn+p, . . .} ⊆ Fn and Fn is closed, a ∈ Fn ∀ n ∈ N. So a ∈ ∩n∈NFn.
As δ(Fn) → 0, the intersection ∩n∈NFn cannot contain any point x �= a.

Remark: Let X = R, d(x, y) = |x − y|. Let Fn = {n, n + 1, . . . , n + p, . . .}. Then Fn is
closed and F0 ⊇ F1 ⊇ . . . ⊇ Fn ⊇ . . . So, ∩n∈NFn = ∅. (Hence δ(Fn) � 0).

Proof 5.3.5 proof of theorem 5.3.2

1. Suppose that K is compact. Then as we have seen that K is closed. Let ε > 0 be any
number. Then, obviously K ⊆ ∪x∈KBε(x). As K is compact and each Bε(x) is open,
K ⊆ Bε(x1) ∪ . . . Bε(xk) for some x1, . . . , xk ∈ K. So K is totally bounded.

2. Conversely, suppose that K is closed and totally bounded. i.e.

∀ ε > 0, ∃ x1, . . . , xk ∈ K : K ⊆ Bε(x1) ∪ . . . ∪ Bε(xk). Let us see that every sequence
(xn)n∈N in K has a cluster point.

In (Eq 5.2) let ε = 1. Then ∃ a1, . . . , ap ∈ K : K ⊆ Bε(a1) ∪ . . . ∪ Bε(ap). So, for
some infinite F1 ⊆ N, (xn)n∈F1 is contained in one of these balls, say B1(a).

Let K1 = B′
1(a1) ∩ K. Then K1 is totally bounded.

So with ε =
1

2
, K ⊆ B 1

2
(b1) ∪ . . . B 1

2
(bq) for some b1, . . . , bq ∈ K1.

As (xn)n∈F1 ⊆ K1 ⊆ B 1
2
(b1) ∪ . . . ∪ B 1

2
(bq), there is an infinite set F2 ⊆ F1 such that

(xn)n∈F2 is contained in one of these balls, say B 1
2
(b1).

Let K2 = K1 ∩ B′
1
2

(b1). Then K2 is totally bounded.

With ε =
1

3
, ∃ c1, . . . , ck ∈ K2, K2 ⊆ B 1

3
(c1) ∪ . . . ∪ B 1

3
(ck)

...

And so on. In this way, we construct K ⊇ K1 ⊇ . . . ⊇ Kn ⊇ . . . and δ(Kn) ≤ 2

n
→ 0.

Hence ∩n∈NKn = {a} for some a ∈ K. Now, let

n1 ∈ F1 be such that xn1 ∈ K1

n2 ∈ F2, n2 > n1 be such that xn2 ∈ K2
...

nk ∈ Fk, nk > nk−1 be such that xnk
∈ Kk
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Then by the proof of Lemma 5.3.3, yk = xnk
→ a. Thus, a is a cluster point of (xn)n∈N .

So K is compact.

Example 5.3.6 Let l1 = {x = (xn)n∈N ∈ RN :
∞∑

n=0

|x| < ∞}. For x ∈ l1,

||x||1 =
∞∑

n=0

|xn| and d(x, y) = ||x− y||1. Then (l1, d) is a m.s. This m.s. is complete. Let

K ⊆ l1 be a set. Then,

K is compact⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1◦) K is closed
2◦) K is bounded:supx∈K ||x||1 < ∞
3◦) limk→∞sup x = (xn)n∈N ∈ K

∞∑
k=n

|xk| = 0
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5.4 Exercises

1. Let (X, d) be a metric space and A be a nonempty subset of X. For x ∈ X put
d(x,A) = infa∈Ad(x, a). Show that

(a) d(x, A) = 0 iff x ∈ A.

(b) ∀ ε > 0 the set Fε = {x ∈ X : d(x,A) ≤ ε} is closed and A ⊆ Fε.

(c) ∀ ε > 0 the set Oε = {x ∈ X : d(x, A) ≤ ε} is open and A ⊆ Fε.

2. Let (X, d) be a metric space and A,B be 2 subsets of X (A �= ∅, B �= ∅). Put
d(A,B) = inf(x,y)∈A×Bd(x, y). Show that

(a) if A is closed, B is compact and A ∩ B = ∅, then d(A,B) > 0.

(b) Assume A, B are compact and disjoint. Let ε =
d(A,B)

3
. Show that the sets

Oε = {x ∈ X : d(x,A) < ε} and Õε = {x ∈ X : d(x,B) < ε} are open,
A ⊆ Oε, B ⊆ Õε and Oε ∩ Õε = ∅.

3. Let (X, d) be a m.s. and (xn)n∈N be a convergent sequence in X with a = limn→∞xn.
Show that the set K = {xn : n ∈ N} ∪ {a} is compact.

4. Let (X, d) be a m.s. and K0 ⊇ K1 ⊇ . . . ⊇ Kn ⊇ . . . be nonempty compact sets. Show
that the set K = ∩n∈NKn is nonempty.

5. Let X = R, d(x, y) = |x − y| and Fn = {n, n + 1, n + 2, . . .}. Show that

F0 ⊇ F1 ⊇ . . . ⊇ Fn ⊇ . . . , Fn is closed and Fn �= ∅ for each n ∈ N but ∩n∈NFn = ∅.

6. Let l′ be the space of all the mappings ϕ : N → R such that
∞∑

n=0

|ϕ(x)| < ∞. For

ϕ, ψ ∈ l′ put d(ϕ, ψ) =
∞∑

n=0

|ϕ(n) − ψ(n)|. Show that

(a) d is a metric on l′.

(b) The set K = {ϕ ∈ l′ :
∞∑

n=0

|ϕ(n)| ≤ 1} is closed and bounded.

(c) Let, for each n ∈ N, fn = χ{n}. Then, fn ∈ K and for n �= m, d(fn, fm) = 2.

(d) (fn)n∈N has no subsequence which is Cauchy.

(e) Show that although K is closed and bounded, it is not compact.

7. On R2 consider the Euclidean metric d2. Let F ⊆ R2 be closed and O ⊆ R2 be an
open set. Let K ⊆ R be a compact set. Show that
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(a) The set A = ∪x∈K{y ∈ R : (x, y) ∈ F} is a closed set.

(b) The set B = ∩x∈K{y ∈ R : (x, y) ∈ O} is an open set.

8. Let K1, K2 be 2 nonempty compact subsets of R, d(x, y) = |x − y|. Show that the set
K1 + K2 is also compact.

9. Let K be a compact subset of Rn, (d = d2) and ε > 0. Show that the set

Kε = {x ∈ Rn : d(x,K) ≤ ε} is also compact.

10. Let (X1, d1), (X2, d2) be two m.s., Y = X1 × X2 and

d((x1, x2), (x̃1, x̃2)) = max{d1(x1, x̃1), d2(x2, x̃2)}.
11. Let K1 ⊆ X1 and K2 ⊆ X2 be compact sets. Show that the set K = K1 × K2 is

compact in (Y, d)



Chapter 6

Continuity

1. Definition and First Properties

2. Global Conditions

3. Uniform Continuity / Lipschitzean Function./ Isometry

4. Uniform Extension Theorem

5. The Distance Function, Urysohn Lemma

6. Equivalence of Metrics

7. Completion of a m.s.

6.1 Definition

In this chapter the “scene” will be as follows: (X, d), (Y, d′) will be 2 m.s. A ⊆ X a set,
f : A → Y a function and a ∈ A a point.

Definition 6.1.1 The function f is said to be “continuous at a” if we have ∀ ε > 0 ∃ η >
0, ∀ x ∈ A, d(x, a) < η =⇒ d′(f(x), f(a)) < ε

Note: If f is continuous at every a ∈ A, then we say that f is continuous on A.

Example 6.1.2 1. Let f : [−1, 1] → R, f(x) =

⎧⎨
⎩

−1 if − 1 ≤ x < 0
0 if x = 0
1 if 0 < x ≤ 1

Let us see that if f is continuous at a = 0.

Let 0 < ε < 1. Then ∀ η > 0, ∃ xη ∈ A = [−1, 1] : d(xη, a) < η, but |f(xη)−f(a)| > ε.
This shows that f is not continuous at a = 0.

85
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2. If a is an isolated point of A, then every function f : A → Y is continuous at a.

Indeed if a ∈ A is an isolated point, then for some η > 0, Bη(a) ∩ A = {a}. By the
definition of continuity at a: ∀ ε > 0 ∃ δ > 0 : ∀ x ∈ A ∩ Bδ(a), d′(f(x), f(a)) < ε.

Theorem 6.1.3 (Characterization of the Continuity) The function f : A → Y is
continuous at a iff for every sequence (xn)n∈N in A converging to a, f(xn) → f(a) in Y .

Proof 6.1.4 Suppose f is continuous at a. So we have:
∀ ε > 0, ∃ η > 0, ∀ x ∈ Bη(a) ∩ A, d′(f(x), f(a)) < ε. Now, let (xn)n∈N be a sequence

in A that converges to a. So we have: ∀ ε′ > 0 ∃ N ∈ N ∀ n ≥ N d(xn, a) < ε′. Hence if
we take ε′ = η, then ∀ n ≥ N xn ∈ Bη(a) ∩ A, so d′(f(xn), f(a)) < ε. Hence f(xn) → f(a).

Conversely, suppose that whenever xn → a, (xn ∈ A), f(xn) → f(a) (*)
Let us see that f is continuous at a.
If it was not continuous at a, we would have: ∃ ε > 0, ∀ η > 0, ∃ xη ∈ Bη(a) ∩ A :

d′(f(xη), f(a)) ≥ ε

Let η = 1,
1

2
, . . . ,

1

n
and denote by xn : the point xη that corresponds to η =

1

n
so that

xn ∈ B 1

n

(a) ∩ A and d′(f(xn), f(a)) ≥ ε. Hence d(xn, a) <
1

n
→ 0 (i.e. xn → a) but

f(xn) � f(a). Hence (*) implies continuity.

Example 6.1.5 Let f : R → R, f(x) =

{
sin

1

x
if x �= 0

0 if x = 0
Is f continuous at a = 0?

Let xn =
1

nπ + π
2

. Then xn → 0, as x → ∞. But

f(xn) = sin(nπ + π
2
) = cos nπ = (−1)n � f(0). So f is not continuous at a = 0. This

shows that whenever we choose α ∈ R and define f as f(x) =

{
sin

1

x
if x �= 0

α if x = 0
f is discontinuous at a = 0.

Example 6.1.6 Let f : R → R, f(x) =

{
sin x

x
if x �= 0

0 if x = 0

Let xn ∈ R, xn → 0. Then,
sin xn

xn

→ 1 �= f(0). So f is not continuous at a = 0. But if

we define f as f(x) =

{
sin x

x
if x �= 0

1 if x = 0
then f becomes continuous at a = 0.

Proposition 6.1.7 (Operations on Continuous Functions) Let Y = R, and let metric
be d′(x, y) = |x − y| and f, g : A → R be two functions. Then,
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1. If f and g are continuous at a, then f + g is continuous at a.

2. If f and g are continuous at a, then f × g is continuous at a.

3. If g(a) �= 0 and f and g are continuous at a, then
f

g
is continuous at a.

4. If f is continuous at a, then so is |f |.
5. If f and g are continuous at a, then so are max{f, g} and min{f, g}.

Proof 6.1.8 Let (xn)n∈N be a sequence in A that converges to a. Then,

1.
f(xn) + g(xn) → f(a) + g(a), so f + g is continuous at a
↓ ↓
f(a) g(a)

2.
f(xn) × g(xn) → f(a) × g(a), so f × g is continuous at a.
↓ ↓

f(a) g(a)

The rest of the proof is left to reader.

Remark: max{f, g}(x) = max{f(x), g(x)}

WARNING: If |f | is continuous at a we cannot say that f is continuous at a.

Let f : [−1, 1] → R f(x) =

{ −1 for − 1 ≤ x < 0
1 for 0 ≤ x ≤ 1

Let a = 0, so f(a) = 1. As

|f(x)| = 1 ∀x ∈ [−1, 1], f is continuous at a = 0. But if xn =
−1

n
then xn → 0 but

f(xn) = −1 � f(a) = 1

Proposition 6.1.9 Composition of two continuous functions is continuous.i.e. if
f : A → Y, B ⊆ Y, g : B → Z ((Z, d′′) is another m.s.), and if f is continuous at
a, f(A) ⊆ B and g is continuous at b = f(a), then g ◦ f : A → Z is continuous at a.

Proof 6.1.10 Let xn ∈ A, xn → a, then
g ◦ f (xn) = g ( f (xn)︸ ︷︷ ︸ ) → g(f(a)).

bn︸ ︷︷ ︸
b = f(a)

Hence g ◦ f is continuous.

Example 6.1.11 On R, f(x) =
etan(x2+1)

sin(x2 + 1) + 2
.

Φ(x) = x is continuous, so Φ2(x) = x2 is continuous. Ψ(x) = 1 is continuous, hence
Φ2(x) + Ψ(x) is continuous.
tan x is continuous, so tan(x2 +1) is continuous. sin x is continuous, and sin(x2 +1)+2 �= 0.
Thus f is continuous on R.
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6.1.1 Continuity and Compactness

Let f : ]0, 1] → R, f(x) =
1

x
. Then f is continuous on ]0, 1] ; ]0, 1] is a bounded set, but

f(]0, 1]) = [1, +∞[ is an unbounded set.

Next, let f :
[
0,

π

2

[
→ R, f(x) = sin x. Then supx∈[0, π

2 [
f(x) = 1, but there is no

x0 ∈
[
0,

π

2

[
such that f(x0) = 1. i.e. f is bounded but does not attain its supremum on[

0,
π

2

[
.

Theorem 6.1.12 Let K ⊆ X be a compact set and f : K → Y a continuous function. Then
f(K) is also compact.

Proof 6.1.13 Let us see that,

1. f(K) = K̃ is closed in Y .

2. Any sequence (yn)n∈N in f(K) = K̃ has a cluster point y ∈ K̃.

1. To show that K̃ is closed in Y , let (yn)n∈N be a sequence in K̃ that converges to some
y ∈ Y . We have to show that y ∈ K̃. (i.e. y = f(x) for some x ∈ K). Since
yn ∈ K̃, yn = f(xn) for some xn ∈ K. As K is compact, a subsequence (xnk

)k∈N of
(xn)n∈N converges to a point x ∈ K. As f is continuous at x, f(xnk

) → f(x). So
ynk

→ f(x). As yn → y, ynk
→ y too. So, y = f(x) ∈ K̃. Hence K̃ is closed in Y .

2. Now, let (yn)n∈N be any sequence in K̃. So yn = f(xn). As xn ∈ K, K is compact,
(xn)n∈N has a subsequence (xnk

)k∈N that converges to some x ∈ K. Then f(xnk
) →

f(x). So ynk
→ f(x). i.e. (yn)n∈N has a cluster point, namely y = f(x). Hence K̃ is

compact.

Corollary 6.1.14 Let K ⊆ X be a compact set and f : K → R be a continuous function.
Then,

1. f(K) is a closed and bounded set.

2. There exist x0, y0 ∈ K such that supx∈Kf(x) = f(x0) and infx∈Kf(x) = f(y0) i.e. f
attains its max and min on K.

Proof 6.1.15 By the Theorem 6.1.12, K̃ = f(K) is compact in R. In R, compact sets are
exactly closed bounded sets. So K̃ is closed and bounded. Hence sup K̃ = α and inf K̃ = β
exist and α, β ∈ K̃. So, α = f(x0) and β = f(y0) for some x0, y0 ∈ K.

i.e. supx∈Kf(x) = f(x0), infx∈Kf(x) = f(y0).



6.2. GLOBAL CHARACTERIZATION OF THE CONTINUITY 89

6.2 Global Characterization of the Continuity

Let (X, d), (Y, d′) be two m.s. Let f : X → Y be a continuous function. We have seen that
for any compact set K ⊆ X, f(K) is compact. But under f the images of an open/closed
set need not to be open/closed.

Indeed, let f : R → R, f(x) = sin x. Then f is continuous on R and O = ]−2π, 2π[ is
open but f(O) = [−1, 1], which is closed.

If f(x) =
x2

1 + x2
, then f is continuous on R. The set F = [0, +∞[ is closed however

f(F ) = [0, 1[ is not closed.

Theorem 6.2.1 For any function f : X → Y , the following assertions are equivalent:

1. f is continuous on X.

2. For any open set O′ ⊆ Y, f−1(O′) is open in X.

3. For any closed set F ′ ⊆ Y, f−1(F ′) is closed in X.

4. ∀A ∈ X, f(A) ⊆ f(A).

Proof 6.2.2 • 1 → 2 : Suppose f is continuous on X. Let O′ ⊆ Y be an open set
and O = f−1(O′). We have to show that O is open. Let x0 ∈ O be a point. Then
f(x0) ∈ O′. As O′ is open, ∃ ε > 0 : Bε(f(x)) ⊆ O′. As f is continuous at x0, there
is η > 0 such that for x ∈ Bη(x0), f(x) ∈ Bε(f(x0)) i.e f(Bη(x0)) ⊆ Bε(f(x0)) ⊆ O′.
This implies that Bη(x0) ⊆ f−1(O′) i.e. Bη(x0) ⊆ O. Hence O is open in X.

• 2 → 3 : Trivial since f−1(Bc) = f−1(B)c ∀ B ⊆ Y .

• 3 → 4 : Suppose that for any closed set F ′ ⊆ Y, f−1(F ′) is closed in X. We have to
show that, for any A ⊆ X, f(A) ⊆ f(A). So, let A ⊆ X be any set. Let F ′ = f(A)
and put F = f−1(F ′). By hypothesis, F is closed. As F ′ ⊇ f(A), F = f−1(F ′) ⊇
f−1(f(A)) ⊇ A. As F is closed in X, Ā ⊆ F , i.e. Ā ⊆ f−1(F ′). Then f(Ā) ⊆
f(f−1(F ′)) ⊆ F ′ = f(A).

• 4 → 3 : To prove 3, let F ′ ⊆ Y be a closed set. Take A = f−1(F ′). 4 says that
f(Ā) = F ′. Hence Ā ⊆ f−1(F ′) = A. So A is closed.

• 2 → 1 : Let x0 ∈ X be a point and ε > 0 an arbitrary number. Let O′ = Bε(f(x0)). As
O′ is open by 2, f−1(O′) is open in X. Moreover, x0 ∈ f−1(O′). As f−1(O′) is open,
then there is η > 0 such that Bη(x0) ⊆ f−1(O′). Hence f(Bη(x0)) ⊆ Bε(f(x0)) i.e.
d(x, x0) < η → d′(f(x1), f(x0)) < ε. So f is continuous at x0.



90 CHAPTER 6. CONTINUITY

6.2.1 Open Mapping, Closed Mapping, Homeomorphism

Definition 6.2.3 Let (X, d), (Y, d′) be two m.s. and f : X → Y be a mapping.

1. If for each O ⊆ X open, f(O) is open in Y then we say that f is an open mapping.

2. If for each F ⊆ X closed, f(F ) is closed in Y , then f is closed mapping.

3. If f is bijective and both f and f−1 are continuous then we say that f is a homeo-
morphism.

Example 6.2.4 1. Let f : R → R be a continuous, strictly increasing function. Then
f(]a, b[) = ]f(a), f(b)[ is open. Now, every open set O ⊆ R is a union of open intervals
O = ∪k∈N ]an, bn[. Then f(O) = ∪n∈N ]f(an).f(bn)[ is open. Let f(x) = ex for any
O ⊆ ]0,∞[ open f(O) is open.

2. If (X, d) is a compact m.s., then any continuous function f : X → Y is a closed
mapping.

3. Let X = R, Y = ]0,∞[, and f : X → Y, f(x) = ex. So, f is a bijection. As
f−1(x) = ln x : ]0,∞[ → R, f is continuous, so f : R → ]0,∞[ is a homeomorphism.

4. f : R → R, f(x) = x3 is a homeomorphism.

5. f :
]
−π

2
,
π

2

[
→ R, f(x) = tan x is a homeomorphism.

6. f :
]
−π

2
,
π

2

[
→ ]−1, 1[ , f(x) = sin x is a homeomorphism.

7. f : [0, 1] → [a, b] , f : ]0, 1[ → ]a, b[ , f(t) = (1 − t)a + tb is a homeomorphism.

8. f : R → ]−1, 1[ . f(x) =
1

1 + |x| is a continuous bijection, and f−1(x) =
x

1 − |z| is

also continuous bijection. So f is a homeomorphism.

Proposition 6.2.5 Let f : X → Y be a bijection. Then,

1. f is open ⇔ f−1 : Y → X is continuous.

2. f is open ⇔ f is closed.

Proof 6.2.6 1. Let O ⊆ X open. Then f−1(f−1)(O) = f(O), from this the result follows.

2. As f is bijective, ∀A ⊆ X, f(A)c = f(A)c, from this the result follows.

Corollary 6.2.7 Let f : X → Y be a bijection. Then f is a homeomorphism ⇔ f is
continuous and open ⇔ f is continuous and closed.
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Definition 6.2.8 Two m.s. (X, d), (Y, d′) are said to be “homeomorphic” if there exists
a homeomorphism between them.

Example 6.2.9 1. R and ]−1, 1[ are homeomorphic.

2. [a, b] and [0, 1] are homeomorphic.

3. ]a, b[ and ]0, 1[ are homeomorphic.

4. R and ]0,∞[ are homeomorphic.

5. R and ]a, b[ are homeomorphic.

Proposition 6.2.10 If (X, d) is a compact m.s., every continuous bijection f : X → Y is
a homeomorphism (i.e. f−1 is automatically continuous).

Proof 6.2.11 Indeed f is a closed mapping!

Example 6.2.12 Let f :
[
−π

2
,
π

2

]
→ [−1, 1] , f(x) = sin x. Then f is continuous and

bijective. Then f−1(x) = arc sin x is continuous.

Example 6.2.13 Let f : [a, b] → [f(a), f(b)] be a strictly increasing continuous function.
Then f−1 is continuous i.e. f(x) = x2 f : [0, 20] → [0, 400] , f−1(x) =

√
x is continuous.
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6.2.2 Exercises I

1. Let f : R → R be a function such that, for all x, y in R, f(x + y) = f(x) + f(y). Show
that f is continuous iff f(x) = cx for some c ∈ R.

2. Let f : R → R be a function such that, for all x, y ∈ R, f(x + y) = f(x)f(y). Prove
that

(a) f(x) ≥ 0 for all x ∈ R and that if f(x) = 0 for one x ∈ R, then f is identically
zero on R.

(b) If f is continuous at zero, then f is continuous at every x ∈ R.

(c) The only continuous function satisfying the above equality is f(x) = ax with
a = f(1).

3. Let f : [a, b] → R be a continuous function. Define g : [a, b] → R as follows: g(a) = f(a)
and for x ∈ ]a, b] , g(x) = sup{f(y) : y ∈ [a, x]}. Prove that g is monotone increasing
and continuous on [a, b].

4. Let f : R → R be defined by f(x) =

{
x sin

1

x
if x �= 0

0 if x = 0
. Show that f is continuous

on R.

5. Let f : R → R be defined by f(x) =

{
x if x ∈ Q
−x if x /∈ Q

. Show that f is continuous

only at x = 0.

6. Let f : R → R be a continuous function. If f(x) = 0 for each x ∈ Q, show that then
f ≡ 0 on R.

7. Find a function f : R → R that is continuous everywhere except for the set of positive
integers.
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6.3 Uniform Continuity, Lipschitzean Mappings

Let (X, d), (Y, d′) be 2 m.s. A ⊆ X a set and f : A → Y be a function. To say that f is
continuous on A means this:

∀ a ∈ A, ∀ ε > 0, ∃ η = η(ε, a) > 0 : {∀ x ∈ A, d(x, a) < η, ⇒ d′(f(x), f(a)) < ε Eq 7.1

Definition 6.3.1 If in Eq 7.1 it is possible to choose η independent from a ∈ A , we get:
∀ ε > 0, ∃ η = η(ε) > 0 : {∀ x ∈ A, ∀ y ∈ A, d(x, y) < η =⇒ d′(f(x), f(y)) < ε

If this last condition holds, then we say that f is uniformly continuous on A.

Example 6.3.2 Let f : R → R, f(x) = x2. Then f is continuous on R, but f is not
uniformly continuous on R. Indeed for a contradiction assume that f is uniformly continuous
on R. So we have:

∀ ε > 0, ∃ η > 0, {∀ x, y ∈ R |x − y| < η ⇒ |f(x) − f(y)| < ε Eq 7.2

Let n ≥ 1 be such that
1

n
< η. So if we take x = n and y = n +

1

n
, then we see that

|x − y| =
1

n
< η, but |f(x) − f(y)| = |x2 − y2| = |n2 − (n +

1

n
)2| = 2 +

1

n2
. Hence if we

choose 0 < ε < 2, then Eq 7.2 cannot hold.

Question: Why we need uniform continuity?

Let f : ]0, 1] → R, f(x) =
1

x
. Let xn =

1

x
. Then xn ∈ ]0, 1] and (xn)n∈N is a Cauchy

sequence and f is continuous on ]0, 1]. But f(xn) = n is not a Cauchy sequence. So a
continuous function does not send in general Cauchy sequences to Cauchy sequences.

Proposition 6.3.3 If f : A → Y is uniformly continuous on A, then for any Cauchy
sequence (xn)n∈N in A, (f(xn))n∈N is also Cauchy.

Proof 6.3.4 Let us write what we have:
f is uniformly continuous on A: ∀ ε > 0 ∃ η > 0{∀ x ∈ A, ∀ y ∈ A, d(x, y) < η ⇒

d′(f(x), f(y)) < ε
(xn)n∈N is Cauchy: ∀ ε′ > 0 ∃ N ∈ N ∀ n ≥ N, ∀ m ≥ N, d(xn, xm) < ε′

Hence for ε′ = η we see that d(xn, xm) < η for n,m ≥ N so that d′(f(xn), f(xm)) < ε for
n,m ≥ N .

This shows that (f(xn))n∈N is Cauchy.

Example 6.3.5 Let A = ]0, 1] , f : A → R, f(x) =
1

x
. The Proposition 6.3.3 and the last

example shows that f is not uniformly continuous on A.

Theorem 6.3.6 (Heine) If A is compact, then every continuous function f : A → Y is
uniformly continuous on A.
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Proof 6.3.7 Since f is continuous on A we have: ∀ a ∈ A, ∀ ε > 0, ∃ η = η(ε, a) > 0,

{∀ x ∈ A, d(x, a) ≤ η, ⇒ d′(f(x), f(a)) < ε

Fix ε > 0 and let ηa = η(ε, a). Then A ⊆ ∪a∈ABη a
2
(a). As A is compact,

A ⊆ Bη a1
2

(a1)∪ . . .∪Bη an
2

(an) for some a1, . . . , an ∈ A. Let η = min{ηa1
2
, . . . , η an

2
}. Then

η > 0. Let now x, y ∈ A be any 2 points such that d(x, y) < η.

As A ⊆ Bη a1
2

(a1) ∪ . . . ∪ Bη an
2

(an), x is one of these balls, say x ∈ Bη a1
2

(a1). Then both

x, y ∈ Bηa1
(a1). Then,

d′(f(x), f(y)) < d′(f(x), f(a1))︸ ︷︷ ︸ + d′(f(a1), f(y))︸ ︷︷ ︸ < 2ε

< ε < ε

This shows that f is uniformly continuous on A.



6.3. UNIFORM CONTINUITY, LIPSCHITZEAN MAPPINGS 95

6.3.1 Exercises II

1. Let f : R → R be defined as f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ R\Q
1 if x = 0
1

q
if x ∈ p

q
and (p, q) = 1

Show that f is continuous at every irrational number and discontinuous at every ra-
tional number.

2. Is there a function f : R → R which is continuous at every rational number and
discontinuous at every irrational number?

3. Let (X, d) be a m.s., f : X → R be a function and g : X → R is given by

g(x) =
f(x)

1 + |f(x)| .
Let x0 ∈ X be a point. Show that g is continuous at x0 iff f is continuous at x0.

4. Let X be any set and f : X → R be a one-to-one function. Put, for x, y ∈ X,

d(x, y) = |f(x) − f(y)|. Show that d is a metric on X and f is continuous for this
metric.

5. A function f : R → R is said to be periodic if there is a number p > 0 such that
f(x + p) = f(x) for all x ∈ R. Show that every periodic continuous function is
uniformly continuous on R and is bounded on R.

6. Let (X, d) be a metric space, A ⊆ X a set and f : A → R be a function. Assume that
f is continuous at a point x0 ∈ A.

Show that there are δ > 0 and M > 0 such that |f(x)| ≤ M for every x ∈ Bδ(x0) ∩ A.

Thus every continuous function is locally bounded.

7. Let f : ]0, 1[ → R be defined by f(x) =

{
0 if x is irrational

n if x =
n

m
and (m,n) = 1

Prove that f is unbounded on every open interval I ⊆ ]0, 1[.

Deduce from 6 that f is discontinuous at every x ∈ ]0, 1[

8. Prove that the function f(x) =
√

x is uniformly continuous on [0,∞[ and Lipschitzean
on [a, +∞[ for each a > 0.

9. Let (X, d) be a m.s., A ⊆ X a set and f : A → R be a function which is uniformly
continuous on A.

Show that if (xn)n∈N is a Cauchy sequence in A, then (f(xn))n∈N is Cauchy in R.
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6.4 Uniform Extension Theorem

Let f : A → Y be a continuous function and A ⊆ B ⊆ X be a set.

Problem: Can we extend f continuously to B i.e. given f : A → Y continuous, is there a
continuous function f̃ : B → Y such that f̃ = f on A?

Example 6.4.1 Let A = R\{0}, f(x) = sin 1
x
, f : A → R. Then f is continuous, and

∀x ∈ A, |f(x)| ≤ 1, but as we have seen that f has no continuous extension to R.

Theorem 6.4.2 (Uniform Extension Theorem) If (Y, d′) is complete and f : A → Y
is uniformly continuous on A, then there exists a unique uniformly continuous function.
f̃ : Ā → Y that extends f .

Proof 6.4.3 Let x ∈ Ā be a point. We want to extend f continuously to x. How to define
f̃ : Ā → R at x?

Let xn ∈ A, xn → x. Since xn → x, (xn)n∈N is Cauchy. As f is uniformly continuous
on A, (f(xn))n∈N is Cauchy. As (Y, d′) is complete, (f(xn))n∈N converges to some point
αx ∈ Y .

Let us see that αx does not depend on the sequence (xn)n∈N that converges to x. To see
this, let (yn)n∈N be another sequence in A that converges to x. Then for the same reasons as
above, (f(yn))n∈N also converges in Y to same βx ∈ Y .

Is αx = βx?
Let (zn)n∈N be the mixture of ′′(xn)n∈N and (yn)′′n∈N i.e.

zn = x0 , y0, x1, y1, . . .
↑ ↑ ↑ ↑
z0 z1 z2 z3

Then zn ∈ A and zn → x. Then (f(zn))n∈N is Cauchy, so f(zn) → γx for some γx ∈ Y .
As (f(xn))n∈N and (f(yn))n∈N are subsequences of (f(zn))n∈N αx = γx and βx = γx. So
αx = γx. In particular, if x ∈ A, and if we take x0 = x1 = . . . = xn = . . . = x, αx = f(x) =
limn→∞f(xn).

So we define f̃ : Ā → R as f̃(x) = limn→∞f(xn) for any sequence (xn)n∈N in A that
converges to x ∈ Ā.

What we did above shows that f̃ is well-defined on Ā. Moreover f̃(x) = f(x), ∀ x ∈ A.
Hence f̃ is an extension of f to Ā. Let us see that f̃ is uniformly continuous on Ā. As f is
uniformly continuous on A, we have:

∀ ε > 0, ∃ η > 0, ∀ x, y ∈ A, d(x, y) ≤ η =⇒ d′(f(x), f(y)) ≤ ε Eq 7.3

Let us see that the same η works for f̃ .
To see this, let x, y ∈ Ā be such that d(x, y) < η. Let xn, yn ∈ A : xn → x and yn → y.

Then, there is an N ∈ N such that for n ≥ N, d(xn, yn) < η, since d(xn, yn) → d(x, y).
Then by Eq 7.3, d′(f(xn), f(yn)) < ε. As d(f̀(x), f̃(y)) = limn→∞d(f(xn), f(yn)) ≤ ε. So
that f̃ is uniformly continuous on Ā.



6.4. UNIFORM EXTENSION THEOREM 97

Uniqueness: If g : Ā → Y is another uniformly continuous function extending f , then
g(x) = f̃(x) = f(x), ∀ x ∈ A. Hence if x ∈ Ā and xn ∈ A, with xn → x, then
g(x) = limn→∞f(xn) = f̃(x). So f̃ = g on Ā.

Example 6.4.4 Every uniformly continuous f : Q → R is the restriction of an uniformly
continuous f̃ : R → R.

Example 6.4.5 The function f(x) = sin 1
x

is not uniformly continuous on R \ {0}.

Definition 6.4.6 • Let f : A → Y be a function. If there is a number k > 0 such that
∀x, y ∈ A, d′(f(x), f(y)) ≤ kd(x, y), then we say that f is a Lipschitzean function on A.

• If 0 < k < 1 then f is said to be a contraction.
• If d′(f(x), f(y)) = d(x, y) ∀x, y ∈ A, then f is said to be an isometry.

Example 6.4.7 Let f(x) = sin x, f : R → R. Then sin(x) − sin(y) = (x − y) cos(c) for
some c between x and y.

So, sin(x) − sin(y)| ≤ |x − y|. Hence f(x) = sin x is a Lipschitzean function.
More generally, if f : [a, b] → R is differentiable and f ′ is bounded on [a, b], then f is

Lipschitzean.

Example 6.4.8 Let f :]0,∞[→]0,∞[, f(x) = x +
1

x
, then |f(x)− f(y)| < |x− y| for x �= y

Example 6.4.9 If f : A → Y is Lipschitzean, then f is uniformly continuous. Indeed, if

for some k > 0 d′(f(x), f(y)) ≤ kd(x, y), then ∀ε > 0, ∃ η =
ε

k
: ∀x, y ∈ A, d(x, y) < η ⇒

d′(f(x), f(y)) ≤ kd(x, y) ≤ ε
The converse is false. The function f : [o,∞[ → [0,∞[ , f(x) =

√
x f is uniformly

continuous but not Lipschitzean.

Theorem 6.4.10 (Banach Fixed Point Theorem): Let (X, d) be a complete m.s. and
f : X → X be a contraction. Then ∠∃!x ∈ X such that f(x) = x.

Proof 6.4.11 Let x0 ∈ X be any point. Then put x1 = f(x0), x2 = f(x1), ..., xn = f(xn)
In this way, we obtain a sequence xn. Let us see that this sequence is Cauchy.
First, d(xn, xn−1) = d(f(xn−1), f(xn−2)) ≤ kd(xn−1, xn−2), where 0 < k < 1 is a constant

independent from xn’s.
Hence d(xn, xn−1) ≤ kn−2d(x1, x0). Then,

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + ... + d(xn+1, xn)

≤ (kn+p−2 + ... + kn−1)d(x1, x0) = kn−1d(x1, x0)[1 + k + ... + kp−1] = kn−1d(x1, x0)
1 − kp

1 − k

≤ kn−1d(x1, x0)

1 − k
As 0 < k < 1, kn−1 → 0 as n → ∞. Hence d(xn+p, xn) → 0 for any p ∈ N as n → ∞.

This shows that xn is Cauchy. As our m.s. (X, d) is complete, xn converges to some x ∈ X.
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Now, f(xn−1) = xn and since f is Lipschitzean, f is continuous on X. As xn = f(xn−1),
letting n → ∞, x = f(x).

Uniqueness: Suppose that, for some y ∈ X, y = f(y) too. If x �= y, then f(x) �= f(y).
So d(x, y) = d(f(x), f(y)) ≤ kd(x, y). If x �= y, then d(x, y) �= 0, so 1 ≤ k. Contradiction,
since 0 < k < 1.

Example 6.4.12 f(x) sin x, f : [0, 2π] → [0, π], f(0) = 0. So, x = 0 is a fixed point of f .

Example 6.4.13 f(x) = ex, f : R → R, then the equation ex = x has no solution. So, f
has no fixed point.

Application: Let X = C[0, 1] = the space of the continuous functions, f : [0, 1] → R, with
the supremum metric. d(f, g) = sup0≤x≤1|f(x) − g(x)|. The m.s. (X, d) is complete. Show
that C[0, 1] is closed in B[0, 1]. Let f : [0, 1] × R → R be a continuous function such that
|F (t, x) − F (t, y)| ≤ k|x − y| ∀ x, y ∈ R since 0 < k < 1 independent from x, y and t.

Consider the differential equation:{
y′(t) = F (t, y(t)) ,

y(0) = 0 .

Question: Is there a solution?

Theorem 6.4.14 The equation system above has a solution.

Proof 6.4.15 Let T : C[0, 1] → C[0, 1] be the mapping defined by T (y)(t) =
∫ t

0
F (s, y(s))ds.

Then, for y, z ∈ C[0, 1],

|T (y)(t) − T (z(t))| = | ∫ t

0
F (s, y(s)) − F (s, z(s)ds| ≤

∫ t

0
|F (s, y(s)) − F (s, z(s))|ds

≤ k
∫ t

0
|y(s) − z(s)|ds ≤

∫ 1

0
|y(s) − z(s)|ds

≤ k sup0≤s≤1 |y(s) − z(s)| = kd(y, z)

Then, d(T (y), T (z)) ≤ kd(y, z)
Hence by the Banach Fixed Point Theorem, T has a unique fixed point y, T (y)(t) = y(t).
So y(t) =

∫ t

0
F (s, y(s))ds, hence y′(t) = F (t, y(t)) and y(0) = 0

Theorem 6.4.16 (Brewer Fixed Point Theorem): Let B = {x ∈ Rn : ||x||2 ≤ 1} be
the closed unit ball of Rn. Then every continuous f from B to B has a fixed point.

6.4.1 The distance function

Let (X, d) be a m.s. A ⊆ X a nonempty set and for x ∈ X. Let d(x, y) = infy∈A d(x, y). This
is by definition, the distance of the point x to the set A. In this way, we define a function
f : X → R, f(x) = d(x,A). We want to study the properties of the function f .

Proposition 6.4.17 Let x ∈ X be given. Then d(x,A) = 0 ⇔ x ∈ Ā
(so that if x /∈ Ā, d(x,A) > 0)
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Proof 6.4.18 Suppose first that x ∈ Ā, then ∃ xn ∈ A : xn → x. Now
d(x,A) = infy∈A(x, y) ≤ d(x, xn) ∀n ∈ N . Hence d(x,A) = 0 (let n → ∞)

Conversely, suppose infy∈A d(x, y) = 0, so ∀n ≥ 1, ∃ yn ∈ A, 	 d(x, yn) <
1

n
. Hence

yn → x. So, x ∈ Ā.

Proposition 6.4.19 ∀x1, x2 ∈ X, |d(x1, A) − d(x2, A)| ≤ d(x1, x2) (so f(x) = d(x,A) is a
Lipschitzean function on X.)

Proof 6.4.20 For any y ∈ A, d(x1, y) ≤ d(x1, x2) + d(x2, y) so that
infy∈A d(x, y) ≤ d(x1, x2) + inf d(y2, x2) =⇒ d(x1, A) ≤ d(x1, x2) + d(x2, A).
Hence, d(x1, A) − d(x2, A) ≤ d(x1, x2).
Changing x1 and x2, we get d(x2, A) − d(x1, A) ≤ d(x1, x2).

Proposition 6.4.21 If A is compact, then ∀x ∈ A, there is a y0 ∈ A,	 d(x,A) = d(x, y0).

Proof 6.4.22 Let f : A → R, f(y) = d(x, y), f is continuous on X. Hence if A is compact,
f attains its maximum on A, i.e. ∃ y0 ∈ A : f(y0) = infy∈A d(x, y), i.e. d(x, y0) = d(x,A).

6.4.2 Distance Between Two Points

Let (X, d) be a m.s. A,B be 2 nonempty sets. We define the distance between two sets
d(A,B) as d(A,B) = infx∈B d(x,A) = infy∈A, x∈B d(x, y)

Example 6.4.23 Even if A, B are closed and disjoint, we may have d(A,B) = 0.
Let X = R2, d = the Euclidean metric, A = {(x, 1

x
) : x > 0} and B = R \ {0}. Then

A,B are closed and disjoint and d(A,B) = inf{√(x − a)2 + ( 1
x
− 0)2 : x > 0, a ∈ R}. Then

d(A,B) ≤ d((n, 1
n
), (n, 0)) =

1

n
, ∀n > 0. This being true for each n, we get d(A, B) = 0.

However,

Theorem 6.4.24 If A is compact, B is closed and A ∩ B = ∅, then d(A,B) > 0.

Proof 6.4.25 Let f : A → R, f(x) = d(x,B). This is a continuous function. By the
Proposition 6.4.21, d(x,B) > 0, ∀x ∈ A. As A is compact f attains its minimum: ∃ x0 ∈
A 	 f(x0) = infx∈A d(x,B) = d(A,B). So, d(A,B) = f(x0) = d(x0, B) > 0.

Example 6.4.26 We use this proposition in the following form:
Let O ⊆ X be an open set and K ⊆ O be a compact set. Then d(K, δO) > 0.
e.g. Let X = R2, let O = B1(0), K ⊆ O be any compact set. Show that for some

0 < r < 1, K ⊆ Br(0).



100 CHAPTER 6. CONTINUITY

Example 6.4.27 f : R → R be the Dirichlet function f(x) =

{
1 if x ∈ Q,

0 otherwise.

f is continuous iff ∀x0 ∈ R,∀xn ∈ R, xn → x0 ⇒ f(xn → f(x0)).
So this function is not continuous as f |Q = 1 and f |R\Q = 0

Lemma 6.4.28 (Urysohn Lemma): Let (X, d) be any m.s., A,B 2 nonempty disjoint
sets. Then ∃ a function f : X → R, continuous such that;

1. ∀x ∈ X, 0 ≤ f(x) ≤ 1.

2. ∀x ∈ A, f(x) = 0.

3. ∀x ∈ B, f(x) = 1.

Proof 6.4.29 For x ∈ X, let f(x) =
d(x,A)

d(x,A) + d(x,B)
As A∩B = ∅ and A,B are closed d(x,A)+d(x,B) �= 0,∀x ∈ X. Hence f is continuous on

R, as the quotient of two continuous functions is continuous provided that the denominator
is not zero.

It is clear that 0 ≤ f(x) ≤ 1, for x ∈ A, f(x) = 0 and for x ∈ B, f(x) = 1.

6.4.3 Fσ-sets, Gδ-sets in R

Consider the sets [a, b], (a, b), one is closed and the other is open set. And we can write them
as:

[a, b] = ∩n≥1]a − 1
n
, b + 1

n
[ , and (a, b) = ∪n≥1[a + 1

n
, b − 1

n
]

Questions:

1. Can we write every closed set as a union of countable open sets?

2. Can we write every open set as a union of countable closed sets?

Definition 6.4.30 Let (X, d) be a m.s. and E ⊆ X a set. We say that;

1. E is a Gδ-set, if it is possible to write E as the intersection of countably many open
sets. (i.e. E = ∩n∈NOn, On open)

2. E is said to be a Fσ-set, if it is possible to write E as the union of countably many
closed sets. (i.e. E = ∪n∈NFn, Fn closed.)

Obviously,

1. E is a Gδ-set ⇔ Ec is an Fδ-set

2. Every open set O is a Gδ-set
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3. Every closed set F is a Fδ-set

4. Every countable subset E ⊆ X is a Fδ-set. So Ec is a Gδ-set.

Notation: Let (X, d) be a m.s. A ⊆ X (�= ∅) any set and ε > 0. Let
Bε(A) = {x ∈ X : d(x,A) < ε}
B′

ε(A) = {x ∈ X : d(x,A) ≤ ε}
As the function f : X → R, f(x) = d(x,A) is continuous, Bε(A) = f−1(]−∞, ε[) is open

and B′
ε(A) = f−1(]−∞, ε]) is closed. Also A ⊆ Bε(A) ⊆ B′

ε(A). If, in R, we take, A = [a, b]
and ε = 1

n
, then B 1

n
(A) = {x ∈ R : d(x,A) < 1

n
} =]a − 1

n
, b + 1

n
[.

Theorem 6.4.31 a) If A ⊆ X is closed, then A = ∩n≥1B 1
n
(A)

b) If A ⊆ X is open, then A = ∪n≥1(B 1
n
(Ac))c

Proof 6.4.32 It is enough to prove a.
(a)(⇒) The inclusion A ⊆ ∩n≥1B 1

n
(A) is clear.

(⇐) Let x /∈ A. As A is closed, there is some ε > 0 such that Bε(x)∩A = ∅. In particular,
d(x,A) ≥ ε. If 1

n
< ε, then x /∈ B 1

n
(A). Hence x /∈ ∩n≥1B 1

n
(A). Hence A = ∩n≥1B 1

n
(A).

Conclusion: In any m.s. (X, d)
a) Every closed set can be written as an intersection of countably many open sets.(Gδ-set)
b) Every open set can be written as an union of countably many closed sets.(Fσ-set)

Question: In R, we have seen that Q is an Fσ-set and R \ Q is Gδ-set. Is Q a Gδ-set? i.e.
is it possible to write Q as Q = ∩n≥1On, On ⊆ R open.

This is not the case.

Remark: Let f be any function. (f : R → R). Let Cf = {x ∈ R : f is continuous at x}.
If f(x) = sin x, then Cf = R.
If f(x) = χQ, then Cf = ∅.
If f(x) = sin 1

x
, then Cf = R \ {0}.

Now let f(x) =

⎧⎪⎨
⎪⎩

0 if x ∈ R \ Q,

0 if x = 0,
1
m

if x = n
m

and x ∈ Q (n,m) = 1

Let x0 ∈ R be a given point. Then f is continuous at x0 ⇔ x0 ∈ R \ Q i.e. Cf = R \ Q

Question: Is there a function f : R → R such that Cf = Q?

Theorem 6.4.33 Let A ⊆ R be a set (�= ∅). Then there is a function f : R → R such that
Cf = A iff A is a Gδ-set.

So, since Q is not a Gδ-set, there is no function f : R → R which is continuous at every
rational x0, and discontinuous at every irrational x0.
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6.5 Completion of a m.s. (X, d)

Question: Given any non-complete m.s. (X, d), is there a complete m.s. (X̃, d̃) such that:
1) X ⊆ X̃ and X = X̃
2) For x, y ∈ X, d̃(x, y) = d(x, y)

Theorem 6.5.1 Let E �= ∅ be any set and B(E) = {ϕ : E → R : ϕ is bounded } be the
space of all the bounded functions ϕ : E → R with the metric d∞(ϕ, ψ) = sup |ϕ(x) − ψ(x)|.
Then the m.s. (B(E), d∞) is complete.

Proof 6.5.2 Let (ϕn)n∈N be a Cauchy sequence, i.e.
∀ε > 0, ∃N ∈ N, ∀n,m ≥ N, d∞(ϕn, ϕm) = sup |ϕn − ϕm| < ε (*)

We have to show that, for some ϕ ∈ B(E), d∞(ϕn, ϕ) → 0 as n → ∞.

From (*) above we see that for each x ∈ E, the sequence (ϕn(x))n∈N is Cauchy in R. As
(R, d) is complete, this sequence converges to some number αx ∈ R.

Let ϕ : X → R be the function ϕ(x) = αx. Let us see that;
1) ϕ is bounded on R
2) d∞(ϕn, ϕ) → 0 as n → ∞.

In (*) fix n ≥ N and let m → ∞, then we get;
supx∈E |ϕn(x) − ϕ(x)| ≤ ε ⇒ ||ϕn(x)| − |ϕ(x)|| ≤ |ϕn(x) − ϕ(x)| ≤ ε.

Hence supx∈E |ϕ(x)| ≤ ε + supx∈E |ϕn(x)| < ε + M , where M = supx∈E |ϕn(x)|. So that ϕ is
bounded. Hence ϕ ∈ B(E).

Let x ∈ E be any point, since ϕn(x) → ϕ(x), i.e.
∀ε > 0 ∃M ∈ N, ∀m ≥ M, |ϕm(x) − ϕ(x)| ≤ ε (**)

Let N be as in (*), let n ≥ N , then choose an m 	 m = max{N,M}. Then;
|ϕn(x) − ϕ(x)| ≤ |ϕn(x) − ϕm(x)| + |ϕm(x) − ϕ(x)| < 2ε.

As N is independent from x ∈ E, supx∈E |ϕn(x) − ϕ(x)| ≤ 2ε.
That is d∞|ϕn, ϕ| → 0, as n → ∞. Hence (B(E), d∞) is complete.

Remark: Let (X, d) be any metric space K ⊆ X be a compact set and
C(K) = {ϕ : K → R : ϕ is continuous}.
Since any ϕ ∈ C(K) is bounded (since ϕ(K) is compact in R), we see that C(K) ⊆ B(K).
Hence to prove that the m.s. (C(K), d∞) is complete, it is enough to show that C(K) is

closed in B(K).

Definition 6.5.3 Let (X, d) be a m.s. A metric space (Y, d′)is said to be a completion of
(X, d) if:

1. (Y, d′) is complete

2. There is an isometry h : X → Y such that h(X) = Y
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Example 6.5.4 Consider X = Q, d(x, y) = |x − y|. Then j : Q → R, j(x) = x X̂ = R,
d̂(x, y) = |x − y| and j(Q) = R.

(Q, d) is not complete but (Q̃, d̃), i.e. (R, d) is complete.

Let (X, d) be any m.s. We are going to show that there is a complete m.s. (X̂, d̂) and an
isometry j : X → X̂ such that j(X) = X̂

Theorem 6.5.5 Given any m.s. (X, d), there is a complete m.s. (X̂, d̂) and an isometry
j : X → X̂ such that j(X) = X̂. The space (X̂, d̂) is unique up to an isometry.

Proof 6.5.6 Let B(X) = {f : X → R : f is bounded} be the space of bounded functions
with the metric d∞(f, g) = supx∈X |f(x) − g(x)|. We know that (B(X), d∞) is a complete
m.s.

Now, fix a point a ∈ X. For any y ∈ X, let fy : X → R be the function defined by
fy(x) = d(a, x) − d(x, y). Then |fy(x)| = |d(a, x) − d(x, y)| ≤ d(a, y). So, fy is bounded on
X. So, fy ∈ B(X).

Let j : X → B(X) be defined j(y) = fy. j is an isometry i.e. d∞(fy, fy′) = d(y, y′) i.e.
supx∈X |fy(x) − fy′(x)| = d(y, y′), since

|fy(x) − fy′(x)| = |d(a, x) − d(x, y) − d(a, x) + d(x, y′)| = |d(x, y) − d(x, y′)| ≤ d(y, y′).

Hence sup |fy(x) − fy′(x)| ≤ d(y, y′). Then for y = y′, |fy(x) − fy′(x)| = d(y, y′). Hence

sup |fy(x) − fy′(x)| = d(y, y′). So, j : X → B(X) is an isometry. Let X̂ = j(X) and d̂ = d′

on X̂. Then (X̂, d̂) is a complete m.s. and j(X) = X̂.

Note that: In any complete m.s. (Y, d), if M ⊆ Y closed, then (M,d) is complete.

Uniqueness: Let (Ỹ , d̃) be another complete metric space and i : X → Ỹ an isometry with
i(X) = Ỹ . In i : X → Ỹ consider X as a subspace of X̂. In j : X → X̂ consider X as
a subspace of Ỹ . Then i has a uniformly continuous extension i∗ : X̂ → Ỹ . And j has a
uniformly continuous extension j∗ : Ỹ → X̃.

Both i∗ and j∗ are isometries: i∗ ◦ j∗ : Ỹ → Ỹ is an identity on Ỹ .

Example 6.5.7 Let X = C00 with the metric d∞(x, y) = supn∈N|xn − yn| where the space
is:

C00 = {ϕ : N → R : ϕ is almost finite}
= {ϕ : ϕ(n) = xn = 0 for all but finitely many n ∈ N}

Let X̂ = C0 = {ϕ : N → R : limn→∞ ϕ(n) = 0} with the supremum metric. Then:
(C0, d∞) is complete, C00 ⊆ C0 and C00 = C0 as j : X → X̂, j(x) = x is an isometry.

6.5.1 Equivalence of Metrics

Let (X, d1) be a m.s. and d2 be another metric on X.
Question: If we place d1 by d2, what we gain, what we loose?
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Example 6.5.8 Let on define the metrics; d(x, y) = |x − y|, d1(x, y) = |x3 − y2|
d2(x, y) = |Arc tan x − Arc tan y|, d3(x, y) =

|x − y|
1 + |x − y|

For all these metrics, |xn − x| → 0 ⇔ di(xn, x) → 0 is the same.
But being bounded change;
Let xn = n then d2(xn, xm) = |Arc tan xn − Arc tan xm| → 0 as n,m → ∞, so it is

Cauchy for this metric, but not Cauchy for d for example.

Let f : (X, d1) → (X, d2) be identity mapping f(x) = x. Then;

1) f is continuous iff whenever d1(xn, x) → 0 we have d2(xn, x) → 0.
2) f is a homeomorphism iff d1(xn, x) → 0 ⇔ d1(xn, x) → 0

Definition 6.5.9 A property (p) on a m.s. (X, d) is said to be topological property if
it is definable in terms of open sets e.g. to be compact, separable,closed sets, convergent
sequences...

Definition 6.5.10 There are 3 types of equivalences:
a) d1 and d2 are topologically equivalent if f is a homeomorphism. (i.e. f and f−1 are

both continuous) In this, for any sequence xn ∈ X and x ∈ X d1(xn, x) → 0 ⇔ d2(xn, x) → 0.
So, in this case, the spaces (X, d1), (X, d2) have the same topological properties. Thus,

if we replace d by a topological equivalent metric d2, then we do not lose any topological
property, but we may lose non-topological properties such as completeness.

b) d1 and d2 are uniformly equivalent if both f and f−1 are uniformly continuous. If
d1, d2 are uniformly equivalent then they are topologically equivalent. If we replace a metric
d1 by a uniformly equivalent metric d2, then we do not lose any topological properties, we do
not lose completeness, but it may happen that a set A ⊆ X which is bounded for d1, is not
bounded for d2, vice versa.

c) d1 and d2 are said to be equivalent if both f and f−1 are Lipschitzean. That is d1

and d2 are equivalent ⇔ ∃ α > 0, β > 0 : αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y) ∀ x, y ∈ X. If we
replace a metric d1 by an equivalent metric d2 we lose almost nothing. However a function
f : X → X may be a contraction with respect to one of these metric but not w.r.t. other
metric.

Example 6.5.11 Let X = R, d1(x, y) = |x − y|, d2(x, y) = |Arc tan x − Arc tan y|. Then
for any xn ∈ X and x ∈ X, |xn − x| → 0 ⇔ |Arc tan x − Arc tan y| → 0. So that d1, d2 are
topologically equivalent. But (R, d1) is complete, (R, d2) is not complete.

Example 6.5.12 Let X = R, d1(x, y) = |x − y|, d2(x, y) = min{1, |x − y|} ≤ 1. Then for
xn ∈ R, x ∈ R. d1(xn, x) → 0 ⇔ d2(xn, x) → 0. Hence d1, d2 are topologically equivalent. R
is not bounded for d1, but R is bounded for d2.

Example 6.5.13 Let X = R, d1(x, y) = |x− y|, d2(x, y) = min{1, |x− y|}. Then d1 and d2

are uniformly equivalent. A sequence (xn)n∈N in R which is Cauchy w.r.t. d1 iff it is Cauchy
w.r.t. d2. But the spaces (R, d1) and (R, d2) do not have the same bounded sets.
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Example 6.5.14 Let X = Rn, then any 2 of the metrics (dp)1≤p≤∞ are equivalent.
But B1(0) for d∞, B1(0) for d2 and B1(0) for d1 are different geometrically.
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Chapter 7

Limit

1. Definition and Existence of Limit

2. Limit from the left, from the right

3. Continuity of Monotone functions

4. Functions of Bounded Variation

5. Absolutely Continuous Functions

In this chapter, we will work in the following setting:

(X, d), (Y, d′) are 2 m.s., A ⊆ X a set, a ∈ Ā a point, and f : A → Y a function. The point
a may or may not be in A and f need not to be defined at the point a.

7.1 Definition and Existence of Limit

Definition 7.1.1 We say that limx→a f(x) exists if;
∃ L ∈ Y such that ∀ ε > 0, ∃ η > 0, ∀x ∈ A ∩ Bη(a) : d′(f(x), L) < ε.

In this case we write L = limx→a, x∈A f(x) (=limit of f(x) as x goes to a while remaining in
the set A). Then, the set A “determines” the way x goes to a.

Example 7.1.2 Let X = Y = R, A =]−1, 0[∪]0, 1[, a = 0 (So, a ∈ Ā, but also 0 ∈ ] − 1, 0[
and 0 ∈ ]0, 1[)

Let f : A → R, f(x) =

{
−1 if x ∈] − 1, 0[,

1 if x ∈]0, 1[.

Then, limx→0, x∈A f(x) does not exist. Indeed, otherwise we would have some L ∈ R
satisfying the definition of limit: ∀ ε > 0, ∃ η > 0 : ∀ x ∈] − η, η [∩A =⇒ |f(x) − L| < ε

Let x ∈]− η, η [∩A, x > 0. Then f(x) = 1, so |1−L| < ε. Then, let x ∈ ]− η, η [∩A, x < 0.
Then f(x) = −1, so | − 1 − L| < ε. So, for ε = 1

2
, this is not possible.

Now, if we take A =]0, 1[ then limx→0, x∈A f(x) = 1. So, existence depends on the set.

107
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Example 7.1.3 Let f : R2 \ {(0, 0)} → R, f(x, y) =
xy

x2 + y2
. Here A = R2 \ {(0, 0)} and

a = (0, 0). Does limx,y→(0,0), x,y �=(0,0) f(x, y) exists?

• Let us go to (0, 0) following the diagonal y = x. Then on this line f(x, y) =
x2

x2 + y2
=

1

2
.

So that lim(x,y)→(0,0), x=y f(x, y) =
1

2

• Now, let us go to (0, 0) following the x-axis. On x-axis, y = 0. So f(x, y) =
x × 0

x2 + 0
= 0.

So that lim(x,y)→(0,0), (x,y)∈R f(x, y) = 0

• If L = {y = kx : (k > 0), k ∈ Z} and if we go to (0, 0) following L, then,

lim(x,y)→(0,0), (x,y)∈L f(x, y) = lim(x,y)→(0,0), (x,y)∈L f(x, y) =
kx2

kx2 + x2
=

k

k2 + 1

Thus, the limit depends on the way we go to (0, 0).

The next proposition says that lim(x,y)→(0,0), (x,y) �=(0,0) f(x, y) does not exist!

Proposition 7.1.4 Let A ⊆ (X, d) be any set, a ∈ A be a point and f : A → R be a
function. Then,

1. If limx→a, x∈A f(x) exists, it is unique.

2. If B ⊆ A, a ∈ B̄ also, then if limx→a, x∈A f(x) = L then limx→a, x∈B f(x) = L too.

Proof 7.1.5 1. Suppose f(x) → L and f(x) → S, as x ∈ A, x → a and L �= S.

Let ε =
d(L, S)

2
. Then Bε(L) ∩ Bε(S) = ∅.

Since f(x) → L, ∃ η1 > 0 : f(Bη1(a) ∩ A) ⊆ Bε(L)

And as f(x) → S, ∃ η2 > 0 : f(Bη2(a) ∩ A) ⊆ Bε(S)

Let η = inf{η1, η2}. Then, (Bη(a) ∩ A) ⊆ Bε(L)f(Bη(a) ∩ A) ⊆ Bε(S)

But a ∈ Ā ⇒ f(Bη(a) ∩ A) �= ∅ ⇒ Bε(L) ∩ Bε(S) �= ∅, contradiction.

2. If limx→a, x∈A f(x) = L. Then we have: ∀ ε > 0 ∃ η > 0 : f(Bη(a) ∩ A) ⊆ Bε(L).
Then, a fortiori, f(Bη(a) ∩ B) ⊆ Bε(L). So limx→a, x∈B f(x) = L

Theorem 7.1.6 (Existence of Limit): limx→a, x∈A f(x) exists iff for any sequence (xn)n∈N

in A converging to a, limn→∞ f(xn) exists.

Proof 7.1.7 (⇒) Suppose limx→a, x∈A f(x) = L exists. So, we have;
∀ ε ∃ η > 0 : ∀x ∈ Bη(x) ∩ A =⇒ d′(f(x), L) < ε.

Now, let xn ∈ A be any sequence in A that converges to a. So we have ∀ ε′ > 0 (take ε′ = η)
∃ N ∈ N, ∀ n ≥ N, xn ∈ Bη(a). Here d′(f(xn), L) < ε ∀n ≥ N i.e. (f(xn)) → L, as
n → ∞.
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(⇐) Conversely, suppose that, for any sequence (xn)n∈N in A converging to a limn→∞ f(xn)
exists.

Let us first see that if xn ∈ A, with xn → a; and yn ∈ A with yn → a, then we have
limn→∞ f(xn) = limn→∞ f(yn). To see this let L1 = limn→∞ f(xn), L2 = limn→∞ f(yn).
Then mix up the sequences (xn)n∈N and (yn)n∈N to get a sequence (zn)n∈N as follows:

x0, y0, x1, y1, x2, y2, ..., xn, yn, ...

Then zn ∈ A and zn → a too. So, L3 = limn→∞ f(zn) exists. As (f(xn))n∈N and (f(yn))n∈N

are subsequences of (f(zn))n∈N L1 = L2 = L3. Hence limn→∞ f(xn) does not depend on the
sequence (xn)n∈N chosen.

Now, let (xn)n∈N be any sequence in A that converges to a. Then let L = limn→∞ f(xn). Let
us see that limx→a, x∈A f(x) = L. If not, we would have: ∃ ε > 0 ∀ η > 0 : ∃ xη ∈ Bη(a)∩A :
d′(f(xη), L) ≥ ε. Let η = 1

n
and denote by xn the corresponding xη. Then xn ∈ B 1

n
(a) ∩ A.

So xn ∈ A and xn → a.

Hence limn→∞ f(xn) = L but d′(f(xn), L) ≥ ε ∀n ≥ 1, contradiction.
So limx→a, x∈A f(x) = L.

Proposition 7.1.8 Let f, g : A → R be two functions. Suppose that limx→x0, x∈A f(x) and
limx→x0, x∈A g(x) exists. Then;

1. limx→x0, x∈A(f(x) + g(x)) exists and is equal to limx→x0, x∈A f(x) + limx→x0, x∈A g(x)

2. limx→x0, x∈A(f(x)g(x)) exists and is equal to limx→x0, x∈A f(x) limx→x0, x∈A g(x)

3. If g(x) �= 0 and limx→x0, x∈A g(x) �= 0, then limx→x0, x∈A
f(x)

g(x)
=

limx→x0, x∈A f(x)

limx→x0, x∈A g(x)

7.1.1 Cauchy Condition For Limit

Let f : A → Y be a function. We say that f satisfies the Cauchy Condition at a if we
have: ∀ ε > 0 ∃ η > 0 ∀ x, y ∈ Bη(a) ∩ A, d′(f(x), f(y)) < ε

Theorem 7.1.9 Suppose that (Y, d′) is complete. Then limx→a, x∈A f(x) = L exists iff f
satisfies the Cauchy condition at a.

Proof 7.1.10 (⇒) Suppose limx→a, x∈A f(x) = L exists. So, we have: ∀ ε > 0 ∃ η > 0 :

∀ x ∈ Bη(a) ∩ A ⇒ d′(f(x), L) <
ε

2
. Then, ∀ x, y ∈ Bη(a),

d′(f(x), f(y)) ≤ d′(f(x), L) + d′(f(y), L) < ε.

(⇐) Conversely, suppose f satisfies the Cauchy condition at a. Then,
∀ ε > 0 ∃ η > 0 ∀ x, y ∈ Bη(a) ∩ A : d′(f(x), f(y)) < ε

Now, let (xn)n∈N be a sequence in A that converges to a. Then (for ε = η) there is N ∈ N
such that ∀ n ≥ N, d(xn, a) < η. So, ∀ n ≥ N, ∀ m ≥ N, xn, xm ∈ Bη(a) ∩ A. Hence
d′(f(xn), f(xm)) < ε. So, (f(xn))n∈N is Cauchy. As (Y, d′) is complete, limn→∞ f(xn) exists.

Hence by the Theorem 7.1.6, limx→a, x∈A f(x) = L exists.



110 CHAPTER 7. LIMIT

Example 7.1.11 Let Y = R, f : A → R be a function and M > 0 a number such that
∀x, y ∈ A, |f(x) − f(y)| ≤ Md(x, y). For x0 ∈ A show that limx→x0, x∈A f(x) exists. Let us
see that Cauchy condition is satisfied:

Let ε > 0 be any given number, let 0 < η ≤ ε

2M
, then ∀x, y ∈ A ∩ Bη(x0),

|f(x) − f(y)| ≤ Md(x, y) ≤ M [d(x, x0) + d(y, x0)] ≤ M(
ε

2M
+

ε

2M
) = ε

So f satisfies Cauchy condition at x0, hence the limit exists.

Here we can even determine the limit. Indeed, the condition given for the function above
implies that f is uniformly continuous on A. Hence by the ‘Extension by the Uniform Conti-
nuity theorem’ we can extend f continuously to a function f ∗ : A → R. As f ∗ is continuous
on A and x0 ∈ A, for any sequence xn ∈ A converging to x0, limn→∞ f(xn) = f∗(x0). Hence
L = f ∗(x0) is the limit of f as x → x0, x ∈ A.

7.1.2 Limit and continuity

Theorem 7.1.12 Suppose that a ∈ A (so that f is defined at a). Then f : A → Y is
continuous at a iff limx→a, x∈A f(x) = f(a).

Proof 7.1.13 (⇒) Suppose f is continuous at a. Then, for any sequence (xn) that converg-
ing to a, f(xn) → f(a). So, by the theorem 7.1.6, limx→a, x∈A f(x) = f(a).

(⇐) Suppose that limx→a, x∈A f(x) = f(a). Then, again by the same theorem, for any
sequence (xn)n∈N in A converging to a, f(xn) → f(a). So f is continuous at a.

7.2 Limit From the Left, From the Right

First, a general result:

Lemma 7.2.1 Suppose that A = B ∪ C for B, C ⊆ X and x0 ∈ B, x0 ∈ C. Then
limx→x0, x∈A f(x) exists iff both limx→x0, x∈B f(x) and limx→x0, x∈C f(x) exist and they are
the same.

Proof 7.2.2 (⇒) Suppose that limx→a, x∈A f(x) exists and is L. So, we have:
∀ ε > 0, ∃ η > 0, ∀ x ∈ Bη(a) ∩ A: d′(f(x), L) < ε.

Then, obviously ∀ x ∈ Bη(a) ∩ B, d′(f(x), L) < ε, so limx→a, x∈B f(x) = L and similarly
∀ x ∈ Bη(a) ∩ B, d′(f(x), L) < ε, so limx→a, x∈C f(x) = L.

(⇐) Conversely, suppose that this two limits exist and they are the same. Let L be the
common value of these. So we have:

∀ε > 0, ∃η1 > 0 : ∀x ∈ B ∩ Bη1(x0), d′(f(x), L) < ε
∀ε > 0, ∃η2 > 0 : ∀x ∈ C ∩ Bη2(x0), d′(f(x), L) < ε
Let η = min{η1, η2} then ∀x ∈ A ∩ Bη(X0), d′(f(x), L) < ε.
Hence limx→x0, x∈A f(x) = L.
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Now, in this section our X = R, d=usual metric. And let A = [b, a[∪]a, c] with B = [b, a[
and C =]a, c]. We see that a ∈ Ā, a ∈ B̄ and a ∈ C̄.
So, for f : A → Y, limx→a, x∈A f(x), limx→a, x∈B f(x), and limx→a x ∈ Cf(x) are meaningful.
The Lemma 7.2.1 says that:

limx→a, x∈A f(x) exists ⇔ limx→a, x∈B f(x) and limx→a, x∈C f(x) exists and are equal.

limx→a, x∈B f(x) is said to be the limit from the left and is denoted as limx→a, x<a f(x).

limx→a, x∈C f(x) is said to be the limit from the right and is denoted as limx→a, x>a f(x).

Mathematically:
limx→a, x<a f(x) = L ⇔ ∀ ε > 0 ∃ η > 0 : ∀ x ∈]a − η, a[→ d′(f(x), L) < ε
limx→a, x>a f(x) = L ⇔ ∀ ε > 0 ∃ η > 0 : ∀ x ∈]a, a + η[→ d′(f(x), L) < ε

Example 7.2.3 f : [−1, 0[∪]0, 1[→ R, f(x) =

{
1 0 ≤ x ≤ 1,

−1 −1 ≤ x ≤ 0

limx→0, x<0 f(x) = −1 and limx→0, x>0 f(x) = 1

Notation: Now on we shall denote limx→x0, x<x0 f(x) as f(x−
0 ) whenever this limit exists.

Similarly, we denote limx→x0, x>x0 f(x) as f(x+
0 ) whenever this limit exists.

Example 7.2.4 Let f : [−π, 0[∪]0, π] → R, f(x) = sin 1
x
. Then neither of the limits

limx→x0, x<x0 f(x), limx→x0, x>x0 f(x) exist.

• If we take xn =
1

π/2 + nπ
then xn ∈]0, π] but limn→∞ f(xn) does not exist.

• If we take xn =
−1

π/2 + nπ
then xn ∈ [−π, 0[ but limn→∞ f(xn) does not exist.

Continuity From the Left, Continuity From the Right

Definition 7.2.5 Let b < a < c, f : [b, c] → Y be a function (So f is defined at a).
• If limx→a, x<a f(x) = f(a), then we say f is continuous at a from left.
• If limx→a x > af(x) = f(a), then we say f is continuous at a from right.

Example 7.2.6 Let f1, f2, f3 : [−1, 1] → R

1. f1(x) =

{
−1 −1 ≤ x ≤ 0,

1 0 ≤ x ≤ 1
As limx→0, x<0 f1(x) = −1 = f1(0), f is continuous at 0.

2. f2(x) =

{
−1 −1 ≤ x ≤ 0,

1 0 ≤ x ≤ 1
As limx→0, x>0 f2(x) = 1 = f2(0), f is continuous at 0.

3. f3(x) =

{
−1 −1 ≤ x ≤ 0,

1 0 ≤ x ≤ 1
limx→0, x<0 f3(x) = −1 �= f3(0) �= limx→0, x>0 f3(x), f is

not continuous neither from left, nor from right.
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Example 7.2.7 Let f : [−π
2

, π
2
] → R, f(x) =

{
sin x

x
if x �= 0

2 if x = 0.

Then, limx→0, x<0 f(x) = 1 = limx→0, x>0 f(x)

limx→0, x∈[−π
2

, π
2
] f(x) exists, but f is not continuous at zero.

From all these we say that, f is continuous at a ⇔ f(a+) = f(a) = f(a−)

7.3 Continuity of Monotone Functions

Theorem 7.3.1 Let F : [a, b] → R be an increasing function and a < x0 < b be a point.
Then,

1. f(x−
0 ) and f(x+

0 ) exist. f(x−
0 ) = sup{f(y) : a ≤ y ≤ x0}

f(x+
0 ) = inf{f(y) : x0 ≤ y ≤ b}

2. f(x−
0 ) ≤ f(x0) ≤ f(x+

0 )

3. If a < x0 < y0 < b then f(x+
0 ) ≤ f(x−

0 )

4. The set Df = {x0 ∈ [a, b] : f is discontinuous at x0} is at most countable.

Proof 7.3.2 1. Let us prove that f(x−
0 ) = sup{f(y) : a ≤ y ≤ x0}. As f is increasing,

for a ≤ y ≤ x0, f(y) ≤ f(x0). So the set E = {f(y) : a ≤ y ≤ x0} is bounded from
above. Hence its supremum exists. Let α = sup E. So we have:{

1◦) ∀ y ∈ [a, x0[, f(y) ≤ α

2◦) ∀ ε > 0, ∃ yε ∈ [a, x0[: f(yε) > α − ε

Then for yε ≤ y < x0 (i.e. η = x0 − yε), as f is increasing f(y) ≥ f(yε) > α − ε.

As f(y) ≤ α < α + ε, we have that |f(y) − α| < ε, ∀ x ∈]x0 − η, x0[. Then,

α = limy→x0, y0<x0 f(y) = f(x−
0 )

2. As f(x−
0 ) = sup{f(y) : a ≤ y ≤ x0} we see that f(x−

0 ) ≤ f(x0).

Since f(x+
0 ) = inf{f(y) : x0 < y ≤ b} we see that f(x+

0 ) ≥ f(x0.

Thus f(x−
0 ) ≤ f(x0) ≤ f(x+

0 )

3. By 1 above,

f(x+
0 ) = inf{f(y) : x0 < y ≤ b} = inf{f(y) : x0 < y < y0}

≤ sup{f(y) : x0 < y < y0} = f(y−
0 )
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4. By 2 above, f is discontinuous at a point x0 ∈]a, b[⇔ f(x−
0 ) < f(x+

0 ).

Now, let x0 < y0, x0, y0 ∈ Df . So, f(x−
0 ) < f(x+

0 ) ≤ f(y−
0 ) < f(y+

0 ). Let rx0 , ry0 ∈ Q
be such that f(x−

0 ) < rx0 < f(x+
0 ) and f(y−

0 ) < ry0 < f(y+
0 ). Then x0 < y0 ⇒ rx0 < ry0.

Then we can define a one-to-one mapping from Df into Q. As Q is countable, we can
conclude that Df is countable.

7.4 Functions of Bounded Variation

Definition 7.4.1 Consider an interval [a, b]. A finite subset P = {x0, x1, ..., xn} of [a, b] is
said to be a partition of [a, b] if a = x0 < x1 < ... < xn = b.

Definition 7.4.2 Let f : [a, b] → R be any function. The quantity;

V (f, P ) =
n∑

i=1

|f(xi) − f(xi−1)|
is said to be the variation of f relative to the partition P .

Example 7.4.3 Suppose that f is an increasing function. Then,

V (f, p) =
n∑

i=1

|f(xi) − f(xi−1)| =
n∑

i=1

(f(xi) − f(xi−1)) = f(b) − f(a).

Definition 7.4.4 Let f : [a, b] → R be any function and P[a, b] be the set of all partitions
of [a, b]. Put V b

a (f) = supP∈P[a,b] V (f, P ). If V b
a (f) < ∞ we say that f is a function of

bounded variation. (V b
a (f) is the total variation of f on [a, b].)

Example 7.4.5 If f : [a, b] → R is increasing then V b
a (f) ≤ f(b) − f(a) < ∞. Hence any

increasing function f : [a, b] → R is of bounded variation.

Example 7.4.6 Even if a function f : [a, b] → R is continuous, it need not to be of bounded

variation. Let f : [0, 1] → R, f(x) =

{
x sin 1/x if x �= 0

0 if x = 0

Then f is continuous on [0, 1].

Now, let n ≥ 1 any number and P be a partition of [0, 1].

x0 = 0 < x1 =
1

π + π/2
< x2 =

1

2π + π/2
< ... <

1

nπ + π/2
< xn+1 = 1.

V (f, p) =
n+1∑
i=1

|f(xi) − f(xi−1)| Now,
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|f(xi) − f(xi−1)| = | 1

iπ + π/2
sin(iπ + π/2) − 1

(i − 1)π + π/2
sin((i − 1)π + π/2)|

= | 1

iπ + π/2
(−1)i − 1

(i − 1)π + π/2
(−1)i − 1|

=
1

iπ + π/2
+

1

(i − 1)π + π/2

≥ 1

iπ + π/2
≥ 1

π(1 + i)

V (f, p) ≥ 1

π

n∑
i=1

1

1 + i
→ ∞, as n → ∞. Hence supp∈P[a,b] V (f, p) = ∞.

Remark: Every function of bounded variation, f : [a, b] → R is bounded.

Indeed, let x ∈]a, b[, let P = {a, x, b}, then
V (f, P ) = |f(a) − f(x)| + |f(x) − f(b)| ≤ V (f, [a, b]) < ∞.

Hence |f(x)| − |f(a)| + |f(x)| − |f(b)| ≤ V (f, [a, b])

⇒ |f(x)| ≤ 1

2
[|f(a)| + |f(b)| + V (f, [a, b])], so that f is bounded.

Example 7.4.7 If f and g are of bounded variation then, f ± g and cf are of bounded
variation. Thus the space BV [a, b] of the functions f : [a, b] → R of bounded variation is a
vector space.

Lemma 7.4.8 Let f : [a, b] → R be a function of bounded variation and a < c < b be
numbers. Then V (f, [a, b]) = V (f, [a, c]) + V (f, [c, b])

Proof 7.4.9 Let P = {x0, x1, ..., xn} be any partition of [a, b], then P̃ = P ∪ {c} is also a
partition of [a, b].

Moreover, V (f, P ) ≤ V (f, P̃ ) since |f(xi) − f(xi+1)| ≤ |f(xi) − f(c)| + |f(c) − f(xi+1)|
Let P1 = [a, c] ∩ P̃ , P2 = [c, b] ∩ P̃ , then P1 is a partition of [a, c], P2 is a partition of [c, b].

Now V (f, P̃ ) = V (f, P1 ∪ P2) = V (f, P1) + V (f, P2) ≤ V (f, [a, c]) + V (f, [c, b])

Hence V (f, P ) ≤ V (f, [a, c]) + V (f, [c, b])

V (f, [a, b]) = supP∈P[a,b] V (f, P ) ≤ V (f, [a, c]) + V (f, [c, b])

To prove that the reverse inequality, let ε > 0 arbitrary. Then there are partitions P3, P4 of
[a, c], [c, b] respectively, such that;

V (f, P3) > V (f, [a, c]) − ε/2 and V (f, P4) > V (f, [c, b]) − ε/2

Let P ′ = P3 ∪ P4 then P ′ is a partition of [a, b], so then
V (f, [a, b]) ≥ V (f, P ′) = V (f, P3) + V (f, P4) ≥ V (f, [a, c]) + V (f, [c, b]) − ε

Hence V (f, [a, b]) = V (f, [a, c]) + V (f, [c, b])

Theorem 7.4.10 (Characterization of the functions of bounded variation): Let
f : [a, b] → R be a given function. Then f is of bounded variation iff f is the difference of
two increasing functions, i.e. f = f1 − f2, where f1, f2 are increasing functions.
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Proof 7.4.11 (⇐) If f = f1 − f2, then for any partition P of [a, b], V (f, p) ≤ V (f1, p) +
V (f2, p) ≤ f1(b) − f2(a). So that V b

a (f) < ∞.

(⇒) Conversely, suppose V b
a (f) < ∞. Let, for a ≤ x ≤ b, g(x) = V x

a (f). It is clear that g is
increasing. Now let h(x) = V x

a (f) − f(x). Let us see that h is increasing:

Let 0 ≤ x ≤ y be two points. Then h(y) − h(x) = V y
a (f) − V x

a (f) − [f(y) − f(x)]. Now,
V y

a (f) − V x
a (f) ≥ |f(y) − f(x)|. Hence h(y) − h(x) ≥ 0.

So h is increasing and f(x) = g(x) − h(x).

Example 7.4.12 If f : [a, b] → R is differentiable and f ′ is bounded on [a, b] then V b
a (f) <

∞. Indeed, let P = {x0, x1, ..., xn} be any partition of [a, b]. Since by the intermediate value
theorem, f(xi) − f(xi−1) = (xi − xi−1)f

′(ci) for some xi−1 < ci < xi.

If |f ′(x)| < M ∀x ∈ [a, b], then;

V (f, p) =
n+1∑
i=1

|f(xi) − f(xi−1)| ≤
n+1∑
i=1

(xi − xi−1)|f ′(ci)| ≤ M

n+1∑
i=1

(xi − xi−1) = M(b − a).

So, V b
a (f) = supp∈P[a,b] V (f, P ) ≤ M(b − a) < ∞.

Theorem 7.4.13 (Dirichlet, 1829) Let f : [a, b] → R be a continuous function. Suppose
that f has only finitely many local max and min. Then the Fourier series of f converges at
every x ∈ [a, b] to f(x).

Theorem 7.4.14 (Raymond, 1863) There exists a continuous function f : [0, 2π] → R such
that the Fourier series of f diverges at infinitely many points in [0, 2π].

Theorem 7.4.15 (Jordan, 1867) For any function f of bounded variation, the Fourier se-

ries of f converges for each x ∈]0, 2π[, the series converges to
f(x+) + f(x−)

2
. Hence, if f

is continuous at x then the Fourier series of f at x converges to f(x).

7.5 Absolutely Continuous Functions

Let [a, b] be an interval. Let (ai, bi) for i = 1, 2, ..., n be subintervals of [a, b]. (ai, bi) stands
for any kind of intervals (open, closed, half open). We say that the intervals (ai, bi) are
non-overlapping if, for i �= j, the intersection (ai, bi) ∩ (aj, bj) has no interior point.

Now, let f : [a, b] → R be a bounded (say |f(x)| ≤ M , ∀x ∈ [a, b] ). Put F (x) =
∫ x

a
f(t)dt.

Let (a1, b1), ..., (anbn) be non-overlapping subintervals of [a, b].

Let us look at the quantity:
n∑

i=1

|F (bi) − F (ai)|.

As, F (bi) =
∫ bi

a
f(t)dt and F (ai) =

∫ ai

a
f(t)dt, we see that;

|F (bi) − F (ai)| ≤
∫ bi

ai
f(t)dt ≤ M(bi − ai).
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Hence
n∑

i=1

|F (bi) − F (ai)| ≤ M

n∑
i=1

(bi − ai). (1)

Definition 7.5.1 A function f : [a, b] → R is said to be absolutely continuous, if given
any ε > 0, ∃η > 0 such that for any non-overlapping subintervals (ai, bi), for i = 1, 2, ..., n,

of [a, b] satisfying
n∑

i=1

(bi − ai) < η, we have
n∑

i=1

|g(bi) − g(ai)| < ε.

Example 7.5.2 Let F (x) =
∫ x

a
f(t)dt. Then (1) shows that F is absolutely continuous.

Example 7.5.3 If g : [a, b] → R is differentiable and g′(x) is bounded, then g is absolutely
continuous. Indeed, let (a1, b1), ..., (anbn) be non-overlapping subintervals of [a, b]. As, g(bi)−
g(ai) = (bi −ai)g

′(ci), with ai < ci < bi, we see that
n∑

i=1

|g(bi)− g(ai)| ≤
n∑

i=1

|bi −ai||g′(ci)| ≤

M

n∑
i=1

(bi − ai) ≤ M(b − a). So that given any ε > 0 if we choose η = ε
M

, then we see that,

whenever
n∑

i=1

|bi − ai| < η, we have
n∑

i=1

|g(bi) − g(ai)| < M

n∑
i=1

(bi − ai) < ε.

Remark: From the definition, it is clear that every absolutely continuous function is

uniformly continuous. The converse is false. e.g. the function f(x) =

{
x sin 1/x if x �= 0

0 if x = 0

is continuous. So, uniformly continuous on [0, 1], but it is not absolutely continuous.

Proposition 7.5.4 Every absolutely continuous function is of bounded variation.

Proof 7.5.5 Let f be absolutely continuous on [a, b]. So we have:

∀ε > 0, ∃η > 0 such that ∀(ai, bi)1≤i≤N , non-overlapping subintervals of [a, b] satisfying
n∑

i=1

(bi − ai) < η ⇒
n∑

i=1

|g(bi) − g(ai)| < ε.

This definition shows that we take any subinterval [c, d] of [a, b] with d − c < η then
V (f, [c, d]) < ε

Now, we can cover [a, b] by finitely many, say N , subintervals [ci, di] with di − ci < η, ∀i.

Then V (f, [a, b]) ≤
N∑

i=1

V (f, [ci, di]) ≤ Nε < ∞
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7.6 Exercises

1. For x ∈ R, let [x] be the largest integer (positive or negative) smaller than x.

(e.g. [2.1] = 2). Let f : R → R, f(x) = [x].

• For each x0 ∈ R, determine limx→x0, x<x0 f(x) and limx→x0, x>x0 f(x).

• For each x0 ∈ R, determine limx→x0, x<x0 g(x) and limx→x0, x>x0 g(x), for g(x) = x−[x].

2. Let g : R → R, g(x) =

{
x if x ∈ Q
−x if x /∈ Q

.

For c ∈ R, study the existence of the limit: limx→c g(x)

3. Let f : [a, b] → R be a function. Assume that, for each x0 ∈ [a, b], limx→x0, x∈[a,b] f(x)
exists. Show that f is bounded.

4. Study the existence of the limits: limx→x0, x<x0 sin 1
x
, and limx→x0, x>x0 sin 1

x

5. Let f : [a, b] → R be a monotone increasing function and x0, x1, ..., xn, ... be the points
in ]a, b[ at which f is discontinuous. Put cn = f(x+

n ) − f(x−
n ). Show that, for each

n ∈ N, c0 + c1 + ... + cn ≤ f(b) − f(a).

6. Let cn ∈ R, cn > 0 be arbitrary numbers such that
∞∑

n=0

cn < ∞. Let x0, ..., xn, ... be

arbitrary points in ]a, b[. For x ∈ [a, b], let g(x) =
∑
xn<x

cn (if there is no xn < x, then

we put g(x) = 0). Show that

(a) g : [a, b] → R is monotone increasing.

(b)
For xn0 fixed, g(xn0) = g(x+

n0
) = limε→0 g(xn0 − ε)

g(x+
n0

) = limε→0 g(xn0 + ε) =
∑

xn≤xn0

cn

(c) g(x+
n0

) − g(x−
n0

) = cnε .

(d) g is continuous on ]a, b[\{x0, x1, ..., xn, ...}

7. Let f : [a, b] → R be a left continuous increasing function, x0, ..., xn, ... be the points
in ]a, b[ at which f is discontinuous. Let cn = f(xn+) − f(xn−) and g be as in the
question 6 with this choice of cn’s. Show that h = f − g is continuous on [a, b] so that
f = g + h. Then every increasing function f is the sum of a continuous increasing
function and a “jump function” g.
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8. Let f :]a,∞[→ R be a function. Define g :]0,
1

a
[→ R by g(x) = f(

1

x
). Show that

limx→∞ g(x) = L (L ∈ R).

Show that limx→∞(f(x + 1) − f(x)) = 0.

Deduce that if (xn)n∈N is a convergent sequences, then limn→∞(xn+1 − xn) = 0

9. Let f : R → R be a function. Show that TFAE:

(a) limx→∞ f(x) = 0 and limx→−∞ f(x) = 0

(b) lim|x|→∞ f(x) = 0

(c) ∀ ε > 0, ∃ M > 0 : |x| > M → |f(x)| < ε

10. Let f : R → R be a continuous function such that lim|x|→∞ f(x) = 0. Show that f is
bounded and uniformly continuous on R.

11. Show that the function f(x) =
x

1 + x2
is bounded and uniformly continuous on R.

12. Let L be the space of the bounded function f : R → R and C0 be the space of
the bounded function g : R → R such that lim|x|→∞ g(x) = 0. Show that L is a
commutative unital ring and C0 is an ideal of it.



Chapter 8

Connectedness

1. Definition and properties

2. Connected components of a set

3. Pointwise connected sets

4. Applications

8.1 Introduction: The Role of Interval in Analysis

Theorem 8.1.1 Intermediate Value Theorem: If I is an interval, f : I → R is con-
tinuous and for some x0, y0 ∈ I, f(x0) < 0 and f(y0) > 0, then there is c ∈ (x0, y0) such
that f(c) = 0.

1. Let A =] − 1, 0[∪ ]0, 1[, f : A → R f(x) =

{
−1 if x ∈ ] − 1, 0[

+1 if x ∈ ]0, 1[

Let x0 ∈ A be any point. Say x0 ∈]0, 1[. So 0 < x0 < 1. Hence, if |h| is small, x0 +h is

also in ]0, 1[. Hence, limh→0, h �=0
f(x0 + h) − f(x0)

h
= 0. Hence, ∀x ∈ A, f ′(x) = 0 but

f is not constant on A.

2. Also, this f is continuous on A. f(1/2) > 0, f(−1/2) < 0 but there is no x0 ∈ A such
that f(x0) = 0.

3. Let f : Q → R, f(x) = x2 − 2. Then f is continuous; f(2) > 0, f(1) < 0 but there is
no x ∈ Q such that f(x) = 0.

Definition 8.1.2 Let A ⊆ R, then A is an interval iff for each a, b ∈ A with a < b, every
x ∈ R with a < x < b is in A; i.e. for any O1, O2 ⊆ R open disjoint sets with A ⊆ O1 ∪ O2

either A ⊆ O1 or A ⊆ O2.

Basic Question: What is the analogue of the “interval” in an abstract m. s. (X, d)?
These are connected sets.

119
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8.2 Definition and Properties

Definition 8.2.1 Let (X, d) be a m.s. A subset A ⊆ X is said to be disconnected if there
are two nonempty, open, disjoint subsets O1, O2 of X such that:

1. A ⊆ O1 ∪ O2

2. A ∩ O1 �= ∅ and A ∩ O2 �= ∅.
• If A is not connected, then it is said to be connected. Thus A is connected if whenever we
have A ⊆ O1 ∪ O2, where O1, O2 are nonempty, open, disjoint subsets of X we have either
A ⊆ O1 or A ⊆ O2.

Example 8.2.2 Let X = R, d(x, y) = |x − y|.
1. A = N is disconnected: Indeed, let O1 =] − 1, 5/2[, O2 =]5/2,∞[, then N ⊆ O1 ∪ O2,

N ∩ O1 �= ∅, N ∩ O2 �= ∅
2. Similarly, A = Z is disconnected.

3. A = Q is disconnected. Indeed, let O1 =] −∞,
√

5[, O2 =]
√

5,∞[ then Q ⊆ O1 ∪ O2,
Q ∩ O1 �= ∅, Q ∩ O2 �= ∅

4. In any m.s. (X, d) any finite set A = {x1, ..., xn} is disconnected.

5. In any m.s. (X, d) let A1, A2 be two disjoint, nonempty, closed sets. Then A = A1∪A2

is disconnected.

Indeed, “Urysohn Lemma” says that we have a continuous function f : X → [0, 1]
such that f(A1) = 0, f(A2) = 1.

Let O1 = f−1(] − 1, 1/2[), O2 = f−1(]1/2, 2[). Then O1,O2 are open and disjoint,
A1 ⊆ O1, A2 ⊆ O2. So that, A ⊆ O1 ∪ O2, A ∩ O1 �= ∅, A ∩ O2 �= ∅.

Theorem 8.2.3 (R, d) is a connected m.s. i.e., we cannot write R as the union of two
nonempty, open, disjoint sets.

Proof 8.2.4 For a contradiction suppose that R = O1∪O2, where O1 and O2 are nonempty,
open, disjoint sets. Then O1 and O2 are closed, too since OC

1 = O2, OC
2 = O1.

Let A = O1. Then ∅ �= A �= R and A is both open and closed. Since ∅ �= A �= R, let γ ∈ R
be such that γ /∈ A. Then A ⊆] −∞, γ[∪]γ,∞[. So, A∩] −∞, γ[ �= ∅ or A∩]γ,∞[ �= ∅. Say,
A∩]γ,∞[�= ∅.
Put B = A∩]γ,∞[. B is open since A and ]γ,∞[ are open. As γ /∈ A, A∩[γ,∞[= A∩]γ,∞[.

Hence, B = A ∩ [γ,∞[ is closed. Then B is both open and closed and �= ∅. B ⊆ [γ,∞[.

Hence β = inf B exists. Now, as B is closed, β ∈ B, as B is open β /∈ B. Contradiction.

Hence, R is connected.
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Proposition 8.2.5 Let (X, d), (Y, d′) be two m.s. A ⊆ X and f : A → Y be a continuous
function. If A is connected then f (A) is also connected.

Proof 8.2.6 For a contradiction suppose that f(A) is disconnected. Then there exists two
disjoint, open sets O1,O2 such that; f(A) ⊆ O1 ∪ O2, f(A) ∩ O1 �= ∅, f(A) ∩ O2 �= ∅
This implies that A ⊆ f−1(O1∪O2) = f−1(O1)∪f−1(O2), A∩f−1(O1) �= ∅, A∩f−1(O2) �= ∅
As f is continuous on A, f−1(O1) and f−1(O2) are open. So that A should be disconnected.
Contradiction.

Example 8.2.7 Let f : R → R, f(x) = arctan x. We know that R is connected and
f is continuous. So f(R) =] − π/2, π/2[ is connected. Since any open interval ]a, b[ is
homeomorphic to ] − π/2, π/2[, we see that ]a, b[ is connected.

Corollary 8.2.8 Every open interval in R is connected.

Proof 8.2.9 Let ϕ : R → R, ϕ(x) =
x

1 + |x| then ϕ is continuous and ϕ(R) =] − 1, 1[, so

] − 1, 1[ is connected.

If we take f : ] − 1, 1[→]0, 1[, f(x) =
x + 1

2
then f is continuous and f(] − 1, 1[) =]0, 1[

is connected.
If we take g : ]0, 1[→]a, b[, (a < b), where g(x) = a(1− x) + bx, then g is continuous and

onto so that ]a, b[ is connected.

Remarks:

1. Every set is either connected or disconnected.

2. ”Connectedness” is, as ”compactness”, an absolute notion. That is, if A ⊆ X ⊆ X ′ ⊆
X ′′ ⊆ ... are metric spaces with continuous injections (i.e. i : X → X ′, i(x) = x is
continuous).

3. As the natural injection i : A −→ X and i∗ : X −→ X ′ are continuous, if A is
connected in X then i∗ ◦ i(A) = A is connected in X ′. Also, (A, d) is connected as a
m. s. of its own iff A is connected as a subset of X.

4. Let (X, d) be a m.s. From the definition of connected sets, the following is clear:

X is connected ⇔ the only open and closed subsets ofX are X and ∅
⇔ ∀A ⊆ X, ∅ �= A �= X, ∂A �= ∅
⇔ ∀A ⊆ X, ∅ �= A �= X,χA : X → R is not continuous

Notation: Let D = {0, 1}. On D we put the discrete metric. So that the open sets of
D are ∅, {1}, {0}, D. Now, if A is any set and ϕ : A → D is a mapping, then to say that
“ϕ is not constant” is equivalent to say that “ϕ is onto”. That is, ϕ is constant on A iff
ϕ(A) = {0} or ϕ(A) = {1}.
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Theorem 8.2.10 Let (X, d) be a m.s., A ⊆ X a nonempty set. Then A is connected ⇔
every continuous function ϕ : A → D is constant.

Proof 8.2.11 (⇒) Suppose A is connected. Let ϕ : A → D be a continuous mapping. Let
us see that ϕ is constant. If not, we had ϕ(A) = {0, 1}, then the sets O1 = ϕ−1({0}) and
O2 = ϕ−1({1}) would be nonempty, open, disjoint and A ⊆ O1∪O2, A∩O1 �= ∅, A∩O2 �= ∅,
contradicting connectedness of A.
(⇐) Conversely suppose that every continuous ϕ : A → D is constant.

Let us see that A is connected. If not, we would have two nonempty, disjoint, open sets
O1, O2 such that A ⊆ O1 ∪ O2, A ∩ O1 �= ∅, A ∩ O2 �= ∅

Now, define a mapping ϕ : O1 ∪O2 → D such that ϕ(x) = 0if x ∈ O1, ϕ(x) = 1if x ∈ O2

Then ϕ is continuous since ϕ−1(0), ϕ−1(1), ϕ−1(∅), ϕ−1(D) are open. ϕ, as a mapping from
A to D is also continuous and ϕ(A) = {0, 1}. Contradiction.

Proposition 8.2.12 Let (X, d) be a m.s., A ⊆ X a set and A ⊆ B ⊆ Ā. If A is connected
then B is also connected. In particular, if A is connected then Ā is connected.

Proof 8.2.13 Suppose A is connected. To prove that B is connected by Theorem 8.2.10, we
have to show that any continuous ϕ : B → D is constant.

Let ϕ : B → D be a continuous mapping. As ϕ is also continuous on A and A is
connected, i.e. ϕ(A) = 0 or ϕ(A) = 1 Say ϕ(A) = 0. Let x ∈ B be any point. As B ⊆ Ā,
there is a sequence xn in A that converges to x. As ϕ is continuous on A, ϕ(xn) converges
to ϕ(x). Since ϕ(xn) = 0, we conclude that ϕ(x) = 0.

Hence B is connected.

Warning: Converse of this result is false!
In R, A = Q is disconnected, but Q̄ = R is connected.

Proposition 8.2.14 In R a set A is connected ⇔ A is an interval.

Proof 8.2.15 (⇒) Let A ⊆ R be a connected set. If A = ∅ or card(A) = 1, then A is a
degenerated interval. Suppose that card(A) ≥ 2. If A was not an interval, then we would
have: a, b ∈ A, a < b and x with a < x < b such that x /∈ A. Then taking O1 =] −∞, x[,
O2 =]x,∞[ we would have: A ⊆ O1 ∪ O2, A ∩ O1 �= ∅, A ∩ O2 �= ∅, a contradiction.

(⇐) For any a, b ∈ R, a < b, by the corollary 8.2.8, we know that ]a, b[ is connected, then
by proposition 8.2.12, [a, b] is also connected.

Example 8.2.16 Let ϕ : [0, 2π] → R2, ϕ(x) = (cos x, sin x). Since [0, 2π] is connected and
ϕ is continuous, ϕ([0, 2π]) is connected. ϕ([0, 2π]) is the unit circle.

Example 8.2.17 Let A1, A2 be two circles in the complex plane which are intersecting in
two points, i.e. A1 ∩ A2 = {z1, z2}. We know that these circles are connected and finite sets
are disconnected. So, the intersection of two connected sets need not to be connected.
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Proposition 8.2.18 Let (X, d) be a m.s. and (Aα)α∈I be a family of connected subsets of
X. Suppose that;

• ∩α∈IAα �= ∅ or

• ∃α0 ∈ I such that Aα0 ∩ Aα �= ∅ ∀α ∈ I.

Then the union ∪α∈IAα is connected.

Proof 8.2.19 To prove that A is connected it is enough to show that every continuous
ϕ : A → D is constant, i.e. ∀x, y ∈ A, ϕ(x) = ϕ(y)

Let x, y ∈ A. Then x ∈ Aα, y ∈ Aγ for some α, γ ∈ I. Let x′ ∈ Aα ∩ Aα0 and
y′ ∈ Aγ ∩ Aα0. As ϕ : Aα → D and ϕ : Aγ → D are continuous and Aα, Aγ, Aα0 are
connected, ϕ(x) = ϕ(x′) = ϕ(y′) = ϕ(y). Hence A is connected.

8.3 Connected Components of a Set

Let (X, d) be a m.s., A ⊆ X any set. (A �= ∅). Let x ∈ A be any point. Let Ax = {B ⊆ A :
B is connected and x ∈ B}. Observe that, A �= ∅ since B = {x} ∈ Ax.

By proposition 8.2.18 ∪B∈AxB is a connected set. Let Cx = ∪B∈AxB. Then C is the largest
connected subset of A that contains x.

We call this Cx the connected component of A containing x. By the properties below,
connected components of a set form a partition.

Proposition 8.3.1 Properties of connected components of a set:

1. For x �= y, x, y ∈ A Either Cx = Cy or Cx ∩ Cy = ∅.
2. ∪x∈ACx = A.

Proof 8.3.2 1. If Cx∩Cy �= ∅ then Cx∪Cy is connected. As x ∈ Cx∪Cy, by maximality
of Cx, Cx ∪ Cy ⊆ Cx. So Cx = Cx ∪ Cy. Similarly Cy = Cx ∪ Cy. Hence Cx = Cy.

2. Trivial.

Example 8.3.3 In (R, d),

1. If A = N or A = Z then ∀x ∈ A, Cx = {x}.
2. If A = Q or A = R \ Q then ∀x ∈ A, Cx = {x}.
3. If A =]− 2,−1 [∪{0} ∪ [1, 2[∪ [3, 7], then all these four sets are connected components

of A.

Definition 8.3.4 A set A ⊆ X is said to be totally disconnected, if ∀x ∈ A, Cx = {x}.



124 CHAPTER 8. CONNECTEDNESS

Example 8.3.5 1. In R, N, Z, Q, R \ Q are totally disconnected.

2. Any discrete m.s. (X, d) is totally disconnected. (Converse is false)

3. Any continuous mapping f from a connected set A into a totally disconnected set Y
must be constant. (any continuous f : [a, b] → Q is constant)

Proposition 8.3.6 If A ⊆ X is closed then each of its components Cx is also closed.

Proof 8.3.7 Let Cx be one of the components of A, then since A is closed, Cx ⊆ A. As
x ∈ Cx ⊆ Cx ⊆ A, and Cx is connected, by the maximality of Cx, Cx = Cx

8.4 Pointwise Connected Sets

Let (X, d) be a m.s. A ⊆ X a set. A path (curve) in A is a continuous mapping
ϕ : [0, 1] → A. The point ϕ(0) is said to be the beginning point of ϕ. ϕ(1) is said to be the
end point of ϕ.

Example 8.4.1 Let X = R2. ϕ : [0, 1] → R2 ϕ(t) = (cos 2πt, sin 2πt) is a path such that
ϕ(0) = ϕ(1).

Example 8.4.2 If a, b ∈ R2 then ϕ : [0, 1] → R2, ϕ(t) = a(1 − t) + bt is the equation of a
line that joins a to b.

Warning: There exist continuous functions ϕ : [0, 1] → R2 such that ϕ([0, 1]) = [0, 1]×[0, 1].
(“space filling curves”)

Joining two Paths: Let A ⊆ X be a set, and ϕ1 : [0, 1] → A and ϕ2 : [0, 1] → A are two
paths such that ϕ1(1) = ϕ2(0).

Let ϕ : [0, 1] → A be defined by ϕ(t) =

{
ϕ1(2t) if 0 ≤ t ≤ 1/2

ϕ2(1 − 2t) if 1/2 ≤ t ≤ 1
.

Then ϕ([0, 1]) = ϕ1([0, 1]) ∪ ϕ2([0, 1]).

We shall denote this ϕ as ϕ1 ∗ ϕ2

Definition 8.4.3 Convex Sets: A subset A of Rn is said to be convex, if for any two
points a, b ∈ A the line a(1 − t) + bt, (0 ≤ t ≤ 1) joining a to b lies in A.

Example 8.4.4 For instance any ball Br (x) is convex, but the sphere Sr (x) is not convex.

Definition 8.4.5 A subset A of a m.s. (X, d) is said to be pathwise connected (or
pointwise), if it is possible to join any two points a, b of A by a path ϕ : [0, 1] → A.
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Example 8.4.6 • Let X = R2, A = R2 \ {(0, 0)}. This set is pointwise connected. But if
X = R, A = R \ {0} is not pointwise connected.

• In Rn any convex set is pointwise connected.
• R2 \ Q2 is pointwise connected.

Proposition 8.4.7 Any pointwise connected set in any m.s. is connected.

Proof 8.4.8 Suppose A is pointwise connected. So given any two points a, b ∈ A, there
is a continuous function f : [0, 1] → A such that f(0) = a and f(1) = b. To see that A
is connected, we have to show that every continuous ϕ : A → D is constant, i.e. ∀a, b ∈
A, ϕ(a) = ϕ(b).

Let a, b ∈ A be any points. Let f : [0, 1] → A be a path that joins a to b and let ϕ : A → D
any continuous mapping. Then ϕ ◦ f : [0, 1] → D is continuous. As [0, 1] is connected this
mapping must be constant on [0, 1], say ϕ◦f(t) = 0, ∀t ∈ [0, 1]. Then ϕ(f(0)) = ϕ(f(1)) = 0,
i.e. ϕ(a) = ϕ(b). So ϕ(A) = {0}.

Hence A is connected.

Example 8.4.9 Not every connected set is pointwise connected. Let ϕ :]0, 1] → R2, be such
that ϕ(x) = (x, sin 1/x). Then ϕ is a continuous function. So the set A = ϕ(]0, 1]) is a
connected set in R2. Then Ā = ({0}x [−1, 1]) ∪ A. As A is connected, so is Ā. Let us see
that Ā is not pointwise connected. Let a = (0, 0), b = (1, sin 1). Then a, b ∈ Ā.

Let us see that there is no continuous f : [0, 1] → Ā such that f(0) = a and f(1) = b. If
we had such an f , for t > 0, we would have f(1) ∈ A (not Ā), i.e. f(t) = (t, sin 1/t).
As f is continuous at zero and sin 1/t is not (and cannot be extended continuously to zero)
continuous at zero. such an f cannot exist. So Ā, although connected, is not pointwise
connected.

Proposition 8.4.10 A ⊆ R2 open connected =⇒ A is pointwise connected.

Proof 8.4.11 Fix a point a ∈ A. Let D = {b ∈ A : ∃ a curve ϕ : [0, 1] → A joining a to b}
Then;

1. D �= ∅ since a ∈ D with constant function.

2. D is open in A. Indeed, for b ∈ D, as A is open, there is an ε > 0 	 Bε(b) ⊆ A. Let
x ∈ Bε(b), as it is convex (so that pointwise connected), by a curve ϕ2 we can join x
to b. By definition of D, there is a curve ϕ1 joining a to b in A. Then ϕ1 ∗ ϕ2 joins a
to x. Hence x ∈ D, i.e. Bε(b) ⊆ D. So D is open.

3. D is closed in A. (i.e. D
A

= D ∩ A ⊆ D)

Let x ∈ D ∩ A, and see that x ∈ D. Since x ∈ D, ∀ε > 0. Bε(x) ∩ D �= ∅. As x ∈ A
and A is open, for some ε0 > 0, Bε0(x) ⊆ A. So Bε0(x) ∩ D �= ∅ and Bε0(x) ⊆ A.

Let b ∈ Bε0(x) ∩D, then we can join a to b by a curve ϕ1. Then by another curve ϕ2,
we can join b to x (since Bε0(x) is pointwise connected). Hence ϕ1 ∗ ϕ2 joins a to x,
so that x ∈ D. Hence D is closed in A.
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Thus;

D �= ∅, D ⊆ A open in A, D ⊆ A closed in A and A is connected. So D = A, hence A
is pointwise connected.

8.5 Some Applications

Connectedness can be used to obtain different results:

8.5.1 To find “fixed point theorems”

Theorem 8.5.1 Any continuous function f : [a, b] → [a, b] has at least one fixed point. (i.e.,
∃x0 ∈ [a, b] : f(x0) = x0)

Proof 8.5.2 First assume that a = 0 and b = 1. So that f : [0, 1] → [0, 1]. If f(0) = 0 or
f(1) = 1, we are done. Otherwise f(0) > 0, and f(1) < 1.

Let g(t) = t − f(t). Then g : [0, 1] → R is continuous, and we have;

g(0) = −f(0) < 0
g(1) = 1 − f(1) > 0

Since g is continuous and [0, 1] is connected g([0, 1]) is connected, so it is a compact interval
[c, d]. Since [c, d] contains both negative and positive numbers, zero must be in [c, d]. Hence
g(x0) = 0 for some x0 ∈ [0, 1], i.e. f(x0) = x0.

To prove the general case , let ϕ : [0, 1] → [a, b] be ϕ(t) = a(1 − t) + bt. Then;

ϕ−1◦f ◦ϕ : [0, 1] → [0, 1]. So, by the first step there is a t0 ∈ [0, 1], 	 ϕ−1◦f ◦ϕ(t0) = t0.

Hence f(ϕ(t0)) = ϕ(t0).

Theorem 8.5.3 (Brewer, 1908) Given any compact, convex subset K of Rn, every contin-
uous function f : K → K has a fixed point.

8.5.2 Existence of Real Roots of Polynomials

Theorem 8.5.4 Every polynomial P (x) = anx
n + ... + a1x + a0 of odd degree has at least

one real root.

Proof 8.5.5 We can assume an > 0. Then limx→∞ P (x) = ∞ and limx→−∞ P (x) = −∞.

So for b > 0 large enough, P (b) > 0 and a < 0 small enough P (a) < 0. So P : [a, b] → R
assures on the interval [a, b] both positive and negative values. As P is continuous P ([a, b])
is an interval. Hence 0 ∈ P ([a, b]), hence P (x0) = 0 for some x0 ∈ [a, b].
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8.5.3 The Structure of Open Sets in R

Theorem 8.5.6 A subset A of R is open iff A is a union of countably many, pairwise
disjoint, open intervals, ]an, bn[ (n ∈ N)

Proof 8.5.7 The implication (⇐) is trivial since union of open sets is open.

To prove (⇒) suppose A is open. ∀x ∈ A, let Cx be the component of A that contains x.
So Cx is a connected maximal set contained in A and containing x. As every connected set
in R is an interval, Cx is an interval. Let us see that it is open. Let y ∈ Cx. As Cx ⊆ A
and A is open, there is some ε > 0 such that ]y − ε, y + ε [⊆ A. As ]y − ε, y + ε [∩Cx �= ∅,
the set ]y − ε, y + ε [∪Cx is connected and is contained in A. Hence, by maximality of Cx,
]y − ε, y + ε[∪Cx = Cx. So Cx is open.

Hence, Cx is an open interval. As A = ∪x∈ACx and for x �= y either Cx = Cy or
Cx ∩ Cy = ∅. A is a union of some number of open, disjoint intervals. Since in every
interval there is a rational number, the number of these intervals must be countable. So
A = ∪n∈N ]an, bn[, and ]an, bn[∩]am, bm[= ∅, for m �= n.

8.5.4 To find if given two metric spaces are homeomorphic or not

Theorem 8.5.8 For n �= m, there exists a homeomorphism between the spaces Rn and Rm.

Proposition 8.5.9 For n > 1, Rn and R are not homeomorphic.

Proof 8.5.10 Suppose that we have a continuous bijection f : Rn → R. Let a ∈ Rn be such
that f(a) = 0. Then f(Rn \ {a}) = R \ {0}. As Rn \ {a} is connected and R \ {0} is not
connected, this equality is not possible. So there is no continuous bijection f : Rn → R.
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8.6 Exercises

1. Let f : [a.b] → R be a monotone increasing function. Show that f is continuous iff
f([a, b]) is an interval.

2. Let I be an interval and f : I → R be a strictly increasing continuous function. Let
J = f(I). Show that f−1 : J → R is also continuous.

3. Let f :]0,∞[→ R, f(x) = x2. Show that f is strictly increasing and continuous.
Deduce that f−1(x) =

√
x is also continuous from ]0,∞[= f(]0,∞[) to R.

4. Let f : [0, 2] → R be a continuous function. Suppose that f(0) = f(2). Show that
there exists c ∈ [0, 1] such that f(c) = f(c + 1).

5. Let f : [a, b] → R be a continuous function, m = infa≤x≤b f(x) and M = supa≤x≤b f(x).
Show that f([a, b]) = [m,M ].

6. Let S = {(x, y) ∈ R2 : x2 + y2 = 1}. Show that the sets S and [0, 2π] are not
homeomorphic. Show also that the mapping φ : [0, 2π] → S, φ(x) = (cos x, sin x) is
continuous, closed and onto.

7. Let I be an open interval and f : I → R be a strictly increasing continuous function.
Show that, for each open subset U of I, f(U) is also open.

8. Let I be an open interval and f : I → R one-to-one continuous function. Show that f
is strictly monotone on I.

9. Let (X, d) be m.s. and A,B be 2 closed subsets of X such that both the sets A ∩ B
and A ∪ B are connected. Show that A and B are connected.

10. Let (X, d) be a m.s. and K1 ⊇ K2 ⊇ ... ⊇ Kn ⊇ ... are nonempty compact and
connected subsets of X. Show that the set K = ∩n≥1Kn is also connected.

11. Let in R2, Kn = {(x, y) ∈ R2 : x �= 0 and 0 ≤ |y| < 1
n
}. Show that Kn is connected,

K1 ⊇ .... ⊇ Kn ⊇ ... , but K = ∩n≥1Kn is not connected.

12. The following result says that “at any time, on the surface of the earth, there exists
two diametrically opposite points at which the temperature is the same.” To prove this
statement let T : S → R be a continuous function, S = {z = (x, y) ∈ R2, x2 + y2 = 1}.
Show that there is z0 ∈ S such that T (z0) = T (−z0).



Chapter 9

Numerical Series

1. Generalities about series

2. Tests of convergence for positive series

3. Absolute and Unconditional Convergence

4. Abel and Dirichlet tests

5. Conditional Convergence and Riemann Theorem

6. Product of Absolutely Convergent Series

9.1 Generalities about Series

Let (xn)n∈N be a sequence in R. The “formal sum”
∞∑

n=0

xn is said to be a series whose general

term is (xn)n∈N. As such, this sum has no meaning, what we want is to give a meaning to
this sum. Put;

S0 = x0,
S1 = x0 + x1,
...

...
Sn = x0 + ... + xn

.

In this way we get a sequence (Sn)n∈N. This Sn is said to be a partial sum of the series
∞∑

n=0

xn. As with any sequence, this sequence (Sn)n∈N either converges or diverges.

Definition 9.1.1 We say that the series
∞∑

n=0

xn converges, if the sequence (Sn)n∈N converges.

129
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Or equivalently,
∞∑

n=0

xn converges iff Sn is Cauchy,

i.e., ∀ε > 0, ∃N ∈ N, ∀m > N, ∀n > N, |Sm − Sn| = |
m∑

k=n+1

xk| < ε, (if m < n) (1)

Equivalently, ∀ε > 0, ∃N ∈ N, ∀p ∈ N, |
N+p∑

k=N+1

xk| < ε.

If the series
∞∑

n=0

xn converges then the number S = limn→∞ Sn is said to be the sum of

the series, so that S =
∞∑

n=0

xn. Hence;

1. If
∞∑

n=0

xn converges then |Sn − Sn−1| → 0 as n → ∞. Hence, since Sn − Sn−1 = xn,

xn → 0 as n → ∞. From this we get that:
∞∑

n=0

xn converges ⇒ xn → 0.

Hence by contrapositive, if xn � 0, then the series
∞∑

n=0

xn diverges.

2. As in any convergence problem, there are two different problems:

i) To find whether a given series converges or not.

ii) If it converges, find its sum.

Example 9.1.2 1. The series
∞∑

n=0

(−1)n diverges, since the sequence xn = (−1)n does

not converge to 0, by 1 above.

2. Now, consider the series
∞∑

n=1

1/n. Here xn = 1/n → 0.

But Sn = 1 + 1/2 + ... + 1/n → ∞. Hence the series
∞∑

n=0

xn diverges.

3. If two series
∞∑

n=0

xn and
∞∑

n=0

yn converge, then the series
∞∑

n=0

(xn + yn) converges and

∞∑
n=0

c · xn converges for any c ∈ R. However,
∞∑

n=0

(−1)n + (−1)n+1 converges, although
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∞∑
n=0

(−1)n and
∞∑

n=0

(−1)n+1 diverge.

Remark: Infinite sums are not commutative. For instance;

1 − 1 + 1 − ... = 0 !
(1 + 1 + ... + 1) − (1 + 1 + ... + 1) = ∞−∞ !
1 + 1 − 1 + 1 + 1 − 1 + ... = ∞ !
−1 − 1 + 1 − 1 − 1 + 1 − ... = −∞ !

Example 9.1.3 Study the convergence of the series
∞∑

n=1

1

n(n + 1)
.

Here Sn =
1

1 · 2 +
1

2 · 3 + ... +
1

n · (n + 1)

As
1

n(n + 1)
=

1

n
− 1

n + 1
, Sn = (1− 1

2
)+(

1

2
− 1

3
)+(

1

3
− 1

4
)+ ...+(

1

n
− 1

n + 1
) = 1− 1

n + 1
Hence, limn→∞ Sn = 1.

So,
∞∑

n=1

1

n(n + 1)
converges and

∞∑
n=1

1

n(n + 1)
= lim

n→∞
Sn = 1.

Example 9.1.4 Let r ∈ R be a given number. Study the convergence of the series
∞∑

n=1

rn

(Geometric series)
Here Sn = 1 + r + ... + rn.

• If r = 1 then Sn = n + 1 and the series
∞∑

n=1

rn diverges.

• If |r| > 1, an = rn � 0 so the series diverges.

• If |r| < 1. Then Sn = 1 + r + r2 + ... + rn =
1 − rn+1

1 − r
.

As |r| < 1, limn→∞ rn+1 = 0. Hence limn→∞ Sn =
1

1 − r
.

So the series
∞∑

n=0

rn converges iff |r| < 1 and in this case,

∞∑
n=0

rn = lim
n→∞

Sn =
1

1 − r

Remark: In a series
∞∑

n=0

xn, if we drop finitely many terms then this does not affect the

convergence or divergence of the series but changes the sum of the series. For instance;
∞∑

n=70

rn = r70 + r71 + ...

= r70(1 + r + r2 + ...) =
r70

1 − r
for |r| < 1
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9.2 Tests of convergence for positive series

Definition 9.2.1 A series
∞∑

n=0

xn is said to be a “positive series” if xn ≥ 0 for all but

finitely many n ∈ N.

Let, now
∞∑

n=0

xn be a positive series and Sn = x0 + ... + xn be its partial sums. Then

(Sn)n∈N is a monotone increasing sequence. Therefore, (Sn)n∈N converges iff it is bounded
from above.

Hence,
∞∑

n=0

xn is convergent iff ∃M > 0, ∀n ∈ N,

n∑
i=0

xi ≤ M .

Example 9.2.2 Study the convergence of the series
∞∑

n=1

1

n!

Sn = 1 +
1

1!
+

1

2!
+ ... +

1

n!
We know that Sn ≤ 3, for every n ≥ 0 and that Sn converges to some number e ∈ R.

Hence
∞∑

n=1

1

n!
= e.

Theorem 9.2.3 (The First Comparison Test) Let
∞∑

n=0

xn and
∞∑

n=0

yn be positive series.

Suppose that xn ≤ yn for all but finitely many n ∈ N. Then;

1. If
∞∑

n=0

yn converges, so does
∞∑

n=0

xn.

2. If
∞∑

n=0

xn diverges, so does
∞∑

n=0

yn.

Proof 9.2.4 1. Suppose yn converges. Let M =
∞∑

n=0

yn. Then
n∑

i=0

xi ≤ M, ∀n ∈ N.

Hence
∞∑

n=0

xn converges.

2. If
∞∑

n=0

xn diverges, then the sum Sn = x0+ ... +xn is unbounded.

As Tn = y0 + ... + yn ≥ Sn, Tn is also unbounded. So
∞∑

n=0

yn diverges.
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Example 9.2.5 Show that the series
∞∑

n=1

1

n2
converges. Indeed, first observe that

∞∑
n=1

1

n2

converges iff the series
∞∑

n=1

1

(n + 1)2
converges.

Now
1

(n + 1)2
≤ 1

n(n + 1)
, ∀n > 1. Hence

n∑
k=1

1

(k + 1)2
≤

n∑
k=1

1

k(k + 1)
≤ 1. Hence,

∞∑
k=1

1

k2
≤ 2, ∀n ≥ 1. So, the series

∞∑
n=1

1

n2
converges.

Hence, for every p ≥ 2, the series
∞∑

n=1

1

np
converges.

For some p > 1, we can find the sum but not for all p. For instance;
∞∑

n=1

1

n2
=

π2

6

Example 9.2.6 Let 0 < x < 1 and (an)n∈N be a bounded sequence an ≥ 0. Show that the

series
∞∑

n=0

anx
n converges.

Let M = supn∈N an, then anx
n ≤ Mxn.

As
∞∑

n=0

Mxn = M

∞∑
n=0

xn = M
1

1 − x
since 0 < x < 1. So we can conclude that

∞∑
n=0

anxn

converges.

Theorem 9.2.7 (The Second Comparison Test) Let
∞∑

n=0

xn,

∞∑
n=0

yn be two positive se-

ries. If limn→∞
xn

yn

= L and,

1. if L �= 0 then both series are of the same nature. (both converge or both diverge)

2. if L = 0 and
∞∑

n=0

yn converges, then
∞∑

n=0

xn converges.

3. if L = ∞ and
∞∑

n=0

xn converges, then
∞∑

n=0

yn converges.

Proof 9.2.8 1. Suppose L �= 0. As
xn

yn

≥ 0, L > 0. Let ε = L/2. Then, since
xn

yn

→ L,

∃N ∈ N such that ∀n ∈ N, L/2 ≤ xn

yn

≤ 3L/2. (i.e.
L

2
· yn ≤ xn ≤ 3L

2
· yn, ∀n ∈ N)

Hence by the first comparison test, both series are of the same nature.



134 CHAPTER 9. NUMERICAL SERIES

2. If L = 0, then for ε = 1, ∃N ∈ N, ∀n ∈ N,
xn

yn

≤ 1. So xn ≤ yn ∀n ∈ N. Apply again

the first comparison test.

3. Consider
yn

xn

→ 0, then apply 2.

Example 9.2.9 Study the convergence of the series
∞∑

n=1

1

n1+ 1
n

. Compare this series with

∞∑
n=1

1/n. As limn→∞
1
n
1

n1+ 1
n

= limn→∞ n
1
n = 1. Hence, by the second comparison test

∞∑
n=1

1

n1+ 1
n

diverges.

Recall: Let (xn)n∈N be a bounded sequence, l = lim inf xn, and L = lim sup xn. xn < l − ε
and xn > L + ε are finitely many.

1. ∀ε > 0, xn < l − ε for at most finitely many n ≥ 0.

2. ∀ε > 0, xn > L + ε for at most finitely many n ≥ 0.

3. ∀ε > 0, ∃N ∈ N, ∀n ≥ N l − ε < xn < L + ε

Theorem 9.2.10 (Root Test I) Let
∞∑

n=0

an be a positive series. L = lim sup n
√

an and

l = lim inf n
√

an. Then,

1. If L < 1 then the series converges.

2. If l > 1 then the series diverges.

3. If L = 1 or l = 1 we cannot conclude.

Proof 9.2.11 1. Let L < 1. Choose an ε > 0 small enough to have L + ε < 1. Since
L = lim sup n

√
an, there is N ∈ N : ∀n ≥ N, n

√
an ≤ L + ε. Hence an ≤ (L + ε)n.

Now, since L + ε < 1, the geometric series
∞∑

n=0

(L + ε)n converges. Hence, by the first

comparison test the series
∞∑

n=0

an converges.

2. Let l > 1. Let ε > 0 be small enough to still have l−ε > 1. Since l = lim inf n
√

an there
is N ∈ N : ∀n ≥ N, n

√
an ≥ l − ε. Hence an ≥ (l − ε)n. As l − ε > 1, (l − ε)n → ∞.

This means that an does not go to zero. So, the series
∞∑

n=0

an diverges.
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3. Consider the series;

1)
∞∑

n=1

1

n
. Here an =

1

n
. So limn→∞ n

√
an = 1. Hence l = L = 1 and the series diverges.

2)
∞∑

n=1

1

n2
. Here an =

1

n2
. So limn→∞ n

√
an = 1.

Hence l = L = 1 but this time the series converges.

Theorem 9.2.12 (Root Test II) Let
∞∑

n=0

an be a positive series, and L = lim sup n
√

an.

Then,

1. If L < 1, then the series converges.

2. If L > 1, then the series diverges.

3. If L = 1, then we cannot conclude.

Proof 9.2.13 We have to prove just 2. So suppose L > 1. Choose an ε > 0 small enough
to still have L − ε > 1. Since lim sup n

√
an = L > L − ε > 1, for infinitely many n ∈ N we

must have n
√

an ≥ L− ε. But, then an ≥ (L− ε)n for this n’s. As L− ε > 1, (L− ε)n → ∞,
as n → ∞, we see that an is not bounded. In particular an � 0, so our series diverges.

Example 9.2.14 Let an ≥ 0, x ≥ 0 and consider the series
∞∑

n=0

anxn. Let ρ =
1

lim sup n
√

an

,

then lim sup n
√

anxn =
x

ρ
.

So this series; converges if x < ρ, diverges if x > ρ and we cannot conclude if x = ρ.

Theorem 9.2.15 (Ratio Test) Let
∞∑

n=0

an be a positive series, L = lim sup
an+1

an

and l =

lim inf
an+1

an

. Then,

1. If L < 1 then the series converges.

2. If l > 1 then the series diverges.

3. If L = 1 or l = 1 we cannot conclude.

Proof 9.2.16 1. Suppose L < 1. Choose an ε > 0 such that we still have L + ε < 1. As

L = lim sup
an+1

an

, ∃N ∈ N such that ∀n ≥ N,
an+1

an

≤ L + ε. Hence, for any given

n ≥ N ,
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aN+1

aN

≤ L + ε

aN+2

aN

≤ L + ε

...
an+1

an

≤ L + ε

.

Multiplying these inequalities we get:
an

aN

≤ (L + ε)n−(N+1).

Hence, an ≤ aN

(L + ε)N+1
· (L + ε)n. So an ≤ c(L + ε)n, ∀n ≥ N .

Hence,
∞∑

n=0

an ≤
N−1∑
n=0

an + c

∞∑
n=N

(L + ε)n ≤ M1 + c(L + ε)N 1

1 − (L + ε)
≤ M . So,

n∑
k=0

ak ≤ M, ∀n ≥ 0. Hence the series
∞∑

n=0

an converges.

2. Suppose l > 1. Let ε > 0 be such that l − ε > 1. As l = lim inf
an+1

an

, the there is

N ∈ N such that for n ≥ N,
an+1

an

≥ l − ε. As above we get an ≥ c(l − ε)n for some

number c. As (l − ε) > 1, (l − ε)n → ∞, as n → ∞. So an � 0. So
∞∑

n=0

an diverges.

3. Consider again the series;

a)
∞∑

n=1

1

n

b)
∞∑

n=1

1

n2

For both series
an+1

an

→ 1 but one is convergent , the other is divergent.

Remark: Let an ≥ 0 be a positive sequence. If limn→∞ n
√

an = L then limn→∞
an+1

an

= L,

too. So that if the root test is inconclusive, the ratio test cannot conclude, too.

Example 9.2.17 Let 0 < a < b be fixed numbers. Consider the series that goes as follows:
a + ab + ab2 + a2b2 + a2b3 + a3b3 + a3b4 + a4b4 + a4b5 + ...

Then
an+1

an

=

{
a or

b

Hence limn→∞
an+1

an

does not exist. However, lim sup
an+1

an

= b and lim inf
an+1

an

= a.
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Example 9.2.18 Determine whether the series
∞∑

n=1

n!

nn
converges or diverges.

Here, an =
n!

nn
,

an+1

an

=

(n+1)!
(n+1)n+1

n!

nn

= (
n

n + 1
)n = (

1

1 +
1

n

)n → 1

e
< 1. So, this series converges.

This also proves that
n!

nn
→ 0, as n → ∞.

Integral Test:

Observe that none of these tests we have seen so far applies to the series
∞∑

n=0

1

np
, (p > 0), so

we need another test, called integral test.

For this test we need some results about “improper integrals”:

Let a ≥ 0 and f : [a, +∞[→ [0, +∞[ be a continuous function.

For b ≥ a let F (b) =
∫ b

a
f(x)dx. If, limb→∞ F (b) exists (and finite) then we say that the

improper integral
∫∞

a
f(x)dx converges.

Example 9.2.19 Study the convergence of the improper integral
∫∞
1

dx

xp
. So we take a b ≥ 1

we calculate the integral F (b) =
∫ b

1

dx

xp
, then we look for limb→∞ F (b)

case 1: p = 1. Then
∫ b

1

dx

x
= ln b. Hence limb→∞ F (b) = limb→∞ ln b = ∞.

case 2: 0 < p < 1. Then
∫ b

1

dx

xp
=

x−p+1

−p + 1
|b1 =

b−p+1

−p + 1
− 1

−p + 1
→ ∞, as b → ∞.

case 3: p > 1. Then
∫ b

1

dx

xp
=

x−p+1

−p + 1
|b1 =

b−p+1

−p + 1
− 1

−p + 1
→ 1

p − 1
, as b → ∞.

Hence
∫∞
1

dx

xp
converges.

Conclusion:
∫∞

1

dx

xp
converges ⇔ p > 1.

Example 9.2.20 Study the convergence of the improper integral
∫∞

2

dx

x(ln x)q
, (q > 0).

Let b > 2. Put u = ln x then du =
dx

x
.

Hence
∫ b

2

dx

x(ln x)q
=
∫ ln b

ln 2

du

(u)q
.

Hence
∫∞
2

dx

x(ln x)q
converges iff q > 1.

Theorem 9.2.21 (Integral Test) Let f : [1, +∞[→ [0, +∞[ be a continuous, decreasing

function. Then the series
∞∑

n=1

f(n) and the improper integral
∫∞
1

f(x)dx are of the same

nature.
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Proof 9.2.22 Let an = f(n), ∀n ∈ N. For each n ≥ 1, and n ≤ x ≤ n + 1, since f is
decreasing, f(n + 1) ≤ f(x) ≤ f(n), i.e. an+1 ≤ f(x) ≤ an for x ∈ [n, n + 1].

Integrating this inequalities on the interval [n, n + 1] we get;∫ n+1

n
f(n + 1)dx ≤ ∫ n+1

n
f(x)dx ≤ ∫ n+1

n
f(n)dx

i.e. an+1 ≤
∫ n+1

n
f(x)dx ≤ an, ∀n ≥ 1.

Hence,
N∑

n=1

an+1 ≤
∫ N+1

1

f(x)dx ≤
N∑

n=1

an

and also
N∑

n=1

f(n) ≤
∫ N+1

1

f(x)dx + f(1) ≤ f(1) +
N∑

n=1

f(n)

Put Sn = a1 + a2 + ... + an, then above inequalities becomes;

Sn+1 − a1 ≤
∫ n+1

1
f(x)dx ≤ Sn

SN ≤ ∫ N+1

1
f(x)dx + f(1) ≤ a1 + Sn

Form this inequalities the conclusion follows.

Moreover, in the case where the convergence occurs, we have;

S − a1 ≤
∫∞
1

f(x)dx ≤ S where S =
∞∑

n=1

an

Example 9.2.23 1. The series
∞∑

n=1

1

np
converges ⇔ p > 1. Take f(x) =

1

xp
,

f : [1, +∞[→ R+, and apply theorem 9.2.21.

2. The series
∞∑

n=1

1

n ln n
diverges, since

∫∞
2

dx

x ln x
diverges.

9.3 Absolute and Unconditional Convergence

Let
∞∑

n=0

an be an arbitrary series. To such a series we cannot apply the above tests, but we

can apply them to the series
∞∑

n=0

|an|.

Question: What relation is there between the convergence of the series
∞∑

n=0

an and
∞∑

n=0

|an|
?
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Definition 9.3.1 A series
∞∑

n=0

an is said to be absolutely convergent if the positive series

∞∑
n=0

|an| converges.

As we shall see later the series
∞∑

n=1

(−1)n

n
converges.

Actually
∞∑

n=1

(−1)n+1

n
= ln 2. But

∞∑
n=1

|(−1)n

n
| =

∞∑
n=1

1

n
diverges. Hence, “convergence” and

“absolute convergence” are not equivalent notions.

Theorem 9.3.2 Every absolutely convergent series
∞∑

n=0

an converges.

Proof 9.3.3 Let Sn = a0 + ... + an, Tn = |a0| + ... + |an|. As the series
∞∑

n=0

|an| converges,

Tn is Cauchy.
So, we have:

∀ε > 0, ∃N ∈ N : ∀n ≥ N, ∀p ∈ N |Tn+p − Tn| = Tn+p − Tn = |an+1| + ... + |an+p| < ε.

Hence, ∀n ≥ N ∀p ∈ N, |Sn+p − Sn| = |an+1 + ... + an+p| ≤ |an+1| + ... + |an+p| < ε.

Thus, Sn is Cauchy, so it converges. This means that the series
∞∑

n=0

an converges.

Example 9.3.4 If in R, xn → x, then |xn| → |x|.

So if
∞∑

n=0

an converges absolutely,

|
∞∑

n=0

an| = lim |
n∑

k=0

ak| ≤ lim
n∑

k=0

|ak| =
∞∑

n=0

|an|, i.e. |
∞∑

n=0

an| ≤
∞∑

n=0

|an|.

Example 9.3.5 We have just seen that the series
∞∑

n=1

(−1)n

n
converges, although it is not

absolutely convergent. Let us calculate the sum of the series.

We know that ln(1 + x)′ =
1

1 + x
=

1

1 − (−x)
=

∞∑
n=0

(−x)n =
∞∑

n=0

(−1)nxn.

limm→∞ limn→∞(1 +
1

n
)m = 1, and limn→∞ limm→∞(1 +

1

n
)m = ∞.

Hence, integrating we get:∫ x

0
(ln(1 + x))′dx = ln(1 + x) =

∞∑
n=0

(−1)n xn+1

n + 1
=

∞∑
n=0

(−1)n+1xn

n
.
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Hence, ln 2 =
∞∑

n=0

(−1)n+1

n
= 1 − 1

2
+

1

3
− 1

4
+ ... +

(−1)n+1

n
+ ...

Now, write this sum taking one positive term then two negative terms:

(1 − 1

2
− 1

4
) + (

1

3
− 1

6
− 1

8
) + ...

Now, add another parenthesis:

[(1− 1

2
)− 1

4
]+ [(

1

3
− 1

6
)− 1

8
]+ ... =

1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ ... =

1

2
(1− 1

2
+

1

3
− 1

4
+ ...)

Conclusion:
1

2
ln 2 = ln 2 !

This absurdity shows that in a series - even if it is convergent - we cannot change the order
of the terms in an infinite sum.

Question: When can we change the order of the terms without obtaining divergent series
or different sums?

Definition 9.3.6 Let
∞∑

n=0

an be a series and σ : N → N be a bijection. Then the series

∞∑
n=0

aσ(n) is said to be a rearrangement of the given series.

Example 9.3.7 Let
∞∑

n=0

an be a series. If σ(0) = 81, σ(1) = 92, σ(2) = 301, ..., then

∞∑
n=0

aσ(n) = a81 + a92 + a301 + ...

Definition 9.3.8 A series
∞∑

n=0

an is said to be unconditionally convergent if every re-

arrangement of this series converges.

Example 9.3.9 It is easy to see that the series
∞∑

n=0

(−1)n

n
is convergent but not uncondi-

tionally convergent.

9.3.1 Absolutely Convergent vs. Unconditionally Convergent

Theorem 9.3.10 If a series
∞∑

n=0

an is absolutely convergent, then it is unconditionally con-

vergent and that for every bijection σ : N → N,
∞∑

n=0

aσ(n) =
∞∑

n=0

an.
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Proof 9.3.11 Let M =
∞∑

n=0

|an| and let σ : N → N be any bijection. Then ∀n ∈ N,

n∑
i=0

|aσ(i)| ≤ M . Hence the series
∞∑

n=0

aσ(n) is absolutely convergent, so convergent.

Let S =
∞∑
i=0

ai, i.e. S = limn→∞
n∑

i=0

ai

∀ε > 0, ∃N ∈ N : ∀n ≥ N |S −
n∑

i=0

ai| = |
∞∑

i=n+1

ai| < ε.

In particular, for all n ≥ N and m ≥ N , |
m∑

i=n

ai| < ε. (∗)

Now, let Ñ be large enough to have: {0, 1, ..., N} ⊆ {σ(0), ..., σ(Ñ)}. Then, for n ≥ Ñ ,

|
n∑

i=0

ai −
n∑

i=0

aσ(i)| = | a sum of some terms ai with i > N | < ε by (∗).

Now, since
n∑

i=0

ai → S, we see that
n∑

i=0

aσ(i) → S, too, as n → ∞.

Hence
∞∑
i=0

aσ(i) =
∞∑
i=0

ai.

We have seen that every absolutely convergent series is unconditionally convergent. We are
going to show that converse is also true.

Let
∞∑

n=0

an be a series in R. Let a+
n = sup{an, 0} and a−

n = sup{−an, 0}

Then a+
n ≥ 0, and a−

n ≥ 0.

Hence a+
n + a−

n = |an|, and an − an = an. (∗∗)
Also a+

n ≤ |an|, and a−
n ≤ |an|.

Lemma 9.3.12 If
∞∑

n=0

an converges but
∞∑

n=0

|an| diverges then both series
∞∑

n=0

a+
n and

∞∑
n=0

a−
n

diverges to +∞.

Proof 9.3.13 Suppose for a contradiction, the series
∞∑

n=0

a+
n converges and

∞∑
n=0

a−
n diverges

to ∞.
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Since −a−
n = an − a+

n then
∞∑

n=0

(a+
n − an) =

∞∑
n=0

a−
n and since by hypothesis both

∞∑
n=0

a+
n

and
∞∑

n=0

an converges, the series
∞∑

n=0

(a+
n −an) converges, but then the series

∞∑
n=0

a−
n converges,

contradiction.

Lemma 9.3.14 The series
∞∑

n=0

|an| converges iff
∞∑

n=0

a+
n and

∞∑
n=0

a−
n converges.

Proof 9.3.15 (⇒) As a+
n ≤ |an| and a−

n ≤ |an| the comparison test implies that if
∞∑

n=0

|an|
converges then both converge, too.

(⇐) As a+
n +a−

n = |an|, if the series
∞∑

n=0

a+
n and

∞∑
n=0

a−
n converge, then

∞∑
n=0

|an| converges and

∞∑
n=0

|an| =
∞∑

n=0

a+
n +

∞∑
n=0

a−
n .

Example 9.3.16
∞∑

n=1

(−1)n+1

n
converges but not absolutely. Let an =

(−1)n+1

n
. Then both

of the series
∞∑

n=0

a+
n =

∞∑
n=1

1

2n
,

∞∑
n=0

a−
n =

∞∑
n=1

1

2n + 1
diverge.

Theorem 9.3.17 (Riemann) A series
∞∑

n=0

an is absolutely convergent iff it is uncondition-

ally convergent. (i.e. if
∞∑

n=0

an converges but not absolutely, then a rearrangement of
∞∑

n=0

an

diverges.)

Proof 9.3.18 Suppose that
∞∑

n=0

an converges but
∞∑

n=0

|an| diverges. So, both of the series

∞∑
n=0

a+
n and

∞∑
n=0

a−
n diverges to +∞. Let bn = a+

n and cn = −a−
n

Let A < B be two arbitrary real numbers.

Let n1 be the first integer such that b0 + b1 + · · · + bn1 > B.

Then, let m1 be the first integer such that b0 + · · · + bn1 + c0 + · · · + cm1 < A.

Let n2 > n1 be the smallest integer such that
b0 + · · · + bn1 + bn1+1 + · · · + bn2 + c0 + · · · + cm1 + cm1+1 + · · · + cm2 > B.
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Then, let m2 > m1 be the smallest integer such that
b0 + · · · + bn1 + bn1+1 + · · · + bn2 + c0 + · · · + cm1 + cm1+1 + · · · + cm2 < A.
...

In this way we produce a rearrangement of the series
∞∑

n=0

an such that, if Tn is the partial

sum of this rearrangement, Tn > B for infinitely many n and Tn < A for infinitely many n.
Hence (Tn)n∈N diverges. i.e., the rearranged series, b0 + · · ·+ bn1 + c0 + · · ·+ cm1 + bn1+1 + · · ·
diverges.

Definition 9.3.19 If a series
∞∑
i=0

ai converges but
∞∑
i=0

|ai| diverges, then we say that
∞∑
i=0

ai

is conditionally convergent.

9.4 Abel and Dirichlet Tests

None of the tests we have seen so far applies to a series to a series of the form
∞∑

n=1

sin nx

n
.

If we put an = sin nx, bn =
1

n
then the series

∞∑
n=1

sin nx

n
is a series of the form

∞∑
n=1

(anbn)

with bn decreasing to 0.

Or put an = (−1)n and bn =
1√
n

for the series
∞∑

n=1

(−1)n

√
n

with bn decreasing to 0.

Abel Formula - First Form: Let A0 = 0, A1 = a1, ..., An = a1 + ... + an so that
A1 − A0 = a1, A2 − A1 = a2, ..., An − An−1 = an. Then;

anb1 + ... + anbn = (A1 − A0)b1 + ... + (An − An−1)bn

= A1(b1 − b2) + A2(b2 − b3) + ... + An−1(bn−1 − bn) + Anbn.

Thus,
n∑

k=1

akbk =
n−1∑
k=1

Ak(bk − bk+1) + Anbn.

Abel Formula - II (Cauchy Form): Let, for n ≥ m, Am,n = am + am+1 + ... + an so that
Am,m = am, Am+1,m − Am,m = am+1, ..., Am,n − Am,n−1 = an. Hence,

ambm + am+1bm+1 + ... + anbn = Am,mbm + (Am+1,m − Am,m)bm+1 + ... + (Am,n − Am,n−1)bn

= Am,m(bm − bm+1) + ... + Am,n−1(bn−1 − bn) + Am,nbn

Thus,
n∑

k=m

akbk =
n−1∑
k=m

Am,k(bk − bk+1) + Am,nbn.

Theorem 9.4.1 (Dirichlet Test) Consider a series of the form
∞∑

n=1

anbn with:
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1. bn ≥ 0, bn decreases to zero.

2. ∃M > 0 : ∀n ∈ N, |a1 + ... + an| ≤ M .

Then the series
∞∑

n=1

anbn converges.

Proof 9.4.2 Let Sn =
n∑

k=1

akbk. Then for n ≥ m,

Sn − Sm−1 =
n∑

k=m

akbk =
n−1∑
k=m

Am,k(bk − bk+1) + Am,nbn. Then;

|Sn − Sm−1| ≤
n−1∑
k=m

|Am,k||bk − bk+1| + |Am,n| bn

≤
n−1∑
k=m

M(bk − bk+1) + Mbn

= M [(bm − bm+1) + ... + (bn−1 − bn) + bn]
= Mbm → 0 as m → ∞

Hence Sn is Cauchy, so converges. Hence our series converges.

Example 9.4.3 Show that for all x ∈ R the series
∞∑

n=1

sin nx

n
; x �= 2kπ, converges.

Here an = sin nx, bn =
1

n
so bn ↓ 0. Hence, it is enough to show that ∃M > 0 such that

| sin x + ... + sin nx| ≤ M. (M may depend on x but not on n)

To calculate the sum sin x+ ...+sin nx let An = cos x+ ...+cos nx, Bn = sin x+ ...+sin nx.
Then;

An + iBn = eix + e2ix + ... + einx = eix[1 + ein + ... + ei(n−1)]

= eix 1−einx

1−eix = eix e
in
2 x[e−

in
2 x−e

in
2 x]

e
i
2 x[e−

ix
2 −e

ix
2 ]

= ei n+1
2

x sin(n
2

x)

sin x
2

= (cos n+1
2

x + i sin(n+1
2

x))
sin(

n

2
x)

sin x
2

Hence, An = cos x+...+cos nx = cos(n+1
2

x)
sin(n

2
x)

sin x
2

, Bn = sin x+...+sin nx = sin(n+1
2

x)
sin(n

2
x)

sin x
2

Hence, | sin x + ... + sin nx| ≤ 1

| sin x
2
| for x �= 2kπ, k ∈ Z

Hence by Dirichlet test, the series
∞∑

n=1

sin nx

n
converges for every x �= 2kπ, (k ∈ Z). In

particular, for x ∈ [0, 2π] this series converges.
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Remark also that if instead of
1

n
, we take

1√
n

,
1

p
√

n
, ... or any bn ≥ 0, bn ↓ 0 the calculation

will be the same.

Theorem 9.4.4 (Leibniz Test) Let bn ≥ 0, bn ↓ 0. Then she alternating series
∞∑

n=1

(−1)n bn

converges.

Proof 9.4.5 Let an = (−1)n So that |a1 + ...+an| ≤ 1. Hence Dirichlet test applies. So our
series converges.

Example 9.4.6 The series
∞∑

n=1

(−1)n

n
,

∞∑
n=1

(−1)n

√
n

,

∞∑
n=1

(−1)n

10
√

n
converge.

Theorem 9.4.7 (Abel Test) Consider a series of the form
∞∑

n=1

anbn. Suppose that:

1. The series
∞∑

n=0

an is convergent.

2. (bn)n∈N is positive, monotone and bounded.

Then the series
∞∑

n=1

anbn converges.

Proof 9.4.8 We can assume that (bn)n∈N is increasing and since it is bounded, bn → b, for

some b ∈ R. Then (b − bn) ↓ 0. As
∞∑

n=0

an converges, Sn = a0 + ... + an converges. So,

∃M > 0 such that |Sn| ≤ M , ∀n ≥ 1. Hence by Dirichlet test the series
∞∑

n=1

an(b − bn)

converges. So,
∞∑

n=1

anbn = −
∞∑

n=1

an(b − bn) + b

∞∑
n=1

an converges.

9.5 Product of Series

Let
∞∑

n=0

an and
∞∑

n=0

bn be two series. If we multiply them “formally” then we get an infinite

matrix:



146 CHAPTER 9. NUMERICAL SERIES

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 . . . an . . . a2n . . .

b0 a0b0 a1b0 . . . anb0 . . . a2nb0 . . .
+→ b0

∞∑
m=0

am

b1 a0b1 a1b1 . . . anb1 . . . a2nb1 . . .
+→ b1

∞∑
m=0

am

...

bn a0bn a1bn . . . anbn . . . a2nbn . . .
+→ bn

∞∑
m=0

am

...

b2n a0b2n a1b2n . . . anb2n . . . a2nb2n . . .
+→ b2n

∞∑
m=0

am

...
...

...
...

...
...

...
...

↓ + ↓ + ↓ + ↓ +bn

a0

∞∑
m=0

bm a1

∞∑
m=0

bm an

∞∑
m=0

bm an

∞∑
m=0

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem: In which order we should sum these anbm’s?

1. First sum the rows, and get the expressions in the right-hand side then sum these

expressions to get:
∞∑

n=0

bn(
∞∑

m=0

am)

2. Or first sum the columns and get the expressions the matrix and them sum them to

get:
∞∑

n=0

an(
∞∑

m=0

bm)

3. Or we can sum anbm’s in a random way.

Basic Problem: When we sum anbm’s in different ways do we get the same sum?

Example 9.5.1 Consider the following example of sums. Let αi,j ∈ R be such that

αi,j =

⎧⎪⎨
⎪⎩

1 if i = j

−1 if i = j + 1

0 otherwise

Then
∞∑

j=1

∞∑
i=1

αi,j �=
∞∑
i=1

∞∑
j=1

αi,j.

This is actually a matrix of the form:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · ·
−1 1 0

...

0
. . . . . . . . .

...
... −1 1

...

0 · · · 0 −1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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9.5.1 Cauchy Method of Sum

Now, let
c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
...
cn = a0bn + a1bn−1 + · · · + anb0
...

Formally, we should have:

(
∞∑

n=0

an)(
∞∑

n=0

bn) =
∞∑

n=0

∞∑
m=0

bnam =
∞∑

m=0

∞∑
n=0

bnam =
∞∑

n=0

cn.

Theorem 9.5.2 Let
∞∑

n=0

an and
∞∑

n=0

bn be two absolutely convergent series and define cn =

a0bn+a1bn−1+· · ·+anb0. Then the series
∞∑

n=0

cn is also absolutely convergent and (
∞∑

n=0

an)(
∞∑

n=0

bn) =

∞∑
n=0

∞∑
m=0

bnam =
∞∑

m=0

∞∑
n=0

bnam =
∞∑

n=0

cn.

Proof 9.5.3 Let Sn = a0 + · · · + an, Tn = b0 + · · · + bn, Wn = c0 + · · · + cn

GRAFIK

SnTn = the sum of all aibj in the smaller square.
Wn = the sum of all aibj in the triangle (I).
W2n = the sum of all aibj in the triangle (II).

Suppose first that all ai ≥ 0, bn ≥ 0. Then Wn ≤ SnTn ≤ W2n. If Sn → S and Tn → t then
Wn being bounded from above, converges. Hence Wn → T · S.

As, our series are absolutely convergent, |SnTn − Wn| ≤ S̃nT̃n − W̃n → 0.

Here S̃n = |a0| + · · · + |an|, T̃n = |b0| + · · · + |bn|, W̃n = |a0||b0| + · · · + |an||bn|

Hence Wn → T · S. i.e. (
∞∑

n=0

an)(
∞∑

n=0

bn) =
∞∑

n=0

cn.

Example 9.5.4 Consider the series
∞∑

n=0

xn

n!
and

∞∑
n=0

yn

n!
. For every x, y ∈ R, these series

converge absolutely by ratio test.

Let us determine the product of this series.
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Let an =
xn

n!
, bn =

yn

n!
and cn = a0bn + · · · + anb0. Then we know that:

(
∞∑

n=0

an)(
∞∑

n=0

bn) =
∞∑

n=0

cn.

Now let us calculate cn :

cn = 1 · yn

n!
+

x

1!
· yn−1

(n − 1)!
+ · · · + y

1!
· xn−1

(n − 1)!
+ 1 · xn

n!

=
1

n!

[
yn +

nx

1!
yn−1 + · · · + xn

]
=

1

n!
(x + y)n

So that
∞∑

n=0

cn =
∞∑

n=0

1

n!
(x + y)n.

Let S(x) =
∞∑

n=0

xn

n!
, S(y) =

∞∑
n=0

yn

n!
, then we see that:

1. S(x)S(y) = S(x + y).

2. S(0) = 1 so that S(x − x) = S(x)S(−x) = S(0) = 1, so that S(−x) =
1

S(x)

Hence
1

∞∑
n=0

xn

n!

=
∞∑

n=0

1

n!
(−x)n.

3. S(x) �= 0, ∀x ∈ R, since S(x)S(−x) = 1.

In mathematics, instead of S(x) we write ex.
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9.6 Exercises

1. Show that

(a) limn→∞ n
√

n = 1.

(b) For any m > 0 and any α > 0, limn→∞
(ln n)m

nα
= 0.

(c) For any k > 0, limn→∞ nke−
1
n = 0.

2. Test the following series for convergence or divergence.

(a)
∞∑

n=0

nn

n!

(b)
∞∑

n=0

(1 + 1
n
)

en

(c)
∞∑

n=1

ln(1 + 1
n
)

(d)
∞∑

n=1

1

n
ln(1 + 1

n
)

(e)
∞∑

n=1

(−1)n

n ln(1 + n)

(f)
∞∑

n=1

(−1)n(1 + n)n

nn+1

3. Let an ≥ 0. Show that
∞∑

n=1

an converges ⇒
∞∑

n=1

√
an

n
converges.

4. Let ∞∑
n=0 an be a convergent series and (bn)n∈N monotone bounded sequence. Show

that the series
∞∑

n=0

anbn converges.

5. Let an > 0 for all n ∈ N. Show that the series
∞∑

n=0

an converges iff the series
∞∑

n=0

an

1 + an

converges.

6. Let an ∈ R. Show that
∞∑

n=0

|an| < ∞ →
∞∑

n=0

|an|2 < ∞
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7. Let an ∈ R, bn ∈ R. Show that;
∞∑

n=0

|an|2 < ∞ and
∞∑

n=0

|bn|2 < ∞ ⇒
∞∑

n=0

|anbn|2 < ∞.

8. Let x ∈ R be fixed. Show that the series
∞∑

n=1

sin nx√
n

converges.

9. Let a, b be 2 constants with 0 < a < b. Show that the series

1 + a + ab + a2b + a2b2 + a3b3 + a4b3 + ...

• converges if

(a) b < 1, or

(b) a < 1 < b and ab > 1.

• diverges if a < 1 < b and ab > 1.

10. Let
∞∑

n=0

an, (an ∈ R) be a series. Show that;

(a) If for some p > 1, limn→∞ npan = 0, then the series
∞∑

n=0

an converges absolutely.

(b) If limn→∞ nan = A and A �= 0, the series
∞∑

n=0

an diverges.

(c) If limn→∞ nan = 0, we cannot conclude.



Chapter 10

Sequences and Series of Functions

1. Sequences of functions: Pointwise and Uniform Convergence

2. Uniform Convergence and Continuity, Differentiation and Integration

3. Series of Functions: Pointwise and Uniform Convergence

4. Tests for Uniform Convergence: Weierstrass M-test, Abel and Dirichlet
Tests

5. Differentiation and Integration of Series of Functions

6. Power Series and Taylor Expansion

7. Continuous but Nowhere Differentiable Functions

10.1 Sequences of Functions

Let E be any set and (Y, d′) be a m.s. Let for each n ∈ N, fn : E → (Y, d′) be a function.
Then we say that we have a sequence of functions (fn)n∈N from E to Y .

Example 10.1.1 fn : [0, 1] → R fn(x) = sin nx, fn(x) = xn, fn(x) =
1

1 + xn

10.1.1 Pointwise Convergence

Definition 10.1.2 Let (fn)n∈N be a sequence of functions from E to (Y, d′). If for each x
in E the sequence (fn(x))n∈N converges in Y to some point yx ∈ Y , then we say that (fn)n∈N

converges pointwise on the set E.
Since, in any m.s. limit is unique, for each x ∈ E, there is only one yx ∈ Y such that
fn(x) → yx. So, if we define f : E → Y by f(x) = yx we get a new function. For this
function we have: ∀x ∈ E, f(x) = limn→∞ fn(x), in Y . This function f is said to be the
pointwise limit of the sequence (fn)n∈N on the set E.

151



152 CHAPTER 10. SEQUENCES AND SERIES OF FUNCTIONS

We write this as “fn → f pointwise on E”.

fn → f pointwise on E ⇔ ∀x ∈ E, αn(x) = |fn(x) − f(x)| → 0
⇔ ∀x ∈ E, ∀ε > 0, ∃N = N(ε, x) ∈ N : ∀n ≥ N, |fn − f(x)| < ε
⇔ ∀x ∈ E, ∀ε > 0, ∃N = N(ε, x) ∈ N : ∀m,n ≥ N, |fn(x) − fm(x)| < ε

Example 10.1.3 1. Let fn : [0, 1] → R, fn(x) = xn.

Then fn(0) = 0 → 0, fn(1) = 1 → 1 and For 0 < x < 1, fn(x) = xn → 0.

Let f(x) =

{
0 if 0 ≤ x < 1
1 otherwise

Thus fn → f pointwise on [0, 1]. Observe that fn is continuous on [0, 1] but f is not
continuous at x = 1.

Observe that although each fn is continuous on [0, 1], the limit function is not contin-
uous.

2. Let fn : [0,∞[→ R, fn(x) =
1

1 + xn
. Then fn(0) = 1 → 1.

For 0 < x < 1, xn → 0, fn(x) → 1.

For x = 1, fn(x) =
1

2
→ 1

2
.

For x > 1, fn(x) → 0.

Hence the pointwise limit function of the sequence (fn)n∈N on the set E = [0,∞[ is,

f(x) =

⎧⎨
⎩

1 for 0 ≤ x < 1
1
2

for x = 1
0 for x > 1

3. Let fn : R → R, fn(x) =
sin nx

n
. Then ∀x ∈ R, fn(x) → 0. Hence f ≡ 0 on R is the

pointwise limit function of fn in R.

But f ′
n(x) = cos nx and f ′

n(π) = (−1)n diverges.

4. Let fn : [0, 1] → R be the following:

GRAFIK

fn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n2x if 0 ≤ x ≤ 1

2n

2n − 2n2x if
1

2n
≤ x ≤ 1

n

0 if
1

n
≤ x ≤ 1

Now, for x = 0, fn(0) = 0 → 0. For x > 0 for some N ∈ N, x >
1

N
. Hence, for

n ≥ N fn(x) = 0. Hence, for any x ∈ [0, 1], fn(x) → 0.
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Now
∫ 1

0
fn(x)dx = Area of the triangle = 1. Hence limn→∞

∫ 1

0
fn(x)dx = 1.

On the other hand
∫ 1

0
(limn→∞ fn(x))dx =

∫ 1

0
0dx = 0.

Thus, limn→∞
∫ 1

0
fn(x)dx �= ∫ 1

0
(limn→∞ fn(x))dx.

5. Let fn : [0, 1] → R, fn(x) = xn. Then limn→∞ limx∈[0,1], x→1 fn(x) = 1.

But limx∈[0,1[, x→1 limn→∞ fn(x) = 0.

Hence, limx∈[0,1[, x→1 limn→∞ fn(x) �= limn→∞ limx∈[0,1], x→1 fn(x).

10.1.2 Uniform Convergence

Definition 10.1.4 Let fn : E → Y be a sequence of functions. We say that (fn)n∈N con-
verges uniformly on E to a function f : E → Y if we have:

∀ε > 0, ∃N ∈ N, ∀n ≥ N, ∀x ∈ E, d′(fn(x), f(x)) < ε
⇔ αn = supx∈E d′(fn(x), f(x)) → 0, as n → ∞
⇔ ∀ε > 0, ∃N ∈ N,∀n ≥ N, supx∈E |fn(x) − f(x)| < ε

Remark: From the definition, clearly, uniform convergence implies pointwise convergence.
Hence, in order to find out whether a given sequence (fn)n∈N converges uniformly on E, first
we must determine its pointwise limit f and try to see if αn = supx∈E d′(fn(x), f(x)) goes or
not to zero.

Example 10.1.5 1. Let fn : [0, 1] → R, fn(x) = xn, we know that fn → f pointwise on
[0, 1], where f is defined in example 10.1.3 and

αn = sup0≤x≤1 |fn(x) − f(x)| ≥ |fn(1 − 1

n
) − f(1 − 1

n
)| = (1 − 1

n
)n → 1

e
. So αn � 0.

So the convergence is not uniform.

2. Now let 0 < β < 1 is any fixed number and E = [0, β]. fn : E → R, fn(x) = xn. Then
fn → f ≡ 0 on E pointwise.

Moreover, αn = supx∈E |fn(x) − f(x)| = βn → 0. Hence fn → f ≡ 0 uniformly on E.

3. Let fn(x) =
x

n
e

x
n for x ∈ [0,∞[. For each x ∈ [0,∞[, fn(x) → 0. So fn → f ≡ 0

on [0,∞[ pointwise. But βn = |fn(n) − f(n)| = e. So convergence is not uniform on
[0,∞[.

4. Let fn : R → R, fn(x) =
sin nx

n
then fn → f ≡ 0 pointwise on R. Also

supx∈R |fn(x) − f(x)| = supx∈R

∣∣∣∣sin nx

n

∣∣∣∣ ≤ 1

n
→ 0.

5. Let fn, f : E → Y be some functions. If supx∈E d′(fn(x), f(x)) ≤ βn and βn → 0, then
fn → f uniformly on E.
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Cauchy Condition for Uniform Convergence:

Definition 10.1.6 Let fn : E → Y be a sequence of functions. We say that (fn)n∈N is
uniformly Cauchy on E if we have:

∀ε > 0, ∃N ∈ N, ∀n,m ≥ N, ∀x ∈ E, d′(fn(x), f(x)) < ε or supx∈E d′(fn(x), f(x)) < ε.

Theorem 10.1.7 Suppose that (Y, d′) is complete. fn : E → Y a sequence of functions
converges uniformly on E iff it is uniformly Cauchy on E.

Proof 10.1.8 (⇒) Suppose that fn converges uniformly on E. So we have:

∀ε > 0, ∃N ∈ N, ∀n ≥ N supx∈E d′(fn(x), f(x)) < ε.

Then ∀n,m ≥ N, supx∈E d′(fn(x), f(x)) < 2ε.

(⇐) Conversely suppose fn is uniformly Cauchy, so we have:

∀ε > 0, ∃N ∈ N, ∀n,m ≥ N supx∈E d′(fn(x), fm(x)) < ε (1)

Hence, for each x ∈ E, (fn(x))n∈N is Cauchy in Y . As (Y, d′) is complete, (fn)n∈N converges
to some point yn ∈ Y .

Let f(x) = yx. Then fn → f pointwise on E. Let us see that the convergence is uniform.

Let x ∈ E be any point. Since fn → f , we have:

∀ε > 0, ∃Mx ∈ N : ∀m ≥ Mx, d′(fm(x), f(x)) < ε.

Now, let N be as in (1) (So N does not depend on x !)

Let n ≥ N, then for m ≥ max{N, Mx},
d′(fn(x), f(x)) ≤ d′(fn(x), fm(x)) + d′(fm(x), f(x)) < 2ε

So we have,

∀ε > 0, ∃N ∈ N (which does not depend on x), ∀n ≥ N ∀x ∈ E d′(fn(x), f(x)) < 2ε.

So, fn → f uniformly on E.

Remark : Let E be any set and B(E) = {f : E → R, f is bounded}. On B(E) we put the
“supremum metric”, i.e. d(f, g) = supx∈E |f(x) − g(x)|.
Now, let fn, f ∈ B(E). It is clear that fn → f uniformly on E ⇔ d(fn, f) → 0.

Theorem 10.1.9 Let (X, d), (Y, d′) be two m.s., A ⊆ X a set, a ∈ Ā a point and fn : A → Y
be arbitrary functions. Suppose that (Y, d′) is complete and

1. (fn)n∈N converges uniformly on A to some f : A → Y .

2. ∀n ∈ N, limx∈A, x→a fn(x) = Ln exists.

Then limn→∞ limx∈A, x→a fn(x) = limx∈A, x→a limn→∞ fn(x).
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Proof 10.1.10 Since f(x) = limn→∞ fn(x) and Ln = limx∈A, x→a fn(x) it is enough to show
that (Ln)n∈N converges and limn→∞ Ln = limx∈A, x→a f(x). Let us write what we have:

(fn)n∈N is uniformly Cauchy: ∀ε > 0, ∃N ∈ N : ∀n,m ≥ N, ∀x ∈ A, d′(fn(x), f(x)) < ε (∗)
Since N is independent of x in A, fixing n ≥ N and m ≥ N arbitrarily and letting x → a
(x ∈ A), we get : d′(Ln, Lm) ≤ ε. (because in any m.s d is a continuous function, i.e.
xn → x, yn → y =⇒ d(xn, yn) → d(x, y))

Hence Ln is Cauchy in (Y, d′), so converges to a certain L ∈ Y .

In (∗) fix an m ≥ N and x ∈ A arbitrary and let m → ∞. Then we get:

∀ε > 0 ∃N ∈ N : ∀n ≥ N, ∀x ∈ A, d′(fn(x), f(x)) < ε.

In this last expression letting x → a, x ∈ A we get:

∀ε > 0, ∃N ∈ N : ∀n ≥ N, limx→a d′(fn(x), f(x)) ≤ ε.

As, limx∈A, x→a fn(x) = Ln we conclude that limn→∞ Ln = limx∈A, x→a f(x).

Example 10.1.11 fn : [0, 1[→ R, fn(x) = xn

Then, limn→∞ limx<1, x→1 fn(x) �= limx<1, x→1 limn→∞ fn(x). Hence, fn � f ≡ 0 uniformly
on [0, 1[.

10.2 Continuity, Differentiation and Integration

10.2.1 Uniform Convergence and Continuity

Theorem 10.2.1 Let fn : A → Y be a sequence of functions and a ∈ A. Suppose that
(Y, d′) is complete and

1. each fn is continuous at a.

2. (fn)n∈N converges uniformly on A to some function f : A → Y .

Then f is continuous at a.

Proof 10.2.2 By the theorem 10.1.9,
limx∈A, x→a f(x) = limx∈A, x→a[limn→∞ fn(x)]

= limn→∞ limx∈A, x→a fn(x)
= limn→∞ fn(a) = f(a)

Hence f is continuous at a.

Remark: By contrapositive, if each fn is continuous on A, fn → f pointwise on A and f is
not continuous at some point a ∈ A then the convergence is not uniform on A. For instance,

if fn = xn on [0, 1], then fn → f =

{
1 if x = 1

0 if x �= 1

As f is not continuous at a = 1, we conclude that the convergence is not uniform on [0, 1].
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10.2.2 Metric Nature of Uniform Convergence

Let E be any set and B(E){f : E → R : f is bounded }. For f, g ∈ B(E), let
d∞(f, g) = supx∈E |f(x) − g(x)|. This is a metric on B(E).

For fn, f ∈ B(E), d∞(fn, f) → 0 ⇔ fn → f uniformly on E.

For that reason d∞ is called the metric of uniform convergence.

We have already seen that (B(E), d∞) is complete.

Now, let Cb(E) = {f : E → R : f is continuous and bounded on E}. On Cb(E) put the
supremum metric, d∞. Obviously, Cb(E) ⊆ B(E)

Theorem 10.2.3 (Cb(E), d) is complete.

Proof 10.2.4 1. Cb(E) ⊆ B(E).

2. (B(E), d) is complete.

3. Cb(E) is closed in B(E) by the theorem 10.2.1, indeed let (fn)n∈N be a sequence in
Cb(E) that converges (for the supremum metric) to some f ∈ (B)(E). But then by the
theorem 10.2.1 f is continuous on E, so f ∈ Cb(E).

4. In any complete m.s (X, d), a subspace (M, d) is complete iff M is closed in X.

Particular Case: Let K ⊆ X be a compact set and C(K) = {f : K → R : f is continuous on K},
then obviously each f ∈ C(K) is bounded on K. Then (C(K), d) is a complete m.s. In par-
ticular the space C([0, 1]) is a complete m.s under the supremum metric. (i.e. uniform
convergence metric)

Example 10.2.5 C0(R) = {f : R → R : lim|x|→∞ f(x) = 0, f is continuous} is complete.

Example 10.2.6 Let fn : [0,∞[→ R, fn(x) =
1

1 + xn
.

Then fn(x) → f(x) =

⎧⎪⎨
⎪⎩

1, if 0 ≤ x < 1
1
2
, if x = 1

0, if x > 1

As f is not continuous on [0,∞[ and each fn is continuous on the same set, we conclude
that convergence of fn to f is not uniform on [0,∞[.

10.2.3 Uniform Convergence and Integration

Theorem 10.2.7 Let fn : [a, b] → R be a sequence of continuous functions. Suppose that
(fn)n∈N converges uniformly to some f : [a, b] → R on [a, b]. Then,

1. Fn(x) =
∫ x

a
fn(t)dt → F (x) =

∫ x

a
f(t)dt uniformly on [a, b].
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2.
∫ b

a
|fn(t) − f(t)|dt → 0, as n → ∞.

3. limn→∞
∫ b

a
fn(x)dx =

∫ b

a
(limn→∞ fn(x))dx.

Proof 10.2.8 Since fn → f uniformly on [a, b], we have:
∀ε > 0, ∃N ∈ N : ∀n ≥ N, ∀x ∈ [a, b], |fn(x) − f(x)| < ε.

Hence, for n ≥ N and ∀x ∈ [a, b],

| ∫ x

a
fn(t)dt − ∫ x

a
f(t)dt| ≤ ∫ b

a
|fn(t) − f(t)|dt ≤ ∫ x

a
(ε)dt ≤ ∫ b

a
(ε)dt ≤ ε(b − a).

So, Fn → F uniformly on [a, b]. And 2 and 3 follows from this.

Example 10.2.9 Let fn : [0, 1] → R, fn(x) =

⎧⎪⎨
⎪⎩

2n2x if 0 ≤ x ≤ 1/2n

2n − 2n2x if 1/2n ≤ x ≤ 1/n

0 if 1/n ≤ x ≤ 1

Then, as we have seen, fn → f ≡ 0 pointwise on [0, 1].∫ 1

0
fn(x)dx =

1

2
, ∀n ∈ N, limn→∞

∫ 1

0
fn(x)dx =

1

2
�= ∫ 1

0
f(x)dx.

Hence, the convergence is not uniform on [0, 1].

Example 10.2.10 limn→∞
∫ a

0
cos nxdx =

sin nx

n

∣∣∣∣a
0

=
sin na

n
→ 0. But (cos nx)n∈N con-

verges iff x = 2kπ, k ∈ Z.

10.2.4 Uniform Convergence and Differentiation

Theorem 10.2.11 Let fn : [a, b] → Rbe a sequence of continuously differentiable functions.
(i.e. f ′

n(x) exists and continuous on [a, b] ∀n ∈ N) Suppose that:

1. (f ′
n(x))n∈N converges uniformly on [a, b] to some function g : [a, b] → R.

2. For some x0 ∈ [a, b], the numerical sequence (f ′
n(x0))n∈N converges to some L ∈ R.

Then (fn)n∈N converges uniformly to some f : [a, b] → R. This f is differentiable and f ′ = g
on [a, b].

Proof 10.2.12 By ”Newton - Leibniz Theorem” fn(x) = fn(x0) +
∫ x

x0
f ′

n(t)dt. Then, by

theorem 10.2.7, fn(x) → f(x) = L +
∫ x

x0
g(t)dt uniformly on [a, b]. Hence, f ′(x) = g(x) on

[a, b].

Example 10.2.13 Let fn(x) =
sin nx

n
on [a, b]. Then fn → f ≡ 0 uniformly on [a, b].

(fn)n∈N is continuously differentiable and f ′
n(x) = cos nx. But (f ′

n)n∈N does not converge
even pointwise.
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10.3 Series of Functions

Definition 10.3.1 Let E be a set and fn : E → R be a sequence of functions. The formal

sum
∞∑

n=0

fn(x) is said to be a “series of functions” on the set E.

10.3.1 Pointwise Convergence of Function Series

Definition 10.3.2 If, for each x ∈ E, the “numerical series”
∞∑

n=0

fn(x) converges, then we

say that the function series converges pointwise on E.

In this case, we obtain a function f : E → R, by putting f(x) = limn→∞ Sn(x), where
Sn = f0 + f1 + · · · + fn. By definition, f is the “pointwise sum of the series”. We write this

as f(x) =
∞∑

n=0

fn(x) pointwise on E.

For instance, for every x ∈ R, the series
∞∑

n=1

xn

n!
converges. So it defines a function f(x) =

∞∑
n=1

xn

n!
. We know that f(x) = ex.

Remark Let fn be any sequence of functions on a set E. To this sequence associate the

function series f0 +
∞∑

n=0

(fn+1 − fn). Let Sn = f0 +
n−1∑
k=0

(fk+1 − fk) = fn be the partial sum

of this series. Consequently, the series f0 +
∞∑

n=0

(fn+1 − fn) converges pointwise on E iff fn

converges pointwise on E.

From this we conclude that:

1. If E is a subset of some m.s. (X, d) and each term gn of the series
∞∑

n=0

gn(x) is continuous

on E and g(x) =
∞∑

n=0

gn(x) (pointwise on E), the function g need not to be continuous

on E. e.g. let fn(x) = xn, 0 ≤ x ≤ 1 and g0 = f0, gn = fn+1 − fn. Then g is the
pointwise limit of fn on [0, 1], which is not continuous.

2. Similarly if each gn : [a, b] → R continuous and we have g(x) =
∞∑

n=0

gn(x) pointwise on

[a, b], in general we don’t have:
∫ b

a

( ∞∑
n=0

gn(x)

)
dx =

∞∑
n=0

(∫ b

a

gn(x)dx

)
.
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3. If each gn : [a, b] → R is continuously differentiable on [a, b] and g(x) =
∞∑

n=0

gn(x)

pointwise on [a, b], in general we do not have:

( ∞∑
n=0

gn(x)

)′

=
∞∑

n=0

g′
n(x).

10.3.2 Uniform Convergence of the Function Series

Let E be any set and
∞∑

n=0

fn(x) be a series of functions on E. Let Sn = f0 + f1 + · · ·+ fn be

the partial sum of this series. So we have a “sequence” of functions, Sn.

Definition 10.3.3 If this Sn converges uniformly on E to a function f , then we say that
∞∑

n=0

fn(x) converges uniformly to f on E. We write this as, f =
∞∑

n=0

fn(x) uniformly

on E. This is equivalent to say that Sn is uniformly Cauchy, i.e.

∀ε > 0, ∃N ∈ N : ∀n ≥ N, ∀p ∈ N, supx∈E

∣∣∣∣∣
n+p∑
k=n

fk(x)

∣∣∣∣∣ < ε.

Remark: From this definition we conclude that a “necessary” (not sufficient) condition for

the uniform convergence of the series
∞∑

n=0

fn(x) on E, is the uniform convergence of fn to

zero on E.

For instance, the series
∞∑

n=0

xn converges pointwise on [0, 1[ but not uniformly since xn → 0

pointwise but not uniformly.

Example 10.3.4 Let
∞∑

n=0

fn(x) be a series and Sn = f0 + f1 + · · · + fn be its partial sum.

If for some sequence xn ∈ E, (Sm(xn))n∈N does not converge, then fn(xn) � 0 and so this
series cannot converge uniformly.

Example 10.3.5 Consider the series
∞∑

n=0

xn

n!
. For every x ∈ R, this series converges to ex.

Is this convergence uniform on R ?

A necessary condition for uniform convergence is the uniform convergence of fn(x) =
xn

n!
to

zero on R, i.e. supx∈R

∣∣∣∣xn

n!

∣∣∣∣→ 0.

But supx∈R

∣∣∣∣xn

n!

∣∣∣∣ ≥ nn

n!
→ ∞. So convergence of this series to ex is not uniform on R.
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However, on every compact interval [a, b] convergence is uniform. To see this, we use the

Cauchy condition: supa≤x≤b

∣∣∣∣∣
n+p∑
k=n

xk

k!

∣∣∣∣∣ ≤
n+p∑
k=n

|b|k
k!

→ 0, as n → ∞, if |b| ≥ a.

Example 10.3.6 Consider the series
∞∑

n=0

xn.

Here Fn(x) = 1 + x + · · · + xn =

⎧⎨
⎩

1 − xn+1

1 − x
for x �= 1

n + 1, for x = 1

• For |x| ≥ 1 the series diverges since xn � 0.

• For |x| < 1, xn → 0, so Fn(x) → f(x) =
1

1 − x
pointwise on ] − 1, 1[ so that

∞∑
n=0

xn =
1

1 − x
pointwise on ] − 1, 1[.

• The convergence is not uniformly on ] − 1, 1[ since for instance, for x = 1 − 1

n + 1
,

Fn

(
1 − 1

n + 1

)
=

−(1 − 1
n+1

+ 1)

1 − 1 + 1
n+1

→ e−1.

Thus limx→1 limn→∞ Fn(x) = e−1 but limn→∞ limx→1 Fn(x) does not exist (actually ∞)

• Now let 0 < α < 1, then
∞∑

n=0

xn converges uniformly on ] − α, α[ to
1

1 − x
. Indeed,

sup|x|≤α

∣∣∣∣Fn(x) − 1

1 − x

∣∣∣∣ = sup|x|≤α

∣∣∣∣ xn+1

1 − x

∣∣∣∣ ≤ αn+1

1 + α
→ 0

Hence
∞∑

n=0

xn converges pointwise on ] − 1, 1[ to
1

1 − x
, and the convergence is uniform on

[−α, α] for any 0 < α < 1.

10.3.3 Hereditary Properties

Theorem 10.3.7 (Continuity) Let A be a subset of a m.s. (X, d). fn : A → R sequence
of functions and x0 ∈ A. If;

• The series
∞∑

n=0

fn converges uniformly on A and

• Each fn is continuous at x0

Then the function f =
∞∑

n=0

fn is continuous at x0.

(i.e. limx∈A, x→x0

∞∑
n=0

fn(x) =
∞∑

n=0

lim
x∈A, x→x0

fn(x))
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Proof 10.3.8 Let Fn = f0 + f1 + · · ·+ fn, then (Fn)n∈N converges uniformly on A and each

Fn is continuous at x0. Then by theorem 10.2.1, limn→∞ Fn = limn→∞
n∑

i=0

fi =
∞∑

n=0

fn = f

is continuous at x0.

Theorem 10.3.9 (Integration) Let fn : [a, b] → R be a sequence of functions. Suppose

that the series
∞∑

n=0

fn converges uniformly on [a, b]. Then
∫ a

x
(

∞∑
n=0

fn(t))dt =
∞∑

n=0

∫ a

x

fn(t)dt

Proof 10.3.10 Let Fn = f0 + f1 + · · ·+ fn, then (Fn)n∈N converges uniformly on [a, b] to F .

Then by theorem 10.2.7, limn→∞
∫ a

x
Fn(t)dt =

∞∑
n=0

∫ x

a

fn(t)dt =

∫ x

a

F (t)dt =

∫ x

a

(
∞∑

n=0

fn(t))dt

Theorem 10.3.11 (Differentiation) Let fn : [a, b] → R be continuously differentiable on
[a, b]. Suppose that;

• the series
∞∑

n=0

f ′
n converges uniformly on [a, b]

• for x0 ∈ [a, b], the numerical series
∞∑

n=0

fn(x0) converges.

Then the series
∞∑

n=0

fn converges uniformly to f =
∞∑

n=0

fn and

f ′ =

( ∞∑
n=0

fn

)′

=
∞∑

n=0

f ′
n

Proof 10.3.12 Let Fn = f0 + f1 + · · · + fn, then each F ′
n is continuous on [a, b] and F ′

n

converges uniformly on [a, b], also for x0 ∈ [a, b], (Fn(x0))n∈N converges in R. Then by

theorem 10.2.11, Fn converges uniformly on [a, b] to F = limn→∞ Fn =
∞∑

n=0

fn and F is

differentiable on [a, b] and that F ′ =
∞∑

n=0

f ′
n

10.4 Tests for Uniform Convergence

Let
∞∑

n=0

fn (x) be an arbitrary series of functions on a set E.

Theorem 10.4.1 (Weierstrass M-Test): Suppose that supx∈E |fn(x)| ≤ αn and that the

numerical series
∞∑

n=0

αn is convergent. Then the series
∞∑

n=0

fn(x) converges uniformly on E.
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Proof 10.4.2 Let Sn = f0 + f1 + · · · + fn. Let us see that Sn is uniformly Cauchy on E.

As
∞∑

n=0

αn is convergent its partial sum An = α0 + α1 + · · · + αn is a Cauchy sequence. We

have: ∀ε > 0, ∃N ∈ N : ∀n ≥ N, ∀p ∈ N, |An+p − An| = αn+1 + · · · + αn+p < ε. Then
∀n ≥ N, ∀p ∈ N,

supx∈E |Sn+p(x) − Sn(x)| = supx∈E |fn+1(x) + · · · + fn+p(x)|
≤ supx∈E |fn+1(x)| + · · · + supx∈E |fn+p(x)|
≤ αn+1 + · · · + αn+p < ε

.

So, Sn is uniformly Cauchy on E. Hence the series
∞∑

n=0

fn(x) converges uniformly.

Example 10.4.3 Consider the series
∞∑

n=0

xn

n
. Determine the largest set E ⊆ R on which

this series converges uniformly.

This series converges pointwise on [−1, 1[, diverges at any point x /∈ [−1, 1[. The conver-
gence is uniform on any compact interval [a, b] ⊆] − 1, 1[.

Remark: Let A be a subset of some m.s. (X, d). Let S : Ā → R be a continuous and
bounded function. Then supx∈A |S(x)| = supx∈Ā |S(x)|. Hence, if each fn : Ā → R is

continuous, then if the convergence of the series
∞∑

n=0

fn(x) is not uniform on Ā. So it cannot

be uniform on A.

� Weierstrass-M test cannot be applied e.g. to the series
∞∑

n=1

sin nx

n
. So we need another

test.

10.4.1 Abel and Dirichlet Tests for Uniform Convergence

Consider a series of the form
∞∑

n=0

fn(x)gn(x), where fn, gn : E → R are arbitrary functions

defined on a set E. To study the convergence of this series, we need the “Cauchy form” of
the Abel formula.

Consider the numerical series of the form
∞∑

n=1

anbn.

Put A0 = 0, A1 = a1, . . . , An = a1 + · · · + an.

Let m > n be integers, Sn =
n∑

k=1

akbk and Sm − Sn−1 =
m∑

k=n

akbk = anbn + · · · + ambm.

Then an = An − An−1, an+1 = An+1 − An, . . . , am = Am − Am−1

So that;
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Sm − Sn = bn(An − An−1) + bn+1(An+1 − An) + · · · + bm(Am − Am−1)
= −bnAn−1 + An(bn − bn+1) + · · · + Am−1(bm−1 − bm) + bmAm

Theorem 10.4.4 (Dirichlet Test) Let E be a set, fn, gn : E → R be arbitrary functions.
Suppose that;

1. gn ≥ 0 is decreasing and gn → 0 uniformly on E.

2. ∃M > 0, supx∈I

∣∣∣∣∣
n∑

i=0

fi(x)

∣∣∣∣∣ < M, ∀n ∈ N.

Then the series
∞∑

n=1

fn(x)gn(x) converges uniformly on E.

Proof 10.4.5 Let Sn(x) =
n∑

k=1

fk(x)gk(x), we want to show that (Sn(x))n∈N is uniformly

Cauchy on E.

Since gn → 0 uniformly on E, ∀ε > 0, ∃N ∈ N, ∀n ≥ N, supx∈E gn(x) < ε.

Now put An = f1 + · · · + fn, with A0 = 0. Then,

Sn+p − Sn−1 = fngn + fn+1gn+1 + · · · + fn+pgn+p =

p∑
k=0

An+k(gn+k − gn+k−1) + An+pgn+p.

As, |An+p(x)gn+p(x)| ≤ M |gn+p(x)|,

supx∈I

∣∣∣∣∣
p∑

k=0

An+k(gn+k(x) − gn(x))

∣∣∣∣∣ ≤ M supx∈I |gn+p(x) − gn(x)| ≤ Mε, ∀x ∈ E.

Hence, Sn is uniformly Cauchy on I. So it converges uniformly on I.

Example 10.4.6 Study the uniform convergence of the series
∞∑

n=1

sin nx

n
.

Here, gn(x) =
1

n
↓ 0, and fn(x) = sin nx. We know that |sin x + · · · + sin nx| ≤ 1∣∣sin x

2

∣∣ on

any compact interval [a, b] ⊆]0, 2π[, supa≤x≤b

1∣∣sin x
2

∣∣ < ∞.

Hence, this series converges uniformly on any compact interval [a, b] ⊆]0, 2π[.

Theorem 10.4.7 (Abel Test) Let fn, gn be two sequences of bounded functions and;

1.
∞∑

n=0

fn(x) converges uniformly on E to a bounded function f : E → R.

2. gn is monotone on E and converges uniformly on E to some function g : E → R.
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Then the series
∞∑

n=0

fn(x)gn(x) converges uniformly on E.

Proof 10.4.8 Let g = limn→∞ gn. Then (g − gn) decreases uniformly to 0 on E.

As,
∞∑

n=0

fn(x) converges uniformly on E to a bounded function f : E → R, ∃M > 0 such

that supx∈E

∣∣∣∣∣
n∑

i=0

fi(x)

∣∣∣∣∣ ≤ M , ∀n ≥ 1.

Hence, by the Dirichlet Test (theorem 10.4.4),
∞∑

n=0

fn(x)(g(x) − gn(x)) converges uniformly.

So,
∞∑

n=0

fn(x)gn(x) =
∞∑

n=0

fn(x)(g(x) − gn(x)) + g(x)
∞∑

n=0

fn(x) converges uniformly.

10.5 Power Series and Taylor Expansion

Let an ∈ R and x0 ∈ R be given. A series of the form
∞∑

n=0

an(x− x0)
n is said to be a power

series about x0.

Lemma 10.5.1 Consider a power series
∞∑

n=0

anxn. Let z ∈ R be a number. Then,

1. If
∞∑

n=0

anz
n converges, then for any |x| < |z|, the series

∞∑
n=0

anx
n converges.

2. If
∞∑

n=0

anz
n diverges, then for any |x| > |z|, the series

∞∑
n=0

anx
n diverges.

Proof 10.5.2 1. Suppose
∞∑

n=0

anz
n converges. Then lim sup n

√
(anzn) ≤ 1. Then for

|x| < |z| lim sup n
√

(anxn) = |x| lim sup n
√|m| < |z| lim sup n

√|m| ≤ 1.

Hence, lim sup n
√

(anxn) < 1. Hence,
∞∑

n=0

anxn converges absolutely, so converges.

2. Suppose that
∞∑

n=0

anzn diverges. Then lim sup n
√

(anzn) ≥ 1.

Hence for |x| > |z|, lim sup n
√

(anxn) = |x| lim sup n
√|m| > |z| lim sup n

√|m| ≥ 1 =⇒
lim sup n

√
(anxn) > 1.
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Hence,
∞∑

n=0

anxn diverges.

Conclusion: Given any power series
∞∑

n=0

an(x−x0)
n, there exists a symmetric interval about

x0 of the form ]R − x0, R + x0[ such that:

1. ∀x ∈ ]R − x0, R + x0[, the series
∞∑

n=0

an(x − x0)
n converges absolutely.

2. ∀x /∈ [R − x0, R + x0], the series
∞∑

n=0

an(x − x0)
n diverges.

Hence, the domain of convergence of any power series is an interval.

Example 10.5.3 Consider the function series
∞∑

n=1

cos nx

n
.

• For x = π,
∞∑

n=1

cos nπ

n
=

∞∑
n=1

(−1)n

n
converges.

• For x = −π it also converges.

• But −π < 0 < π,
∞∑

n=1

cos n0

n
=

∞∑
n=1

1

n
diverges. So the domain of this series is not an

interval.

Example 10.5.4 Consider the power series
∞∑

n=0

n!xn. This series converges for x = 0 only.

So the “interval of convergence” for power series might be degenerated, [0, 0] = {0}.

Example 10.5.5 Consider the power series
∞∑

n=1

(−1)n

n
xn. This series converges for x = 1

but diverges for x = −1. It also converges for any |x| < 1. Hence its interval of convergence
is ] − 1, 1] .

10.5.1 Radius of Convergence of a Power Series

Let
∞∑

n=0

anxn be a power series. Let ρ = lim sup n
√|an|. (we take ρ = ∞ if the sequence

n
√|an| is not bounded)

Let R =
1

ρ
. (we put R = 0, if ρ = ∞ and R = ∞, if ρ = 0)
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This R is said to be the “radius of convergence” of the power series
∞∑

n=0

anxn.

R =
1

lim sup n
√|an|

.

Theorem 10.5.6 Let
∞∑

n=0

an(x− x0)
n be a power series and R be its radius of convergence.

Then,

1. ∀x ∈ R, |x − x0| < R, this series converges absolutely.

2. ∀x ∈ R, |x − x0| > R, this series diverges.

3. ∀x ∈ R, |x − x0| = R, we cannot conclude.

4. ∀r ∈ R, 0 ≤ r ≤ R on the compact interval [r − x0, r + x0], the convergence is uniform.

Proof 10.5.7 1. Let x ∈ R be such that |x − x0| < R. Then lim sup n
√|an(x − x0)n| =

|x − x0| lim sup n
√|an| =

|x − x0|
R

< 1.

Hence the series
∞∑

n=0

an(x − x0)
n converges absolutely.

2. Let x ∈ R be such that |x − x0| > R. Then lim sup n
√|an(x − x0)n| > 1.

Hence, the series
∞∑

n=0

an(x − x0)
n diverges.

3. See below examples.

4. Let 0 ≤ r ≤ R. Let |x − x0| ≤ r. Then sup|x−x0|≤r |an(x − x0)
n| ≤ |an| rn. Now,

the positive series
∞∑

n=0

|an| rn converges since lim sup n
√|an| rn =

r

R
< 1. Hence by

“Weierstrass-M test” the series
∞∑

n=0

an(x−x0)
n converges uniformly on [r − x0, r + x0].

Example 10.5.8 1. Consider the series
∞∑

n=0

xn

n
. Here R =

1

lim n
√

n
= 1. Hence;

for x ∈] − 1, 1[ this series converges,

for x = 1 this series diverges,

for x = −1 this series converges,

for 0 < r < 1 this series converges uniformly on [−r, r].
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2. Consider the series
∞∑

n=0

xn

n!
. Here an =

1

n!
.

As,
an+1

an

→ 0, lim n
√

an → 0.

Hence, R = ∞. i.e., ∀x ∈ R, the series
∞∑

n=0

xn

n!
converges. But convergence is not

uniform on R. Since supx>0

∣∣∣∣∣
n∑

k=1

xk

k!

∣∣∣∣∣ > supx>0

xn

n!
≥ nn

n!
↓ 0.

Theorem 10.5.6(4) says that for any compact interval [−a, a], the convergence is uniform.
Hence, in theorem 10.5.6(3) we cannot take r = R.

10.5.2 Differentiation and Integration of Power Series

Now, let
∞∑

n=0

an(x−x0)
n be a power series and ]R−x0, R+x0[ be its interval of convergence.

Let x̃ be any point in this interval so that |x̃ − x0| < R. Let |x̃ − x0| < r < R, so that
x̃ ∈ [r − x0, r + x0].

Now, for each x ∈]R−x0, R+x0[, let f(x) =
∞∑

n=0

an (x − x0)
n be the sum of this series. Since

each term of the series is a continuous function and convergence is uniform on the interval
[r − x0, r + x0], f is continuous at x̃. Thus, f is continuous on ]R − x0, R + x0[.

Recall: If an ≥ 0, bn ≥ 0 and an → L, then lim sup(anbn) = lim an lim sup bn

Lemma 10.5.9 Let
∞∑

n=0

an(x−x0)
n be a power series. Then the radius of convergence of the

series
∞∑

n=0

nan(x−x0)
n−1 and

∞∑
n=0

an

n + 1
(x−x0)

n+1 are the same as the radius of convergence

of the series
∞∑

n=0

an(x − x0)
n.

Proof 10.5.10 Let R be the radius of convergence of the series
∞∑

n=0

an(x − x0)
n. Then,

R = lim sup n
√|an|.

Note that limn→∞ |n| 1
n−1 = 1 and limn→∞

∣∣∣∣ 1

n + 1

∣∣∣∣
1

n+1

= 1

• lim sup n−1
√|nan| = lim sup

[
|n| 1

n−1 |an|
1

n−1

]
= lim |n| 1

n−1 lim sup |an|
n

n−1
1
n

= lim sup
[

n
√|an|

] n
n−1

= R
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• lim sup n+1

√ |an|
n + 1

= lim n+1

√
1

n + 1
lim sup n+1

√|an| = lim sup
[

n
√|an|

] n
n+1

= R.

Theorem 10.5.11 Let
∞∑

n=0

an(x−x0)
n be a power series and R be its radius of convergence

and for x ∈ ]R − x0, R + x0[, f(x) =
∞∑

n=0

an(x − x0)
n be the sum of this series.

Then on the interval ]R − x0, R + x0[, f is infinitely differentiable and

f ′(x) =
∞∑

n=0

nan(x − x0)
n−1, . . . , f (k)(x) =

∞∑
n=0

n(n − 1) . . . (n − (k + 1))an(x − x0)
n−k.

Proof 10.5.12 Since the series
∞∑

n=0

an(x − x0)
n has the same radius of convergence as the

initial series and that every x̃ ∈ [r − x0, r + x0] belongs to a compact interval [a, b] ⊆
]R − x0, R + x0[ and that the series

∞∑
n=0

nan(x − x0)
n−1 converges uniformly on [a, b], by

theorem 10.3.11 the function f is differentiable at x̃ and f ′(x̃) =
∞∑

n=0

nan(x̃ − x0)
n−1. The

rest is just an iteration of this.

Hence, if f(x) =
∞∑

n=0

an(x−x0)
n for x ∈]R−x0, R+x0[, then an =

f (n)(x0)

n!
from f (n)(x0) =

n!an.

So, f(x) =
∞∑

n=0

f (n)(x0)

n!
(x − x0)

n. Then, if f is given as a power series, this series is just

the Taylor series of f at x0. Also, for any compact interval [a, b] ⊆]R − x0, R + x0[, f is

integrable on [a, b] and
∫ b

a
f(x)dx =

∫ b

a

( ∞∑
n=0

an(x − x0)
n

)
dx =

∞∑
n=0

an

∫ b

a

(x − x0)
ndx.

Lemma 10.5.13 Let
∞∑

n=0

anxn and
∞∑

n=0

bnx
n be two power series. Suppose that for some

α > 0, these series converge on ] − α, α[ and
∞∑

n=0

anxn =
∞∑

n=0

bnx
n, for each x ∈] − α, α[.

Then for each n ∈ N, an = bn.

Proof 10.5.14 Let f(x) = sum∞
n=0anx

n =
∞∑

n=0

bnx
n, ∀x ∈] − α, α[.

Then an = bn =
f (n)(0)

n!
, ∀n.
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Conclusion:

1. If a function f :]−α, α[→ R can be represented as the sum of a power series
∞∑

n=0

anx
n,

then this is the only power series whose sum is f on ] − α, α[.

2. If there is a function f :] − α, α[→ R and by any method we represent f as

f(x) =
∞∑

n=0

anxn then this power series is necessarily the “Taylor series” of f on ]−α, α[.

Example 10.5.15 Let f(x) = ln(1 + x), −1 < x < 1, then f ′(x) =
1

1 + x
.

For −1 < x < 1,
1

1 + x
=

∞∑
n=0

(−x)n.

Now let 0 < α < 1 and x ∈ [−α, α], then

ln(1 + x) =
∫ x

0

dt

1 + t
=
∫ x

0

( ∞∑
n=0

(−t)n

)
dt =

∞∑
n=0

∫ x

0

(−t)ndt =
∞∑

n=0

(−1)n xn+1

n + 1
.

Hence ln(1+x) =
∞∑

n=0

(−1)n xn+1

n + 1
and this is the Taylor series of f(x) = ln(1+x) on ]−1, 1[.

10.5.3 Analytic Functions

Now let f(x) =
∞∑

n=0

anxn with radius of convergence ρ > 0, on ] − ρ, ρ[. We have seen that

such an f is infinitely differentiable on ] − ρ, ρ[.

Question: Is an infinitely differentiable function f : A → R, analytic on A?

Definition 10.5.16 Let A ⊆ R be an open set and f : A → R be a function. Let x0 ∈ A. We
say that f is real analytic at x0 if there is R = R(x0) > 0 such that ]R− x0, R + x0[⊆ A,

and on ]R − x0, R + x0[, f is representable as a power series. (i.e. f(x) =
∞∑

n=0

an(x − x0)
n,

for some an ∈ R.)
If f is analytic at every x0 ∈ A, then we say that f is analytic on A.

Example 10.5.17 Let f : R → R, f(x) =

{
e−

1
x2 , if x �= 0

0, if x = 0
This f is called as the

“Cauchy function”.

Let us see that at every x ∈ R, f is infinitely differentiable and that f (n)(x0) = 0, ∀n ∈ N.

• For x �= 0, the functions ϕ(x) = − 1

x2
and ψ(x) = ex are infinitely differentiable. So the

composition ψ ◦ ϕ(x) = e−
1

x2 is infinitely differentiable on R \ {0}.
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• For x0 = 0, limx�=0, x→0
f(x) − f(0)

x − 0
= limx�=0, x→0

e−
1

x2

x
= limx �=0, x→0

1

xe
1

x2

= 0.

Hence,

{
f ′(0) = 0

f ′(x) =
2

x3
e−

1
x2

limx�=0, x→0
f ′(x) − f ′(0)

x
= limx�=0, x→0

2
x3 e

− 1
x2

x
= limx�=0, x→0

2

x4e
1

x2

= 0.

Remark: If P (x) is any polynomial then limx �=0, x→0 P (x)e
1

x2 = ∞. Hence form this we
deduce that f (n)(0) = 0, ∀n ∈ N. If this f were analytic at x0 = 0, we would have R > 0

such that ∀x ∈] − R,R[, f(x) =
∞∑

n=0

anxn.

Since, then an =
f (n)(0)

n!
on ] − R, R[, f would be identically zero, which is not the case,

since f(x) �= 0 for x �= 0. Then f is infinitely differentiable but not analytic. In “complex
analysis” every differentiable function is analytic. In real analysis this is not the case.

10.5.4 Continuity at the Boundary of Interval of Convergence

Consider a power series
∞∑

n=0

anxn. Let ] − ρ, ρ[ be its interval of convergence and for x ∈

] − ρ, ρ[, f(x) =
∞∑

n=0

anx
n. We know that f is continuous on ] − ρ, ρ[.

Question: What can we say about the continuity of f at −ρ or ρ?

Example 10.5.18 For |x| < 1, the geometric series
∞∑

n=0

xn converges and f(x) =
1

1 + x
=

∞∑
n=0

xn on ] − 1, 1[.

Now limx→−1,x>−1 f(x) =
1

2
.

But
∞∑

n=0

lim
x→−1, x>−1

xn =
∞∑

n=0

(−1)n does not exist.

So that limx→−1, x>−1(
∞∑

n=0

xn) exists but it is not
∞∑

n=0

( lim
x→−1, x>−1

xn).

Theorem 10.5.19 (Abel’s Theorem) Let
∞∑

n=0

anxn be a power series and 1 be its radius

of convergence and f :] − 1, 1[→ R, f(x) =
∞∑

n=0

anxn.
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1. If the numerical series
∞∑

n=0

an converges then the series
∞∑

n=0

anxn converges uniformly

on [0, 1], so that f is continuous at x = 1 and

limx→1, x<1 f(x) = limx→1, x<1

( ∞∑
n=0

anx
n

)
=

∞∑
n=0

lim
x→1, x<1

anxn =
∞∑

n=0

an.

2. If the numerical series
∞∑

n=0

(−1)nan converges then the series
∞∑

n=0

anx
n converges uni-

formly on [−1, 0] and f is continuous at x = −1 and
∞∑

n=0

lim
x→−1, x>−1

anx
n =

∞∑
n=0

an(−1)n = lim
x→−1, x>−1

f(x).

Proof 10.5.20 1. Let Sn(x) =
n∑

k=0

akx
k and suppose that

∞∑
n=0

an converges. We want to

prove that (Sn)n∈N is uniformly Cauchy on [0, 1].

Let Tn = a0 + a1 + · · · + an, as Tn is convergent by hypothesis, Tn is Cauchy so;
∀ε > 0,∃N ∈ N, ∀N, ∀p ∈ N, |an + an+1 + · · · + an+p| < ε

Fix n ≥ N . Let Ap = an + an+1 + · · · + an+p, then

Sn+p(x) − Sn−1(x) = anxn + an+1x
n+1 + · · · + an+px

n+p

= A0x
n + (A1 − A0)x

n+1 + . . . + (Ap − Ap−1)x
n+p

= A0(x
n − xn+1) + A1(x

n+1 − xn+2) + · · · + Ap−1(x
n+p−1 − xn+p) + Apx

n+p

= A0x
n(1 − x) + A1x

n+1(1 − x) + · · · + Ap−1x
n+p−1(1 − x) + Apx

n+p

As by Cauchy condition for Tn |Ai| < ε for 0 ≤ i ≤ p; for 0 ≤ x ≤ 1,

|Sn+p(x) − Sn−1(x)| ≤ (1 − x)xn[ε + εx + . . . + εxp−1] + εxn+p

= ε(1 − x)xn 1 − xp

1 − x
+ εxn+p

= ε[xn − xn+p + xn+p] = εxn

So for n ≥ N, ∀p ∈ N, sup0≤x≤1 |Sn+p(x) − Sn−1(x)| ≤ sup0≤x≤1 εxn ≤ ε.

Hence Sn is uniformly Cauchy on [0, 1].

Hence f is continuous at x = 1 and limx→1, x<1 f(x) =
∞∑

n=0

an

2. Use similar steps to prove.

Example 10.5.21 ln(1 + x) =
∞∑

n=0

(−1)n xn+1

n + 1
=

∞∑
n=1

(−1)n+1xn

n
for −1 < x < 1.

We have seen that
∞∑

n=0

(−1)n

n
converges.
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Hence by above theorem
∞∑

n=0

(−1)n

n
= lim

x→1, x<1
ln(1 + x) = ln(2).

10.6 Continuous but Nowhere Differentiable Functions

Start with the function f(x) = |x|, for −1 ≤ x ≤ 1. Then extend this function periodically
with period 2.

-2 -1-3

1

1 2 3 4 5 6

Figure 10.1: Graph of the function

Let g be this function. g(x) =

{
|x| for − 1 ≤ x ≤ 1

g(x + 2) = g(x) ∀x ∈ R

In particular |g(x)| ≤ 1. For any x, y ∈ R, |g(x) − g(y)| ≤ ||x| − |y|| ≤ |x − y|. Let

δn =
±1

2 · 4n
. Observe that for any x ∈ R there is no integer in between ]x, x ± δn[. This

implies that the points x and x±δ are on the same line that composes the graph of g. Hence
|g(x + δn) − g(x)| ≤ δn |g′(c)| ≤ δn for some x < c < x + δn.

Now, let f(x) =
∞∑

k=0

(
3

4

)k

g(4kx). By Weierstrass-M test, f is continuous on R. Let us see

that f has no tangent.

Theorem 10.6.1 This f is nowhere differentiable on R.

Proof 10.6.2 Fix a point x ∈ R. Let us prove that
|f(x + δn) − f(x)|

δn

→ ∞. Since δn → 0,

as n → ∞, this proves that f is not differentiable at x0.

We have,
|f(x + δn) − f(x)|

δn

=

∞∑
k=0

(
3

4

)k

g(4k(x + δn)) − g(4kx)

δn

For k > n, g(4k(x+ δn))−g(4kx) = g

(
4kx +

4k

2 · 4n

)
−g(4kx) = 0, since g is periodical with

period 2.
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For k = n,
∣∣g(4k(x + δn)) − g(4kx)

∣∣ = ∣∣∣∣g
(

4kx +
1

2

)
− g(4kx)

∣∣∣∣ ≤ 1

2

Next, we use the following:

|a1 + · · · + an| ≥ |a1| − |a2 + · · · + an| ≥ |a1| −
n∑

k=2

|ak|.

Hence,
f(x + δn) − f(x)

δn

=

(
3
4

)n
g(4n(x + δn)) − g(4nx)

δn

+
n−1∑
k=1

(
3
4

)k
g(4k(x + δn)) − g(4kx)

δn

.

So,

∣∣∣∣f(x + δn) − f(x)

δn

∣∣∣∣ ≥ 3n −
n−1∑
k=1

(
3
4

)k ∣∣g(4k(x + δn)) − g(4kx)
∣∣

δn

≥ 3n −
n∑

k=1

(
3

4

)k
4k |δn|
|δn|

= 3n −
n−1∑
k=1

3k = 3n − 3n − 1

2
=

3n + 1

2
→ ∞

Hence, f is not differentiable at x.

Theorem 10.6.3 (Weierstrass Approximation Theorem) Every continuous function
on a compact interval f : [0, 1] → R is a uniform limit of a sequence of polynomial functions
Pn(x) on [0, 1].

Proof 10.6.4 Observe that 1 = 1n = (x + (1 − x))n =
n∑

k=0

(
n
k

)
xk(1 − x)n−k. Hence,

f(x) =
n∑

k=0

f(x)

(
n
k

)
xk(1 − x)n−k.

Because of this let Pn(x) =
n∑

k=0

f

(
k

n

)(
n
k

)
xk(1 − x)n−k. Hence, Pn is a polynomial of

degree n. These polynomials are “Bernstein polynomials associated to f”.

Let us see that sup0≤x≤1 |f(x) − Pn(x)| → 0, as n → ∞.

As f is continuous on [0, 1] and [0, 1] is compact, f is uniformly continuous. So, we have:
∀ε > 0 ∃δ > 0 : ∀x, y ∈ [0, 1], (|x − y| < δ =⇒ |f(x) − f(y)| < ε).

Hence, if

∣∣∣∣x − k

n

∣∣∣∣ ≤ δ, then
∣∣f(x) − f

(
k
n

)∣∣ < ε.

For this reason, f(x)−Pn(x) =
n∑

k=0

(
f(x) − f

(
k

n

))
ϕn(x), where ϕn(x) =

(
n
k

)
xk (1 − x)n−k.

Then, f(x) − Pn(x) =
∑

|x− k
n |<δ

(
f(x) − f

(
k

n

))
ϕk(x) +

∑
|x− k

n |≥δ

(
f(x) − f

(
k

n

))
ϕk(x),

where the sums are over k.
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Then for M = sup0≤x≤1 |f(x)|,

|f(x) − Pn(x)| ≤
∑

|x− k
n |<δ

(
f(x) − f

(
k

n

))
ϕn(x) +

∑
|x− k

n |≥δ

(
f(x) − f

(
k

n

))
ϕn(x)

≤ ε

n∑
k=0

ϕk(x) +
∑

|x− k
n |≥δ

(
f(x) − f

(
k

n

))
ϕk(x)

≤ ε + 2M
∑

|x− k
n |≥δ

ϕk(x)

Let us see that
∑

|x− k
n |≥δ

ϕk(x) → 0, as n → ∞.

∣∣∣∣x − k

n

∣∣∣∣ ≥ δ =⇒
(

x − k

n

)2

≥ δ2 =⇒ 1

δ2

(
x − k

n

)2

≥ 1.

Hence,
∑

|x− k
n |≥δ

ϕk(x) ≤ 1

δ2

n∑
k=0

(
x − k

n

)2

ϕk(x).

Now,
n∑

k=0

(
x − k

n

)2

ϕk(x) =
n∑

k=0

(
x2 − 2x

k

n
+

(
k

n

)2
)

ϕk(x)

= x2 − 2x

n

n∑
k=0

kϕk(x) +
1

n2

n∑
k=0

k2ϕk(x)

To estimate last quantities, form (x + y)n =
n∑

k=0

(
n
k

)
xkyn−k, differentiate with respect to

x, and multiply by x to get;

nx(x + y)n−1 =
n∑

k=0

k

(
n
k

)
xkyn−k.

Then differentiating twice and multiplying by x2 we get:

x2n(n − 1)(x + y)n−2 =
n∑

k=0

k(k − 1)

(
n
k

)
xkyn−k.

Then replace y by 1 − x to get nx =
n∑

k=0

kϕk(x) and n(n − 1)x2 =
n∑

k=0

k(k − 1)ϕk(x). Then

x2 − 2
x

n

n∑
k=0

kϕk(x) +
1

n2

n∑
k=0

k2ϕk(x) = x2 − 2x2 +
1

n2
[n(n − 1)x2 + nx]

=
x − x2

n
≤ 1

n
→ 0

Hence, sup0≤x≤1 |f(x) − Pn(x)| → 0, as n → ∞.
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10.7 Exercises

1. For each of the following sequences of functions, study the convergence (pointwise or
uniform) on the given sets.

(a) fn(x) = xn(1 − x)n, x ∈ [0, 1].

(b) fn(x) =
1

1 + nx2
, x ∈ R.

(c) fn(x) =
(1 + x)n − 1

(1 + x)n + 1
, x ∈ R \ {−2}.

(d) For x ∈ ]0, 1] , fn(x) =

⎧⎪⎨
⎪⎩

n if 0 ≤ x ≤ 1

n

0 if
1

n
< x ≤ 1

(e) fn(x) =
sin nx

1 + n2x
, x ∈ R.

(f) Let {αn : n ∈ N} = Q∩[0, 1] and fn : [0, 1] → R be fn(x) =

{
1 if x ∈ {α0, ..., αn}
0 otherwise

2. Let fn : [−π

2
,
π

2
] → R be given by fn(x) =

⎧⎨
⎩

sin2 nx

n sin x
if x �= 0

0 if x = 0

(a) Show that fn continuous on [−π

2
,
π

2
] and fn → f ≡ 0 pointwise on this interval.

(b) Let 0 < α <
π

2
be any number. Show that fn → f ≡ 0 uniformly on [α,

π

2
].

(c) Show that (fn( π
2n

)) converges. Find this limit and conclude that (fn)n∈N does not

converge uniformly on [−π

2
,
π

2
] to f ≡ 0.

3. Let for 0 ≤ x ≤ π

2
, fn(x) = n(cos x)n sin x

(a) Study the convergence (pointwise or uniform) of the sequence (fn)n∈N on [0,
π

2
].

Let f be its limit function.

(b) Evaluate the integrals
∫ π

2

0
fn(x)dx and

∫ π
2

0
f(x)dx.

(c) Find limn→∞
∫ π

2

0
fn(x)dx and compare it with

∫ π
2

0
f(x)dx.

4. Let fn(x) = n2 sin
x

n2
, x ∈ [0, 2π].
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(a) Show that the sequence (f ′
n(x))n∈N converges uniformly on [0, 2π] to some function

g.

(b) Deduce that (fn)n∈N converges uniformly on [0, 2π] to some function f and f ′ = g.

5. Answer the same questions as in the exercise 2 for the sequence fn(x) = n sin x
n2 for

x ∈ [0, 2π].

6. Let fn : [a, b] → R be a sequence of functions such that f ′
n exists and continuous on

[a, b] for each n ∈ N. If for each x ∈ [a, b] and n ∈ N, |f ′
n(x)| ≤ 1 and (fn)n∈N converges

pointwise on [a, b] to some function f , show that then fn → f uniformly on [a, b].

7. Let an ∈ R, an → 1. Let fn : R → R, fn(x) = anx2. Study the convergence (pointwise
and uniform) of the sequence (fn)n∈N on R.

8. Let fn : [0, +∞[ → R, fn(x) =
nx

2 + n2x2

(a) Study the convergence (pointwise and uniform) of the sequence (fn)n∈N on [0, +∞[ .

(b) Show that, for each α > 0, the convergence is uniform on [0, +∞[.

9. Let fn : [0, +∞[→ R, fn(x) = nxre−nx, where 0 < r ≤ 1 is a fixed number.

(a) Study the convergence of (fn)n∈N on [0, +∞[. Determine the limit function

(b) Let a > 0. Is the convergence uniform on [a, +∞[ ?

10. Let C0(R) = {f : R → R: f is continuous on R, and lim|x|→∞ f(x) = 0}. Show that
C0(R) under the supremum metric, is a complete metric space.

11. Let fn ∈ C0(R) and suppose that there exists a constant M > 0 such that, for all
x ∈ R and all n ∈ N, |fn(x)| ≤ M .

12. Let for x ∈ R, fn(x) = e
x2

n . Show that fn(x) → f(x) ≡ 1 for each x ∈ R. Is there an
M > 0 such that |fn(x)| ≤ M for all x ∈ R. Show that given any x ∈ R there is an

Mx > 0 such that e
x2

n ≤ Mx for all n ∈ N.

13. Let C0 be the space of the sequences x = (xn)n∈N that converge to zero. Equip C0 with
the supremum metric d(x, y) = supn∈N |xn − xm|. Show that the metric space (C0, d)
is complete.

14. Let C00 be the space of the almost null sequences (xn)n∈N, i.e. xn = 0 for all but finitely
many n ∈ N. Show that C00 is dense in C0 for the above metric.

15. Let an =
1

2
+

1

4
+ · · · +

1

2n
and for x ∈ R, fn(x) = xan . Find the pointwise limit of

f(n)n∈N on R. Show that for x ∈ [0, 1], |fn(x) − f(x)| ≤ 1 − an, where f is the limit
function of (fn)n∈N. Is the convergence uniform on [0, 1]?



10.7. EXERCISES 177

16. For x ∈ [0, +∞[, let fn(x) = nxe−nx

(a) Show that (fn)n∈N converges pointwise on [0, +∞[ to some function f .

(b) Show that the convergence is not uniform on [0, +∞[ but for any α > 0, it is
uniform on [α, +∞[.

17. Let b > 0. Compute
∫ b

0
fn(x)dx. Is limn→∞

∫ b

0
fn(x)dx =

∫ b

0
f(x)dx?

Is limb→∞ limn→∞
∫ b

0
fn(x)dx = limn→∞ limb→∞

∫ b

0
fn(x)dx?

18. Let fn : [0, +∞[→ R, fn(x) =
xe−

x
n

n
.

(a) Find the pointwise limit of f of the sequence (fn)n∈N on [0, +∞[.

(b) Show that the convergence fn → f is not uniform on [0, +∞[ but it is on [0, b] for
any b > 0.

(c) Compare the iterated limits limn→∞ limb→∞
∫ b

0
fn(x)dx and limb→∞ limn→∞

∫ b

0
fn(x)dx.

19. Let fn : R → R, fn(x) =
e−n2x2

n

(a) Show that (fn)n∈N converges uniformly on R be some function f : R → R

(b) Show that f ′
n → f ′ pointwise on R, but the convergence is not uniform on any

interval [−a, a] (a > 0).
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Chapter 11

Riemann Integral

1. Definition and Existence

2. Properties of the Riemann Integration

3. Fundamental Theorem of Calculus

4. Improper Integrals

11.1 Definition and Existence

Let f : [a, b] → R be a bounded function and m = infa≤x≤b f(x), M = supa≤x≤b f(x).

Definition 11.1.1 A partition P of [a, b] is a finite set of points in [a, b] such that, if
P = {x0, x1, · · · xn}, then a = x0 < x1 < · · · xn = b. By P ([a, b]) we denote the set of all the
possible partitions of [a, b]. The set P ([a, b]) is ordered by inclusion: P1 ≤ P2 ⇐⇒ P1 ⊆ P2.
In this case P2 is said to be a “refinement” of P1.

In any partition P = {x0, x1, · · · xn} of [a, b] for i = 1, 2, . . . , n put mi = infxi−1≤x≤xi
f(x)

and Mi = supxi−1≤x≤xi
f(x)

To any partition P = {x0, x1, · · · xn} of [a, b] we associate three sums:

L(f, P ) =
n∑

i=1

mi(xi − xi−1)

U(f, P ) =
n∑

i=1

Mi(xi − xi−1)

R(f, P ) =
n∑

i=1

f(ξi)(xi − xi−1), where ξi ∈ [xi−1, xi] is any point. (“Riemann Sum”)

It is clear that m(b − a) ≤ L(f, P ) ≤ R(f, P ) ≤ U(f, P ) ≤ M(b − a).

179
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Definition 11.1.2 A function f : [a, b] → R is said to be Riemann integrable on [a, b],
if supP∈P([a,b]) L(f, P ) = infP∈P([a,b]) U(f, P ).

If this is the case and I = supP∈P([a,b]) L(f, P ) = infP∈P([a,b]) U(f, P ). Then we say that, I is

the Riemann integral of f on [a, b] and we denote this I by
∫ b

a
f(x)dx.

If the function is Riemann integrable on [a, b],
∫ b

a
f(x)dx = supP∈P([a,b]) L(f, P ) = infP∈P([a,b]) U(f, P ).

� R[a, b] is the set of all R-integrable functions on [a, b].

Example 11.1.3 Let f : [0, 1] → R, f(x) =

{
1 if x ∈ Q
0 if x ∈ R \ Q

(“Dirichlet function”).

Let P = {x0, x1, · · · , xn} be any partition of [0, 1]. Then for each i ∈ {1, . . . , n}, we have
mi = infxi−1≤x≤xi

f(x) = 0
Mi = supxi−1≤x≤xi

f(x) = 1

Hence, L(f, P ) = 0, U(f, P ) = 1. So, supP∈P([a,b]) L(f, P ) = 0 �= 1 = infP∈P([a,b]) U(f, P ).
Hence f is not Riemann integrable on [0, 1].

Example 11.1.4 Let f : [a, b] → R, f(x) = c. Then for any P ∈ P([a, b]),
L(f, P ) = c(a − b), U(f, P ) = c(a − b).

So f is R-integrable and
∫ b

a
f(x)dx = c(b − a).

Example 11.1.5 Let y1, . . . , yn be finitely many arbitrary points in [0, 1] and f : [0, 1] → R

be the function defined by f(x) =

{
ci if x = yi

0 otherwise.
where ci ∈ R+ are given numbers.

Let P = {x0, x1, · · · xn} be any partition of [0, 1]. Then form the sums L(f, P ) and U(f, P ).
Then L(f, P ) = 0 and U(f, P ) �= 0 but infp∈P([a,b]) U(f, P ) = 0.

Lemma 11.1.6 Let R([a, b]) = {f : [a, b] → R : f is R-integrable}. Let f : [a, b] → R be a
bounded function and P, P ′ be two arbitrary partitions of [a, b]. Then,

1. If P ⊆ P ′, then L(f, P ) ≤ L(f, P ′), U(f, P ) ≥ U(f, P ′)

2. L(f, P ) ≤ U(f, P ′), ∀P, P ′ ∈ P([a, b]).

Proof 11.1.7 1. Suppose P ⊆ P ′. First suppose that P ′ = P ∪ {x∗}.
Then, let ki = infxi−1≤x≤x∗ f(x), k̃i = infxi−1≤x≤xi

f(x). Then

L(f, P ′) = m1(x1 − x0) + · · · + mi−1(xi−1 − xi−2) + mi(xi − xi−1)ki(x
∗ − xi−1)

+k̃i(xi − x∗) + mi+1(xi+1 − xi) + · · · + mn(xn − xn−1)
≥ L(f, P )

Similarly, U(f, P ′) ≤ U(f, P ).

Now, if P ′ \ P = {x∗
1, . . . , x

∗
k} then applying the above reasoning to P ∪ {x∗

1}, then to
P ∪ {x∗

1} ∪ {x∗
2}, . . ., we get L(f, P ′) ≥ L(f, P ) and U(f, P ′) ≤ U(f, P ).
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2. Let P̃ = P ∪ P ′. Then P̃ ∈ P([a, b]) so that P̃ ⊇ P and P̃ ⊇ P ′. By 1 above,

L(f, P ) ≤ L(f, P̃ ) ≤ U(f, P̃ ) ≤ U(f, P ′).

Conclusion: Let A = {L(f, P ) : P ∈ P([a, b])}, A = {L(f, P ) : P ∈ P([a, b])}. Then,
A,B are two bounded subsets of R. Moreover, ∀x ∈ A, ∀y ∈ B, x ≤ y.

Theorem 11.1.8 Let f : [a, b] → R be a bounded function. Then f is Riemann integrable
on [a, b] ⇔ ∀ε > 0, there is a partition P ∈ P([a, b]) such that U(f, P ) − L(f, P ) < ε.

Proof 11.1.9 (⇒) Suppose f is Riemann integrable on [a, b]. Then,

I = supP∈P([a,b]) L(f, P ) = infP∈P([a,b]) U(f, P ), where I =
∫ b

a
f(x)dx.

Hence, ∀ε > 0, ∃P1 ∈ P([a, b]) : L(f, P1) > I − ε

2
, ∃P2 ∈ P([a, b]) : U(f, P2) < I +

ε

2
.

Let P = P1 ∪ P2, then L(f, P ) > I − ε

2
, U(f, P ) < I +

ε

2
.

Hence U(f, P ) − L(f, P ) < ε.

(⇐) Conversely suppose that given any ε > 0 there is a P ∈ P([a, b]) such that
U(f, P ) − L(f, P ) < ε.

This implies that sup A = inf B. Hence f is R-integrable.

Theorem 11.1.10 Let f : [a, b] → R be a bounded function. Then f ∈ R([a, b]) iff there is a
number I ∈ R such that ∀ε > 0, ∃P0 ∈ P([a, b]) : ∀P ∈ P([a, b]), P ⊇ P0 ⇒ |R(f, P ) − I| < ε,
for any choices of ξi’s in the definition of R(f, P ).

Proof 11.1.11 (⇒) Suppose first that f ∈ R([a, b]) on [a, b]. Let I =
∫ b

a
f(x)dx and ε > 0

be arbitrary. Then as above, ∃P0 ∈ P([a, b]), L(f, P ) > I − ε

2
, U(f, P ) < I +

ε

2
. Hence, for

any P ⊇ P0, L(f, P ) > I − ε

2
, U(f, P ) < I +

ε

2
.

Then since for any choices of ξi’s, L(f, P ) ≤ R(f, P ) ≤ U(f, P ), we conclude that

−ε

2
< R(f, P ) − I <

ε

2
, i.e. |R(f, P ) − I| <

ε

2
.

(⇐) Conversely, assume that: ∃I ∈ R, ∀ε > 0, ∃P0 ∈ P([a, b]) : ∀P ∈ P([a, b]),
P ⊇ P0 ⇒ |R(f, P ) − I| < ε, for any choices of ξi’s in the definition of R(f, P ).

Take such a P ⊇ P0, so that |R(f, P ) − I| < ε, for every choices of ξi’s in the definition of
R(f, P ).

As R(f, P ) =
n∑

i=1

f(ξi)(xi − xi−1), where ξi ∈ [xi−1, xi], choose ξi’s such that

f(ξi) − mi <
ε

b − a
. Then |L(f, P ) − R(f, P )| < ε. So, |L(f, P ) − I| < 2ε.

If we choose ξi’s such that Mi − f(ξi) <
ε

b − a
, then |U(f, P ) − I| < 2ε.

Hence, U(f, P ) − L(f, P ) < 4ε. So by theorem 11.1.8 f is R-integrable on [a, b].
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Lemma 11.1.12 Let f : [α, β] → R be a bounded function. Then,
supα≤x≤β f(x) − infα≤x≤β f(x) = sup{f(x) − f(y) : α ≤ x, y ≤ β}

= sup{|f(x) − f(y)| : α ≤ x, y ≤ β}
Theorem 11.1.13 1. If f ∈ R[a, b], then |f | ∈ R[a, b].

2. If f, g ∈ R[a, b], then f + g ∈ R[a, b].

3. If f ∈ R([a, b]) and c ∈ R is a constant, then cf ∈ R([a, b]).

Proof 11.1.14 1. Suppose f ∈ R[a, b]. Then, ∀ε > 0, ∃P0 ∈ P([a, b]) : U(f, P ) −
L(f, P ) < ε. (i.e.

n∑
i=1

(Mi − mi)(xi − xi−1) < ε)

Hence, Mi − mi = supxi−1≤x≤xi
f(x) − infxi−1≤x≤xi

f(x)

Mi − mi = sup{f(x) − f(y) : x, y ∈ [xi−1, xi]}
≥ sup{|f(x)| − |f(y)| : x, y ∈ [xi−1, xi]}
= supxi−1≤x≤xi

|f(x)| − infxi−1≤x≤xi
|f(x)|

.

Hence, U(|f |, P ) − L(|f |, P ) ≤ U(f, P ) − L(f, P ) < ε.

Hence by theorem 11.1.8, |f | ∈ R[a, b].

2. Suppose f, g ∈ R[a, b]. Then, ∀ε > 0, ∃P1 ∈ P([a, b]) : U(f, P1) − L(f, P1) <
ε

2

∀ε > 0, ∃P2 ∈ P([a, b]) : U(g, P2) − L(g, P2) <
ε

2

Let P = P1 ∪ P2. Then U(f, P ) − L(f, P ) <
ε

2
and U(g, P ) − L(g, P ) <

ε

2
.

Let P = {x0, . . . , xn}. Then;

supxi−1≤x≤xi
(f(x) + g(x)) ≤ supxi−1≤x≤xi

f(x) + supxi−1≤x≤xi
g(x) and

infxi−1≤x≤xi
(f(x) + g(x)) ≥ infxi−1≤x≤xi

f(x) + infxi−1≤x≤xi
g(x).

Hence, U(f + g, P ) − L(f + g, P ) ≤ U(f, P ) − L(f, P ) + U(g, P ) − L(g, P ) < ε.

So, f + g ∈ R[a, b].

3. If c = 0, this is trivial.

If c > 0, then for any P ∈ P([a, b]) : U(cf, P )−L(cf, P ) = c[U(f, P )−L(f, P )]. From
this we see that cf ∈ R[a, b]. If c < 0, then cf ∈ R([a, b]), too.

Conclusion:

1. R([a, b]) is a vector space over R.

2. ∀f ∈ R([a, b]), |f | ∈ R([a, b]).

Hence, ∀f ∈ R([a, b]), f+ =
|f | + f

2
, f− =

f − |f |
2

are in R([a, b]).
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3. For f, g ∈ R([a, b]), sup{f, g} =
|f − g| + f + g

2
, inf{f, g} =

f + g − |f − g|
2

are in

R([a, b]).

So, R([a, b]) is a “lattice”.

Proposition 11.1.15 If f ∈ R([a, b]) then f 2 ∈ R([a, b]).

Proof 11.1.16 Suppose f ∈ R([a, b]). Then, ∀ε > 0, ∃P ∈ P([a, b]) : U(f, P )−L(f, P ) < ε.

Let P = {x0, . . . , xn}. M̃ = supa≤x≤b |f(x)|. Then,

supxi−1≤x≤xi
f2(x) − infxi−1≤x≤xi

f2(x) ≤ 2M̃(supxi−1≤x≤xi
f(x) − infxi−1≤x≤xi

f(x)).

Hence, U(f 2, P ) − L(f 2, P ) < 2εM̃ . So, f 2 ∈ R([a, b]).

Conclusion: Let f, g ∈ R([a, b]). Then f · g =
(f + g)2 − f2 − g2

2
, so that f · g ∈ R([a, b]).

Hence, R([a, b]) is a ring.

Theorem 11.1.17 Every continuous function f : [a, b] → R is Riemann integrable.

Proof 11.1.18 Let f ∈ C([a, b]) be a continuous function. Then f is uniformly continuous

on [a, b]. So, ∀ε > 0, ∃η > 0, ∀x, y ∈ [a, b], |x − y| < η ⇒ |f(x) − f(y)| <
ε

b − a
.

Let P = {x0, . . . , xn} be a partition of [a, b] such that sup1≤i≤n |xi − xi−1| < η. Then

supxi−1≤x≤xi
f(x) − infxi−1≤x≤xi

f(x) = sup{|f(x)| − |f(y)| : x, y ∈ [xi−1, xi]} <
ε

b − a
, i.e.

Mi − mi ≤ ε

b − a
.

Then, U(f, P ) − L(f, P ) =
n∑

i=1

(Mi − mi)(xi − xi−1) ≤ ε. Hence, f ∈ R([a, b]).

Theorem 11.1.19 Every monotone function f : [a, b] → R is Riemann integrable.

Proof 11.1.20 Suppose f is increasing. If f(a) = f(b) then f is constant. So, we can
assume that f(a) < f(b).

Let ε > 0 be any number.

Let P = {x0, . . . , xn} be a partition of [a, b] such that xi−xi−1 <
ε

f(b) − f(a)
for i = 1, . . . , n.

Then, supxi−1≤x≤xi
f(x) − infxi−1≤x≤xi

f(x) = f(xi) − f(xi−1). Hence,

U(f, P ) − L(f, P ) =
n∑

i=1

(f(xi) − f(xi−1))(xi − xi−1)

≤ ε

f(b) − f(a)

n∑
i=1

(f(xi) − f(xi−1)) = ε
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Definition 11.1.21 A subset E ⊆ R is said to be negligible if ∀ε > 0 we can find countably

many intervals (ai, bi) such that, E ⊆ ∪i∈N(ai, bi) and
∞∑
i=1

(bi − ai) < ε.

Example 11.1.22 Any countable set E = {xn : n ∈ N} is negligible.

Indeed, let ε > 0 be any number. Let In =
]
xn − ε

2n+1
, xn +

ε

2n+1

[
. Then, E ⊆ ∪n∈NIn and

∞∑
n=0

l(In) =
∞∑

n=0

ε

2n+1
< ε.

Example 11.1.23 There are also uncountable negligible sets. E.g. the usual Cantor set
E ⊆ [a, b] is uncountable and negligible.

Now, let f : [a, b] → R be a function and Df = {x ∈ [a, b] : f is discontinuous at x}.
Df ⊆ [a, b].

E.g. • if f is monotone, Df is countable, so negligible.

• if f is f(x) =

{
1 if x ∈ [a, b] ∩ Q
0 if x /∈ [a, b] ∩ Q

, then Df = [a, b].

• if f is f(x) =

{
x sin 1

x
if x �= 0

0 if x = 0
, then Df = ∅.

Theorem 11.1.24 Let f : [a, b] → R be any function. Then, f ∈ R([a, b]) iff
1) f is bounded on [a, b]
2) Df is negligible, ie f is continuous “almost everywhere”.

11.2 Properties of the Riemann Integral

Theorem 11.2.1 For f ∈ R([a, b]), let T (f) =
∫ b

a
f(x)dx. Then T : R([a, b]) → R is a

linear mapping, i.e. T (f + g) = T (f) + T (g) and T (cf) = cT (f).

Proof 11.2.2 • Let f, g ∈ R([a, b]). So we have:

∀ε > 0, ∃P ′
0 ∈ P([a, b]) ∀P ∈ P([a, b]) : P ⊇ P ′

0 ⇒
∣∣∣R(f, P ) − ∫ b

a
f(x)dx

∣∣∣ < ε

2
. (1)

∀ε > 0, ∃P ′′
0 ∈ P([a, b]) ∀P ∈ P([a, b]) : P ⊇ P ′′

0 ⇒
∣∣∣R(g, P ) − ∫ b

a
g(x)dx

∣∣∣ < ε

2
. (2)

Let P0 = P ′
0 ∪ P ′′

0 . Then for any P ⊇ P0, (1) and (2) are satisfied for every choices of ξi’s.

As, R(f +g, P ) = R(f, P )+R(g, P ), for P ⊇ P0

∣∣∣R(f + g, P ) − ∫ b

a
f(x)dx − ∫ b

a
g(x)dx

∣∣∣ < ε.

As, f + g ∈ R([a, b]) and the integral of a function is unique,∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx.

• For c ∈ R, observe that R(cf, P ) = cR(f, P ) for any P ∈ P([a, b]). From this we deduce

that
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx.
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Theorem 11.2.3 For f ∈ R([a, b]),
∣∣∣∫ b

a
f(x)dx

∣∣∣ ≤ ∫ b

a
|f(x)|dx.

Proof 11.2.4 We know that if f ∈ R([a, b]) then |f | ∈ R([a, b]), too.

Moreover, f+, f− ∈ R([a, b]) and f = f+ + f−. Hence, by theorem 11.2.1,∫ b

a
f(x)dx =

∫ b

a
f+(x)dx − ∫ b

a
f−(x)dx.

Hence,
∣∣∣∫ b

a
f(x)dx

∣∣∣ = ∣∣∣∫ b

a
f+(x)dx − ∫ b

a
f−(x)dx

∣∣∣ ≤ ∫ b

a
f+(x)dx +

∫ b

a
f−(x)dx =

∫ b

a
|f(x)| dx.

Warning: |f | ∈ R([a, b]) � f ∈ R([a, b]). Let f : [0, 1] → R f(x) =

{
−1 if x is rational

1 if x is irrational

Then, |f | = 1. So |f | ∈ R([a, b]).
But f is discontinuous at every x ∈ [0, 1], so f /∈ R([a, b]).

Example 11.2.5 Let [c, d] ⊆ [a, b] be any subinterval and ϕ = χ[c,d] : [a, b] → R. Then,
ϕ ∈ R([a, b]). So, for any f ∈ R([a, b]), f ◦ ϕ is integrable. Hence, f is integrable on [c, d].

Now, let f ∈ R([a, b]). Then for every choices of ξi’s,

∀ε > 0, ∃P0 ∈ P([a, b]) ∀P ∈ P([a, b]) : P ⊇ P0 ⇒
∣∣∣R(f, P ) − ∫ b

a
f(x)dx

∣∣∣ < ε.

We can always assume that the points c, d ∈ P .

Let P1 = P ∩ [a, c], P2 = P ∩ [c, d], P3 = P ∩ [d, b]

Then R(f, P ) = R(f, P1) + R(f, P2) + R(f, P3). From this we conclude that,∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ d

c
f(x)dx +

∫ b

d
f(x)dx.

Example 11.2.6 Perturbation of Riemann Integrable Functions:
• Let y0 ∈ [a, b] any point. Then ϕ = χ{y0}. Then

∫ b

a
ϕ(x)dx = 0.

• Now, let y0, y1, . . . , yn ∈ [a, b] and c0, . . . , cn ∈ R. Let ϕ =
n∑

i=1

ciχ{yi}. Then,

∫ b

a
ϕ(x)dx =

n∑
i=1

ci

∫ b

a

χ{yi}(x)dx = 0.

Hence, ∀f ∈ R([a, b]), f + ϕ ∈ R([a, b]) and
∫ b

a
(f(x) + ϕ(x))dx =

∫ b

a
f(x)dx.

• Now, let Q ∩ [0, 1] = {yn : n ∈ N}. Let ϕn = χ{y0,...,yn} = χ{y0} + · · · + χ{yn}. Then,

ϕn ∈ R([a, b]) and
∫ 1

0
ϕn(x)dx = 0.

However, ϕn → ϕ, ϕ(x) =

{
1 if x ∈ Q ∩ [0, 1]

0 if x /∈ Q ∩ [0, 1]
and ϕ /∈ R([a, b]).

Hence, R([a, b]) is not closed under pointwise limit.

Theorem 11.2.7 (Uniform Convergence and Riemann Integration) Let fn ∈ R([a, b])
be a sequence of Riemann integrable functions. Suppose that (fn)n∈N converges uniformly on

[a, b] to some function f : [a, b] → R. Then f ∈ R([a, b]) and
∫ b

a
|fn(x) − f(x)| dx → 0, so∫ b

a
fn(x)dx → ∫ b

a
f(x)dx.
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Proof 11.2.8 Since fn → f uniformly on [a, b], we have:

∀ε > 0, ∃N ∈ N : ∀n ≥ N supx∈[a,b] |fn(x) − f(x)| <
ε

b − a
. (�)

Now, fix an n ≥ N . Since fn ∈ R([a, b]), ∃P ∈ P([a, b]) such that

U(f, P ) − L(f, P ) =
n∑

i=1

(Mi,n − mi,n)(xi − xi−1) <
ε

b − a
.

Then, by (�), fn(x) − ε ≤ f(x) ≤ fn(x) + ε, ∀x ∈ [a, b].

If Mi = supxi−1≤x≤xi
f(x), mi = infxi−1≤x≤xi

f(x), |Mi,n − Mi| < ε and |mi,n − mi| < ε for
all i ≥ 1, then

U(f, P )−L(f, P ) = U(f, P )−U(fn, P ) + U(fn, P )−L(fn, P ) + L(fn, P )−L(f, P ) ≤ ε.
Hence, f ∈ R([a, b]).

Now, from (�) : ∀n ≥ N
∫ b

a
|fn(x) − f(x)| dx ≤ ∫ b

a

ε

b − a
dx ≤ ε.

Hence,
∫ b

a
|fn(x) − f(x)| dx → 0 =⇒ ∫ b

a
fn(x)dx → ∫ b

a
f(x)dx.

� Now, for f, g ∈ R([a, b]), put d(f, g) =
∫ b

a
|f(x) − g(x)| dx.

Then, d(f, g) = d(g, f), as well as, d(f, g) ≤ d(f, h) + d(h, g), ∀h ∈ R([a, b]).

However, d(f, g) = 0 � f = g.

Theorem 11.2.9 Let f : [a, b] → R be a continuous, positive function, i.e. f(x) ≥ 0,

∀x ∈ [a, b]. Then,
∫ b

a
f(x)dx = 0 iff f ≡ 0 on [a, b].

Proof 11.2.10 (⇒) Suppose that, there is an x0 ∈ [a, b], f(x0) > 0. Then taking ε =
f(x0)

2
and writing the continuity of f at x0, we get:

∃η > 0, ∀x ∈]x0 − η, x0 + η[∩[a, b], we have f(x) >
f(x0)

2
.

Let [c, d] ⊆]x0 − η, x0 + η[∩[a, b]. (c < d). Then, since f ≥ 0 on [c, d],∫ b

a
f(x)dx ≥ ∫ d

c
f(x)dx ≥ ∫ d

c

f(x0)

2
dx =

f(x0)

2
(d − c) > 0, which is not possible.

Hence,
∫ b

a
f(x)dx = 0 ⇒ f ≡ 0 on [a, b].

(⇐) The converse is trivial.

Corollary 11.2.11 For f, g ∈ C([a, b]), d(f, g) =
∫ b

a
|f(x) − g(x)| dx, then d is a metric on

C([a, b]).

11.3 Fundamental Theorem of Calculus

Theorem 11.3.1 (Fundamental Theorem of Calculus) Let f ∈ R([a, b]) be a Riemann
integrable function. For x ∈]a, b[, let F (x) =

∫ x

a
f(t)dt. If at some point x0 ∈]a, b[, f is

continuous then F is differentiable at x0 and F ′(x0) = f(x0).
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Proof 11.3.2 Suppose f is continuous at x0. Then we have:

∀ε > 0, ∃η > 0 :

{
t ∈ [a, b]
|t − x0| < η

=⇒ |f(t) − f(x0)| < ε

Since, x0 ∈]a, b[, we can assume that [x0 − η, x0 + η] ⊆ [a, b].

Now, let h ∈ R be a number such that |h| < η, so that x0 + h ∈ [a, b].

Then,
F (x0 + h) − F (x0)

h
=

1

h

[∫ x0+h

a
f(t)dt − ∫ x0

a
f(t)dt

]
=

1

h

∫ x0+h

x0
f(t)dt.

Hence,
F (x0 + h) − F (x0)

h
− f(x0) =

1

h

∫ x0+h

x0
[f(t) − f(x0)] dt.

Hence, since |h| < η,

∣∣∣∣F (x0 + h) − F (x0)

h
− f(x0)

∣∣∣∣ ≤ 1

|h|
∫ x0+h

x0
|f(t) − f(x0)|dt ≤ ε.

So, limh→0, h�=0
F (x0 + h) − F (x0)

h
= f(x0). Hence, if f ∈ C([a, b]), then F (x) =

∫ x

a
f(t)dt

is differentiable on ]a, b[ and F ′(x) = f(x) on ]a, b[.

Remark: For any f ∈ R([a, b]), the function F (x) =
∫ x

a
f(t)dt is continuous on [a, b].

(absolutely continuous) Hence, if f ∈ C([a, b]) and F (x) =
∫ x

a
f(t)dt, from F ′ = f on ]a, b[,

we conclude that F ′ = f on [a, b]. So, we can write the above theorem as follows:∫ x

a
F ′(t)dt = F (x) − F (a) or

∫ b

a
F ′(t)dt = F (b) − F (a). (“Newton-Leibniz Theorem”)

Definition 11.3.3 Let f : [a, b] → R be a function. If there exists a function F : [a, b] → R
such that F is differentiable on ]a, b[ and F ′(x) = f(x) for x ∈]a, b[, then we say that F is a
primitive (or antiderivative) of f .

An antiderivative, if exists is unique up to an additive constant. Indeed, if
F ′ = f
G′ = f

on ]a, b[,

then (F −G)′ = 0 on ]a, b[. Hence, F −G =constant, so they are the same up to a constant.
We have just proved that every continuous function f : [a, b] → R has an antiderivative:
F (x) =

∫ x

a
f(t)dt.

Theorem 11.3.4 For any f ∈ R([a, b]), F (x) =
∫ x

a
f(t)dt is absolutely continuous, so of

the bounded variation on [a, b].

Proof 11.3.5 We have to show that: ∀ε > 0, ∃η > 0 : ∀(a1, b1), . . . , (an, bn), non-overlapping

subintervals of [a, b] satisfying
n∑

i=1

(bi − ai) < η, we have
n∑

i=1

|F (bi) − F (ai)| < ε

Indeed, let (a1, b1), . . . , (an, bn) be arbitrary non-overlapping subintervals of [a, b]. Then, as

|F (bi) − F (ai)| =
∣∣∣∫ bi

ai
f(t)dt

∣∣∣ ≤ ∫ bi

ai
|f(t)| dt,

n∑
i=1

|F (bi) − F (ai)| ≤
n∑

i=1

∫ bi

ai

|f(t)| dt. If M =

supa≤t≤b |f(t)|, then
n∑

i=1

∫ bi

ai

|f(t)| dt ≤ M

n∑
i=1

(bi − ai). Thus, given ε > 0, if we choose
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0 < η <
ε

M
, then we see that the definition of the absolute continuity of F is satisfied.

Hence, F is absolutely continuous on [a, b].

Theorem 11.3.6 (Mean Value Theorem for Integration) Let f : [a, b] → R be a
continuous function, m = infa≤x≤b f(x), M = supa≤x≤b f(x). Then ∃c ∈ [a, b] such that

1

b − a

∫ b

a
f(x)dx = f(c).

Proof 11.3.7 We know that m(b−a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b−a), ∀P ∈ P([a, b]). As,∫ b

a
f(x)dx = supP∈P([a,b]) L(f, P ), we see that m ≤ 1

b − a

∫ b

a
f(x)dx ≤ M .

As, f : [a, b] → R is continuous, f([a, b]) = [m,M ]. Hence,
1

b − a

∫ b

a
f(x)dx ∈ [m, M ]. So,

1

b − a

∫ b

a
f(x)dx = f(c), for some c ∈ [a, b].

Theorem 11.3.8 (Integration by Parts) Let F, G : [a, b] → R two continuously dif-
ferentiable functions. Then (FG)′ = F ′G + FG′, so that F ′G = (FG)′ − FG′. Hence,∫ b

a
F ′(x)G(x)dx =

∫ b

a
(F (x)G(x))′dx − ∫ b

a
F (x)G′(x)dx = F (x)G(x)|ba −

∫ b

a
F (x)G′(x)dx.

Theorem 11.3.9 (Change of Variable Formula) Let u : [c, d] → R be a continuously
differentiable function with u(c) = a, u(d) = b. Let F : [a, b] → R be another continuously

differentiable function. Then,
∫ b

a
F ′(x)dx =

∫ d

c
F ′(u(x))u′(x)dx.

Proof 11.3.10 Let G : [c, d] → R, G(x) = F (u(x)). Then, G′(x) = F ′(u(x))u′(x), so that∫ d

c
F ′(u(x))u′(x)dx =

∫ d

c
G′(x)dx = G(x)|dc

= F (u(x))|dc = F (u(d)) − F (u(c)) = F (b) − F (a)

=
∫ b

a
F ′(x)dx

11.4 Improper Integrals

Riemann integral is defined for a bounded function on a compact interval [a, b]. If either
the interval on which we work is not compact, or the function with which we work is not
bounded, then we cannot define Riemann integral. Instead of it we define the “improper

Riemann integral”. e.g.,
∫ 1

0

dx√
x
,
∫∞
1

dx

x2
.

Definition 11.4.1 Let f : [a,∞[→ R be a function such that for each b ≥ a, f is Riemann

integrable on [a, b], so that
∫ b

a
f(x)dx exists. If limb→∞

∫ b

a
f(x)dx exists, then we say that the

improper integral
∫∞

a
f(x)dx exists or converges. So, in this case by definition,∫∞

a
f(x)dx = limb→∞

∫ b

a
f(x)dx.
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Similarly, if f :]a, b] → R is such that, for each a < c < b, f is R-integrable on [c, b]

and limc→a, c>a

∫ b

c
f(x)dx exists, then we say that the improper integral,

∫ b

a
f(x)dx exists or

converges. In this case,
∫ b

a
f(x)dx = limc→a, c>a

∫ b

c
f(x)dx.

If f :] − ∞,∞[→ R is such that, for all a ≤ b, f ∈ R([a, b]) and limb→∞, a→∞
∫ b

a
f(x)dx

exists, then
∫∞
−∞ f(x)dx exists or converges.

In this case,
∫∞
−∞ f(x)dx = limb→∞, a→∞

∫ b

a
f(x)dx.

Warning Consider the improper integral
∫∞
−∞

2x

1 + x2
dx.

As, limb→∞, a→∞
∫ b

a

2x

1 + x2
dx = limb→∞, a→∞ ln(1 + x2)|ba, the improper integral

∫∞
−∞

2x

1 + x2
dx

does not exists. But, lima→∞
∫ a

−a

2x

1 + x2
dx = lima→∞ ln(1 + x2)|a−a = 0.

If f :] −∞,∞[→ R and lima→∞
∫ a

−a
f(x)dx exists, then this is denoted by (CV )∫∞

−∞ f(x)dx = lima→∞
∫ a

−a
f(x)dx. (Cauchy Mean Value of an improper integral)

Example 11.4.2 For p < 1,
∫ 1

0

dx

xp
converges. For p ≥ 1, it diverges.

∫ 1

0

dx

xp
= limc→0, c>0

∫ 1

c

dx

xp
,

for x �= 1,
∫ 1

c

dx

xp
=

x−p+1

1 − p

∣∣∣∣1
c

=
1

1 − p
− c−p+1

1 − p
.

If p < 1, limc→0, c>0
c−p+1

1 − p
= 0, so that

∫ 1

0

dx

xp
=

1

1 − p
.

If p ≥ 1,
∫ 1

0

dx

xp
diverges.

Proposition 11.4.3 Let f : [a,∞[→ R be a function such that ∀b ≥ a, f ∈ R([a, b]). If

there is M > 0, such that ∀b ≥ a,
∫ b

a
|f(x)|dx ≤ M , then the improper integral converges.

Proof 11.4.4 Let F (b) =
∫ b

a
|f(x)|dx. Then F is increasing and F (b) ≤ M . So, limb→∞ F (b)

exists, i.e.
∫∞

a
|f(x)|dx exists.

Now, let b′ ≥ b ≥ a. Then,
∣∣∣∫ b′

b
f(x)dx

∣∣∣ ≤ ∫ b′

b
|f(x)| dx → 0, as b → ∞, b′ → ∞. Hence, the

Cauchy condition is satisfied as b → ∞, for G(b) =
∫ b

a
f(x)dx. Hence, limb→∞ G(b) exists,

i.e.
∫∞

a
f(x)dx converges.

Example 11.4.5 Show that the improper integral
∫∞
1

sin x

x2
dx converges. Indeed,

∫ b

1

∣∣∣∣sin x

x2

∣∣∣∣ dx ≤∫ b

1

1

x2
dx ≤ M , for all b ≥ 1. Hence,

∫∞
1

sin x

x2
dx converges. But, it may happen that∫∞

a
|f(x)| dx diverges but

∫∞
a

f(x)dx converges.
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11.5 Exercises

1. Let f ∈ R[a, b]. For n ∈ N, n ≥ 1, put

σn =
b − a

n

[
f(a) + f

(
a +

b − a

n

)
+ · · · + f

(
a + k

b − a

n

)
+ · · · + f

(
a + (n − 1)

b − a

n

)]

∑
n

=
b − a

n

[
f

(
a +

b − a

n

)
+ · · · + f

(
a + k

b − a

n

)
+ · · · + f

(
a + (n − 1)

b − a

n

)
+ f(b)

]

Show that the sequences (σn)n≥1 and (
∑

n

)n≥1 converge and

limn→∞ σn = limn→∞
∑

n

=

b∫
a

f(x)dx

2. Find α = limn→∞
π

n

n−1∑
k=0

1

2 + cos kπ
n

. Hint (α =
π∫
0

dx

2 + cos x
).

3. Find β = limn→∞ ln
1

nn

n√
(n + 1)(n + 2)...(n + n). Hint (β =

1∫
0

ln(1 + x)dx).

4. Find γ = limn→∞
pn∑

k=1

1

n + k
(p ≥ 1 fixed). Hint

(
γ =

1∫
0

dx

x + 1
p

)

5. Evaluate
1∫
0

xdx using

(a) the definition of the integrals

(b) the above question

6. Evaluate αn =
2∫
0

xndx and show that limn→∞ α
1
n
n = 2.

7. Can you prove that limn→∞

[
π
2∫
0

(sin x)ndx

] 1
n

= 1?

8. Let f : [a, b] → R be a continuous positive function and M = supa≤x≤b f(x). Prove

that limn→∞

[
b∫
a

(f(x))ndx

] 1
n

= M
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9. Prove that the series
∞∑

k=1

sin kx

kp
and

∞∑
k=1

cos kx

kp
(p > 0) converge uniformly on any

closed interval that does not contain an integer multiple of 2π

10. Let fn : [0, 1] → R be defined by fn(x) =

{
1
n

if
1

2n+1
< x ≤ 1

2n

0 elsewhere
. Prove that the

series
∞∑

n=1

fn(x) converges uniformly on [0, 1], but that the Weierstrass M-test fails.

11. Show that each of the following series converges uniformly on the indicated interval.

(a)
∞∑

k=1

1

x2 + k2
, 0 ≤ x < ∞

(b)
∞∑

k=0

e−kxxk, 0 ≤ x ≤ ∞

(c)
∞∑

k=1

k2e−kx, 1 ≤ x < ∞

(d)
∞∑

k=1

(−1)k+1

x + k
, 0 ≤ x < ∞

12. Find the radius of convergence of the following series

(a)
∞∑

k=1

3k

k3
xk

(b)
∞∑

k=1

(1 − 1

k
)kxk

(c)
∞∑

k=1

(1 − 1

k
)k2

xk

(d)
∞∑

k=1

1

4k
(x + 1)2k

13. Determine the sum of each of the series

(a)
∞∑

k=1

kxk, |x| < 1

(b)
∞∑

k=1

k2xk, |x| < 1
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(c)
∞∑

k=1

k

2k

(d) Let In =
1∫
0

(1 − x2)ndx. Show that limn→∞ In = 0.

(e) Let 0 < α < 1, and Jn =
1∫
α

(1 − x2)ndx. Prove that limn→∞
Jn

In

= 0.

14. Let f : [a, b] × R → R be a continuous function with
δf

δy
continuous on [a, b] × R. Put

F (y) =
b∫
a

f(x, y)dx. Show that F is differentiable on R and F ′(y) =
b∫
a

δ

δy
f(x, y)dx.

15. Let f : [a, b] → R be continuous u, v : [c, d] → [a, b] be continuously differentiable, i.e.

u′, v′ exist and continuous on [c, d]. Put g(x) =
v(x)∫
u(x)

f(t)dt. Show that g is differentiable

on ]c, d[ and find g′.

16. Let f ∈ R[a, b]. Let F (x) =
z∫
a

f(t)dt. Show that F is the difference of two monotone
increasing functions.

17. Let f : [0, 2π] → R be a continuous function. Assume that for each n ∈ N,

2π∫
0

f(x) cos nxdx =
2π∫
0

f(x) sin nxdx = 0. Show that then f ≡ 0 on [0, 2π].

18. Let f : [a, b] → R be a function which is zero at all x ∈ [a, b] except at finitely many

points x1, x2, ..., xN in [a, b]. Show that
b∫
a

f(x)dx = 0.

19. Let f, g : [a, b] → R be two Riemann Integrable functions such that f(x) = g(x) for all

x ∈ [a, b] except at finitely many points. Show that
b∫
a

f(x)dx =
b∫
a

g(x)dx.

20. Let f ∈ R[−a, 0]. Show that

(a) if f is even (i.e. f(x) = f(−x)), then
a∫
−a

f(x)dx = 2
a∫
0

f(x, y)dx.

(b) if f is odd (i.e. f(−x) = −f(x)), then
a∫
−a

f(x)dx = 0.

21. Find F ′(x) where F is defined on [0, 1] as follows:

(a) F (x) =
x∫
0

dt

1 + t2

(b) F (x) =
x∫
0

cos t2dt
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(c) F (x) =
x2∫
0

cos t2dt

(d) F (x) =
1∫
x

√
1 + t2dt

22. Let f : [a, b] → R be continuous and g ∈ R[a, b], g(x) ≥ 0 for all x ∈ [a, b]. Show that

there exists x ∈ [a, b] such that
b∫
a

f(x)g(x)dx = f(c)
b∫
a

g(x)dx.

23. Suppose that f : [0, 1] → R is continuous. Prove that limn→∞
1∫
0

f(xn)dx = f(0).
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Chapter 12

The Space C(K)

1. Generalities About C (K)

2. Ascoli-Arzela Theorem

3. Stone-Weierstrass Theorem

12.1 Generalities About C (K)

Let (X, d) be any m.s , K ⊆ X a compact subset and C(K) = {f : K → R : f is continuous on K}.
On C(K) we shall always put the “supremum metric”: d∞(f, g) = supx∈K |f(x) − g(x)|. We
know that (C(K), d∞) is a complete metric space.

In this chapter we want to study some properties of this metric space. In particular we want:

a) to characterize the compact subsets of C(K)

b) to characterize the dense subsets of C(K).

12.1.1 Cantor’s Diagonal Method

Theorem 12.1.1 Let E = {x0, x1, . . . , xn, . . .} be a countable set, (X, d) a compact metric
space and fn : E → X any sequence of functions. Then, (fn)n∈N has a subsequence (fnk

)k∈N

such that for each xi ∈ E, the sequence (fnk
(xi))k∈N converges in X.

Proof 12.1.2 Start with x0 and consider the sequence (fn(x0))n∈N. Since this sequence
lies in the compact set X, it has a convergent subsequence, denote it (fnk,0

(x0))k∈N. Here,
n0,0 < n1,0 < n2,0 < · · · < nk,0 < · · ·
Now, start with the sequence (fnk,0

(x1))k∈N. As this sequence lies in the compact m.s X, it
has a convergent subsequence, denote it (fnk,1

(x1))k∈N. Here, n0,1 < n1,1 < · · · < nk,1 < · · ·
Moreover, {nk,1 : k ∈ N} ⊆ {nk,0 : k ∈ N}

195
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Next, start with the sequence (fnk,0
(x2))k∈N. For the same reason this sequence has a con-

vergent subsequence, denote it (fnk,2
(x2))k∈N. Here, n0,2 < n1,2 < n2,2 < · · · < nk,2 < · · · and

{nk,2 : k ∈ N} ⊆ {nk,1 : k ∈ N} ⊆ {nk,0 : k ∈ N} ⊆ · · ·
In this way we get subsequences fnk,p

of fn such that (fnk,p
(xp))k∈N converges and

· · · ⊆ {fnk,p
: k ∈ N

} ⊆ {fnk,p−1
: k ∈ N

} ⊆ · · · ⊆ {fnk,o
: k ∈ N

}
.

It follows that, for i ≤ p, (fnk,p
(xi))k∈N converges since this is a subsequence of the convergent

subsequence (fnk,i
(xi))k∈N.

Now, let (fnk,k
)k∈N be the diagonal of this infinite matrix:⎛

⎜⎜⎜⎜⎜⎝

fn0,0 fn1,0 · · · fnk,0
· · ·

fn0,1 fn1,1 fnk,1
· · ·

...
. . .

... · · ·
fn0,p · · · fnk,p

· · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

Then for each xi ∈ E, except for first i terms, (fnk,k
(xi))k∈N is a subsequence of (fnk,i

(xi))k∈N.
So, (fnk,k

(xi))k∈N converges.

12.1.2 Pointwise and Uniformly Bounded Sets of Functions

Definition 12.1.3 Let A ⊆ X be any set and H be a set of functions f : A → R. If, for
each x0 ∈ A given, the set {f(x0) : f ∈ H} is bounded then we say that H is pointwise
bounded on A. If, {f(x) : x ∈ A, f ∈ H} is bounded, then we say that H is uniformly
bounded on A.

Thus, H is pointwise bounded on A ⇔ ∀x ∈ A, ∃Mx > 0 : ∀f ∈ H, |f(x)| < Mx.

H is uniformly bounded on A ⇔ ∃M > 0, ∀x ∈ A, ∀f ∈ H, |f(x)| < M.

Example 12.1.4 Let H = {fn : n ∈ N}, fn(x) =
nx2

1 + nx
, 0 ≤ x ≤ ∞. For any x0 ∈ [0,∞[

fixed, |fn(x)| ≤ x0 =⇒ H is pointwise bounded.

But, supn∈N, x∈[0,∞[ |fn(x)| = ∞ =⇒ H is not uniformly bounded.

Lemma 12.1.5 Let E be any set and B(E) be the space of bounded functions f : E → R,
with the supremum metric d∞(f, g) = supx∈E |f(x) − g(x)|. Let fn, f ∈ B(E) be such that
d∞(fn, f) → 0 (i.e. fn → f uniformly on E). Then the set H = {fn : n ∈ N} is uniformly
bounded on E.

� So “uniform boundedness” is a necessary condition for uniform convergence, but it is far
away from being sufficient. E.g. fn(x) = sin(nx) is uniformly bounded on R, but it does not
even converge pointwise.
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12.1.3 Equi-continuity of a set of Functions

Let A ⊆ X, x ∈ A a point and f : A → R be a function. In the definition of continuity of f

at x we have: ∀ε > 0, ∃η > 0 :

{ ∀y ∈ A
d(x, y) < η

=⇒ |f(x) − f(y)| < ε.

In this definition, η depends not only on x and ε, but also on f.

• Now, suppose that we have finitely many functions. f1, f2, . . . , fn : A → R all of them

continuous at xi. So, ∀ε > 0, ∃ηi > 0 :

{ ∀y ∈ A
d(x, y) < ηi

=⇒ |fi(x) − fi(y)| < ε.

If η = inf {η1, . . . , ηn}, then η > 0 and

{ ∀y ∈ A
d(x, y) < η

=⇒ |fi(x) − fi(y)| < ε, ∀i =

1, 2, . . . , n.

• Now, suppose that we have infinitely many fn : A → R, each of them are continuous at xi.

Hence, ∀ε > 0, ∃ηi > 0 :

{ ∀y ∈ A
d(x, y) < ηn

=⇒ |fn(x) − fn(y)| < ε.

Here inf {ηn : n ∈ N} might be zero!

Question: Is there an η > 0 that works for all fn?

Example 12.1.6 Let fn : R → R, fn(x) = cos nx, x = 0. Is there an η > 0 such that
|y − 0| < η =⇒ |fn(x) − fn(y)| < ε, ∀n ∈ N?

Let us fix ε =
1

2
. Is there an η > 0 such that |y| < η =⇒ |cos ny − 1| <

1

2
for all n ∈ N?

Let n be large enough to have
π

n
< η. Then, with y =

π

n
, |cos ny − 1| = | − 2| = 2 >

1

2
.

Hence, there is no η > 0 satisfying |y| < η =⇒ |fn(x) − fn(y)| < ε.

Definition 12.1.7 Let H be a set of functions f : A → R and x0 ∈ A a point. We say that
H is equi-continuous at x0 if we have:

∀ε > 0, ∃η > 0 :

{ ∀y ∈ A
d(x0, y) < η

=⇒ |f(x0) − f(y)| < ε, ∀f ∈ H.

or equivalently; ∀ε > 0, ∃η > 0 :

{ ∀y ∈ A
d(x0, y) < η

=⇒ supf∈H |f(x0) − f(y)| < ε. (Here η

depends on H but not on any particular f ∈ H)

If H is equi-continuous at every x0 ∈ A, then we say that H is equi-continuous on A.

Example 12.1.8 Let H = {f : [a, b] → R : |f(x) − f(y)| ≤ k|x − y|, ∀x, y ∈ [a, b]} , k > 0
a fixed number (does not depend on f). Then H is equi-continuous on [a, b].

Indeed, ∀x ∈ [a, b], ∀ε > 0, let η =
ε

k + 1
, ∀y ∈ [a, b]

Then, |x − y| < η =⇒ |f(x) − f(y)| < ε, ∀f ∈ H.
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Lemma 12.1.9 Let fn : [a, b] → R be a sequence of continuous functions. Suppose that fn

converges uniformly on [a, b] to some f : [a, b] → R. Let H = {fn : n ∈ N} . Then H is
equi-continuous on [a, b].

Proof 12.1.10 Since fn → f uniformly on [a, b], we have: ∀ε > 0, ∃N ∈ N : ∀n ≥ N
supx∈[a,b] |fn(x) − f(x)| < ε. Now, let x0 ∈ [a, b] be any point. Then

∃η > 0 :

{ ∀y ∈ [a, b]
|y − x0| < η

=⇒ |fi(x0) − fi(y)| < ε, 0 ≤ i ≤ N .

Then, for this η,
|x0−y| < η =⇒ |fn(x0) − fn(y)| ≤ |fn(x0) − f(x0)|+|f(x0) − f(y)|+|f(y) − fn(y)| < 3ε,

∀n ≥ N.

Hence, |x0 − y| < η =⇒ supn∈N |fn(x0) − fn(y)| < 3ε. So, H is equi-continuous on [a, b].

� So equi-continuous is a necessary condition for uniform convergence.

Lemma 12.1.11 Fix a point x ∈ K, let δx : C(K) → R be the “Dirac function”, i.e.
δx(f) = f(x). Then δx is continuous.

12.2 Ascoli - Arzela Theorem

Let H ⊆ C(K) be a subset.

Theorem 12.2.1 (Main Lemma) Let D ⊆ K be a dense subset of K, fn be sequence of
functions in H. Suppose that:

1. H is equi-continuous on K.

2. For each x ∈ D, (fn)n∈N converges pointwise on D.

Then (fn)n∈N converges uniformly on K.

Proof 12.2.2 Let us see that (fn)n∈N is uniformly Cauchy on K. Let us first write what we
have:

∀x ∈ K, ∀ε > 0, ∃ηx > 0 such that

{ ∀y ∈ K
d(x, y) < ηx

=⇒ supn∈N |fn(x) − fn(y)| < ε. (1)

∀x0 ∈ D, ∀ε > 0, ∃Nx0 ∈ N such that ∀n, m ≥ Nx0 , |fn(x0) − fm(x0)| < ε. (2)

As, K ⊆ ∪x∈KBηx(x) and K is compact, there exists x1, x2, . . . , xp ∈ K such that

K ⊆ Bηx1
(x1) ∪ Bηx2

(x2) ∪ · · · ∪ Bηxp
(xp), for some p ∈ Z+.

As, D = K, Bηxi
(xi) ∩ D �= ∅. Let x̃i ∈ Bηxi

(xi) ∩ D. Let N = sup
{
Nx1 , . . . , Nxp

}
, so that

∀n, m ≥ N , |fn(x̃i) − fm(x̃i)| < ε. (3)

Let n,m ≥ N and x ∈ K be arbitrary. (So N does not depend on x).
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Since, K ⊆ Bηx1
(x1) ∪ Bηx2

(x2) ∪ · · · ∪ Bηxp
(xp), x ∈ Bηxi

(xi) for some i ∈ {1, . . . , p} .

Then, |fn(x) − fm(x)| ≤ |fn(x) − fn(xi)| + |fn(xi) − fm(xi)| + |fm(xi) − fm(x)| < 3ε, by
(1), (2), (3) above.

Hence, (fn)n∈N is uniformly cauchy on K. So, converges uniformly on K to some continuous
function f : K → R.

Lemma 12.2.3 A pointwise bounded, equi-continuous set H ⊆ C(K) is uniformly bounded.

Proof 12.2.4 Let H ⊆ C(K) be equi-continuous on K and be pointwise bounded. So,

∀x ∈ K, ∀ε > 0, ∃ηx > 0 such that

{ ∀y ∈ K
d(x, y) < η

=⇒ supn∈N |fn(x) − fn(y)| < ε. (4)

∀x ∈ K, ∃Mx > 0 such that supf∈H |f(x)| ≤ Mx. (5)

From (4) we get that K ⊆ ∪x∈KBηx(x). As K is compact,

K ⊆ Bηx1
(x1) ∪ Bηx2

(x2) ∪ · · · ∪ Bηxp
(xp) for some i ∈ {1, . . . , p}.

Then for any x ∈ K, (so x ∈ Bηxi
(xi)), for M = sup1≤i≤p Mxi

we have:

|f(x)| = |f(x) − f(xi) + f(xi)| ≤ |f(xi) − f(x)| + |f(xi)| ≤ Mxi
+ ε ≤ M + ε.

Hence, supf∈H supx∈K |f(x)| ≤ M̃ . (M̃ ≥ M + ε). So, H is uniformly bounded on K.

Recall: Let (Y, d) be a complete metric space and H ⊆ Y a set. Then;

H is compact ⇐⇒
{

H is totally bounded
H is closed

Theorem 12.2.5 (Ascoli - Arzela) Let H be a subset of C(K). Then,

H is compact ⇐⇒
⎧⎨
⎩

H is equi-continuous on K
H is pointwise bounded on K
H is closed in C(K)

Proof 12.2.6 (⇒) Assume that H is compact. So, it is closed and totally bounded.

Hence, ∀ε > 0, ∃f1, . . . , fp ∈ H : H ⊆ Bε(f1)∪· · ·∪Bε(fp). Since any finite set of continuous
functions is equi-continuous,

∀x ∈ K, ∃ηx > 0 such that

{ ∀y ∈ K
d(x, y) < ηx

=⇒ sup1≤i≤p |fi(x) − fi(y)| < ε. (6)

Now, let f be arbitrary, say f ∈ Bε(fi). So, supy∈K |f(y) − fi(y)| < ε. (7)

So,

{ ∀y ∈ K
d(x, y) < ηx

=⇒ |f(x) − f(y)| ≤ |f(x) − fi(x)|+ |fi(x) − fi(y)|+ |fi(y) − f(y)| < 3ε.

Hence, H is equi-continuous on K.

Next, for x ∈ K fixed, let δx : C(K) → R be the mapping defined by δx(f) = f(x). This δx

is a continuous mapping. Hence, δx(H) is compact in R, so bounded. But,
δx(H) = {f(x) : f ∈ H}. So H is pointwise bounded on K.
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(⇐) Conversely, suppose that the 3 conditions of the theorem are satisfied. As, K is a
compact metric space and every compact metric space is separable, K has a countable dense
subset ε = {x0, . . . xn, . . .} with ε̄ = K. Also, H is equi-continuous and pointwise bounded
on K. By lemma 12.2.3 H is uniformly bounded, i.e. ∃M > 0 such that ∀x ∈ K, ∀f ∈ H,
f(x) ∈ [−M,M ].

Let now (fn)n∈N be a sequence in H. (fn)n∈N has a subsequence (fnk
)k∈N that converges

pointwise on ε. As, (fnk
)k∈N ∈ H by lemma 12.2.1 (fnk

)k∈N converges uniformly to some
f ∈ H since H is closed. Thus, every sequence fn in H has a convergent subsequence.

Hence, H is compact.

Theorem 12.2.7 Let fn : [a, b] → R be sequence of functions such that f ′
n exists and

|f ′
n(x)| ≤ M, ∀x[a, b]. Also assume that (fn(a))n∈N is bounded. Then for x, y ∈ [a, b],

|fn(x) − fn(y)| ≤ f ′(c)|x − y| ≤ M |x − y|, for some c ∈]x, y[. Hence, (fn)n∈N is equi-
continuous on [a, b].

Also, |fn(x)| = |fn(x) − fn(a) + fn(a)| ≤ |fn(x) − fn(a)|+ |fn(a)| ≤ M(b−a)+ |fn(a)| ≤ M̃ .

Hence, (fn)n∈N is pointwise bounded. So (fn)n∈N has a uniformly convergent subsequence.

Example 12.2.8 Let fn : [0, 1] → R be a pointwise convergent sequence and |f ′
n(x)| ≤ 1.

Then, (fn)n∈N converges uniformly.

Indeed, let fn → f pointwise on [0, 1] So in particular (fn(0))n∈N is bounded. Hence, by the
preceding example fn has a subsequence that converges uniformly on [0, 1] to f . This shows
that f is the only cluster point of fn. Since fn belongs to a compact set H = {fn : n ∈ N} ,
fn → f uniformly on [0, 1].

12.3 Stone - Weierstrass Theorem

In this section we are looking for dense subsets of C(K). First consider the space (C([0, 1]), d∞)

• Let A be the set of all the polynomial functions P : [0, 1] → R. Since every polynomial is
continuous, A ⊆ C([0, 1]). Properties of A:

1. A is a vector space over R

2. A is a ring

3. A has a unit element 1

4. ∀x0 �= y0 x0, y0 ∈ [0, 1], ∃P ∈ A : P (x0) �= P (y0).

Weierstrass Approximation Theorem says that Ā = C([0, 1]).

• Now, let B =

{
n∑

k=0

cke
nkx : nk ∈ N, ck ∈ R, 0 ≤ x ≤ 1

}
. Then,
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1. B is a vector space over R

2. B is a ring

3. B has a unit element 1

4. ∀x0 �= y0, x0, y0 ∈ [0, 1]∃f ∈ B : f(x0) �= f(y0)

• Now, let C =

{
(a0 +

n∑
k=0

ak cos kx + bk sin kx) : n, k ∈ N, ak, bk ∈ R, 0 ≤ x ≤ 2π

}
. Then,

1. C is a vector space over R

2. C is a ring

3. C has a unit element 1

4. ∀x0 �= y0, x0, y0 ∈ [0, 1], ∃f ∈ C : f(x0) �= f(y0).

• Now, let ϕ : [0, 1] → R be a continuous, strictly increasing function. D =

{
n∑

k=0

akϕ
k(x) : ak ∈ R, k ∈ N

Then,

1. D is a vector space over R

2. D is a ring

3. D has a unit element 1

4. ∀x0 �= y0, x0, y0 ∈ [0, 1], ∃f ∈ D : f(x0) �= f(y0)

Definition 12.3.1 A subset A of C(K) is said to be an algebra if it is both a vector space
and a ring. In other words,

1. ∀f, g ∈ A, ∀d, u ∈ R : d · f + u · g ∈ A.

2. ∀f, g ∈ A, f · g ∈ A.

If also 1 ∈ A then we say that A is unital.
If ∀x �= y, ∃f ∈ A : f(x) �= f(y), then we say that A separates the points of K.

In the above examples A,B,C,D are unital subalgebras that separate the points of [0, 1].

Lemma 12.3.2 Let A be a unital subalgebra of C(K). Then for f ∈ A, |f | ∈ Ā, too.
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Proof 12.3.3 Let f ∈ A. Let M = supx∈K |f(x)|. Then
f(x)

M
∈ [−1, 1]. We know that the

set of polynomials is dense in C([−1, 1]).

Let h(x) = |x| ∈ C([−1, 1]). Then, ∀ε > 0, ∃pn(x) = anxn + · · · + a0 a polynomial such that
sup|x|<1 |p(x) − |x|| < ε.

Then the function p

(
f(x)

M

)
= an

(
f(x)

M

)n

+ · · · + a1
f(x)

M
+ a0 ∈ A since A is a unital

algebra. Then, sup|x|<1

∣∣∣∣p
(

f(x)

M

)
− |f(x)|

M

∣∣∣∣ < ε. Hence,
|f(x)|

M
∈ Ā =⇒ |f | ∈ Ā.

Corollary 12.3.4 Let A be a unital subalgebra of C(K). Then, for any f, g ∈ A : sup {f, g}
and inf {f, g} are in Ā.

Proof 12.3.5 sup {f, g} =
|f − g| + f + g

2
, inf {f, g} =

f + g − |f − g|
2

. Hence by lemma

12.3.2 sup {f, g} and inf {f, g} are in Ā.

Lemma 12.3.6 Let A be a unital subalgebra of C(K) separating the points of K. Then for

each x �= y (x, y ∈ K), for each α, β ∈ R, there is ϕx,y ∈ A such that
ϕx,y(x) = α
ϕx,y(y) = β

Proof 12.3.7 Let x �= y and α, β ∈ R be given. Since A separates the points of K, there is

an f ∈ A such that f(x) �= f(y). Let ϕx,y = α + (β − α)
f − f(x)

f(y) − f(x)
. Then, ϕx,y ∈ A and

ϕx,y(x) = α
ϕx,y(y) = β

Theorem 12.3.8 (Stone - Weierstrass) Any unital subalgebra A of C(K) separating
the points of K is dense in C(K).

Proof 12.3.9 Let A be a unital subalgebra of C(K) separating the points of K.

Let f ∈ C(K) and ε > 0 be given. We have to show that there is g ∈ A such that
supx∈K |f(x) − g(x)| < ε. Let x ∈ K be given. Then for each y ∈ K, there is a ϕx,y ∈ A
such that ϕx,y(x) = f(x), ϕx,y(y) = f(y)

As ϕx,y(y) = f(y), ϕx,y(y) < f(y) + ε. Hence, since both ϕx,y and f are continuous at y,
there is ηy > 0 such that ∀z ∈ K ∩ Bηy(y) : ϕx,y(z) < f(z) + ε. As K ⊆ ∪y∈KBηy(y),
K ⊆ Bηy1

(y1) ∪ · · · ∪ Bηyk
(yk), for some y1, y2, . . . yk ∈ K.

Hence, ∀z ∈ Bηyi
(yi) ∩ K : ϕx,y(z) < f(z) + ε and ϕx,yi

(x) = f(x).

Let ψx = sup {ϕx,y1 , . . . , ϕx,yk
}. Then by corollary 12.3.4, ψx ∈ A and ∀z ∈ K,

ψx(z) < f(z) + ε, ψx(x) = f(x).

From ψx(x) = f(x) > f(x) − ε, by continuity of ψx and f , there is an ηx > 0 such that
∀z ∈ Bηn(x) ∩ K, ψx(z) > f(z) − ε. Hence, from K ⊆ ∪x∈KBηn(x), we get;
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K ⊆ Bηx1
(x1) ∪ · · · ∪ Bηxp

(xp).

So, there are ψx1 , . . . , ψxp ∈ Ā such that ψxi
(z) > f(z) − ε, ψxi

(z) < f(z) + ε, ∀z ∈ K.

Let g = inf
{
ψx1 , . . . , ψxp

}
. Then g ∈ Ā and ∀z ∈ K, f(z) − ε < g(z) < f(z) + ε, i.e.

supx∈K |f(x) − g(x)| < ε. This proves that Ā is dense in C(K). So, Ā = C(K).

Example 12.3.10 Let A0 =

{
a0 +

n∑
k=0

(ak cos kx + bk sin kx) : ak, bk ∈ R, k ∈ N

}
. Consider

A0 as a subset of C([0, 2π]). Then A0 is a unital subalgebra of C([0, 2π]). A0 separates all
pair of points in [0, 2π] except 0 and 2π.

Let C∗([0, 2π]) = {f ∈ C([0, 2π]) : f(0) = f(2π)} = {f ∈ C([0, 2π]) : f is periodic with 2π period}.
Now, let K = {z ∈ C : |z| = 1} and consider C(K). Let ϕ : [0, 2π] → K, ϕ(t) = (cos t, sin t).
Let T : C(K) → C∗([0, 2π]), T (f) = f ◦ ϕ. Then T is continuous and onto.

Let A = {p(z) : p is a polynomial} . A ⊆ C(K), A is a unital subalgebra and separates the
points of K. Hence, Ā = C(K).

Now, if we identify z ∈ K, with z = (cos x, sin x), then

T (A) =

{
a0 +

n∑
k=0

(ak cos kx + bk sin kx) : ak, bk ∈ R, k ∈ N

}
= A0.

Hence, since A is dense in C(K) and T is onto, A0 is dense in C∗([0, 2π]).

Thus, if f : [0, 2π] → R is continuous and 2π periodical then there exists a sequence of

trigonometric polynomials, Pn(x) = a0 +
n∑

k=0

(ak cos kx + bk sin kx) that converges uni-

formly to f.

Theorem 12.3.11 The metric space (C(K), d∞) is separable.

Proof 12.3.12 We know that:

1. Every compact m.s is separable.

2. Every separable m.s is second countable, i.e. there exists a sequence (βn)n∈N of open
sets such that any other open set is a union of some of these βn’s.

So, let (βn)n∈N be such a sequence for the m.s (K, d). For each n ∈ N let fn(x) = d(x, βc
n).

(x ∈ K, βn ⊆ K, βc
n = K\βn) Then, fn is continuous and for any x �= y (x, y ∈ K) for some

n ∈ N, (fn(x) �= fny). Let E = {1, f0, f1, . . . , fn, . . .} and A be the subalgebra generated by
E.

A typical element of A is of the form: g =
∑

an,p,q,...,rf
n
1 , f p

2 , . . . , f r
k . Then by Stone -

Weierstrass Theorem A is dense in C(K). Let, B be the set of the same type of elements as
in A but with rational coefficients. Then, B is dense in A. So, B is dense in C(K). As B
is countable, C(K) is separable.
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Warning: If K is topologically compact but not metric, then C(K) is in general is not
separable.



12.4. EXERCISES 205

12.4 Exercises

1. Let (K, d) be a compact metric space and C(K) = {f : K → R: f is continuous }
(a) Let (fn)n∈N be a uniformly convergent sequence in C(K). Show that the set

H = {fn : n ∈ N} is uniformly bounded and equi-continuous at each x ∈ K.

(b) Let H be an equi-continuous subset of C(K). Show that H is also equi-continuous
on K.

(c) Let x0 ∈ K, H ⊆ C(K) be equi-continuous on K and H(x0) = {f(x0) : f ∈ H}
be bounded. If K is connected, show that then H is uniformly bounded.

(d) Let (fn)n∈N be a sequence in C(K), x0 ∈ K and xn → x0. If {fn : n ∈ N} is a
equi-continuous at x0 and fn(x0) → f(x0). Show then fn(xn) → f(x0).

2. Let H = {f ∈ C[0, 1] : f ′ exists and |f(x)|+ |f ′(x)| ≤ 1 ∀ x ∈ [0, 1]}. Show that every
sequence (f)n∈N in H has a uniformly convergent subsequence.

3. Let H ⊆ C(K), E ⊆ K be dense in K and H be equi-continuous at each x ∈ E. Show
that

(a) ∀ η > 0 K ⊆ ∪x∈EBη(x)

(b) H is also equi-continuous on K.

4. Let (K, d) be a compact metric space. For a subset F of K, let

I(F ) = {f ∈ C(K) : f(F ) = {0}}. Show that;

(a) I(F ) is a closed ideal of C(K)

(b) I(F ) = I(F )

(c) F1 ⊆ F2 → I(F2) ⊆ I(F1).

5. Let I be a closed ideal of C(K) and F = {x ∈ K : ∀ f ∈ I, f(x) = 0}, i.e.

F = ∩f∈If
−1({0}). Show that F is closed and I ⊆ C(K) iff ∩f∈If

−1({0}) = ∅
6. Let I be a closed ideal of C(K). Show that I = C(K) iff ∩f∈If

−1({0}) = ∅.

7. Let A be a subalgebra of C(K). Show that if
◦
A�= ∅ then A = C(K)

8. Let f ∈ C[0, 1]. If, for each n ∈ N,
1∫
0

xnf(x)dx = 0 then f ≡ 0 on [0, 1].

9. Let C∗[0, 2π] = {f ∈ C(K) : f(0) = f(2π)} and

A = {
n∑

k=0

(ak cos kx + bk sin kx) : x ∈ [0, 2π], n ∈ N, ak, bk ∈ R} Show that A is a

subalgebra of C∗[0, 2π] and A is dense in it.
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10. Let f ∈ C∗[0, 2π]. If
1∫
0

f(x) sin nxdx =
2π∫
0

f(x) cos nxdx = 0. Show that then f ≡ 0 on
[0, 2π].

11. Let A = {
n∑

k=1

fk(x)gk(y) : fk, gk ∈ C[0, 1], n ∈ N}. Show that A is dense in C([0, 1] ×
[0, 1]).
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13.1 Generalities

Let (X, d) be a metric space, fn : X → R be sequence of continuous functions.

Suppose fn converges pointwise on K to some function f . We know that f need not be
continuous.

What does “f is not continuous” mean? Does it say that f is discontinuous everywhere?

Questions:

1. How discontinuous is this f?

2. Given g : X → R how to recognize that g is the pointwise limit of a sequence of
continuous functions (gn)n∈N?

Example 13.1.1 Let f : R → R, f(x) =

{
1 if x ∈ Q
0 if x ∈ R \ Q

Question: Is there a sequence fn : R → R of continuous functions such that ∀x ∈ R,
f(x) = limn→∞ fn(x)? (not possible)

Example 13.1.2 Let f : R → R be the derivative of some g : R → R. Then, ∀x ∈ R,

f(x) = limn→∞
g
(
x + 1

n

)− g(x)
1
n

= fn(x), i.e. limn→∞ fn(x) = f(x). (each fn is continuous)

207
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Definition 13.1.3 Let B1(x) be the set of the functions f : X → R, such that
f(x) = limn→∞ fn(x), ∀x ∈ X for some sequence of continuous functions fn : X → R. The
functions that belong to B1(x) are said to be Baire-1 functions.

Similarly we define B2(x) = {g : X → R : g(x) = limn→∞ fn(x) for some fn ∈ B1(x)} .

B3(x) = {h : X → R : h(x) = limn→∞ fn(x) for some gn ∈ B2(x)}.
...

So, the above questions become:

1. How discontinuous a Baire-1 function may be?

2. Given a function f : X → R, how to recognize it is a Baire-1 function or not?

Thus, our task in this chapter is to characterize Baire-1 functions.

13.2 Basic Notations

13.2.1 Gδ-sets, Fσ-sets

Let (X, d) be a metric space.

Definition 13.2.1 A set A ⊆ X is said to be a Gδ-set, if it is possible to present A as an
intersection countably many open sets On, i.e. A = ∩n∈NOn.

A set B ⊆ X is said to be a Fσ-set if it is possible to present B as a union of countably
many closed sets Fn. i.e., B = ∪n∈NFn.

Example 13.2.2 1. In any m.s (X, d), every open set is a Gδ-set and every closed set is
a Fσ-set.

2. A is a Gδ-set ⇐⇒ Ac is a Fσ-set.

3. Let X = R. Then,
[a, b] = ∩n≥1

]
a − 1

n
, a + 1

n

[
{a} = ∩n≥1

]
a − 1

n
, a + 1

n

[
]a, b[= ∪n≥1

[
a + 1

n
, b − 1

n

] .

Question Q is a Fσ-set. Is Q a Gδ-set?

13.2.2 Nowhere Dense Sets

Let (X, d) be a metric space.

Definition 13.2.3 A set A ⊆ X is said to be nowhere dense if
◦

(Ā)= ∅.
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Example 13.2.4 In R, A = N, A = Z are nowhere dense. But Q is not nowhere dense.

Example 13.2.5 Let X = R2, A = R×{0}. Then A is closed in R2 and
◦
A= ∅. So, R×{0}

is nowhere dense in R2.

Example 13.2.6 A closed set F ⊆ X is nowhere dense iff X \ F = X. Recall for any

A ⊆ X,
( ◦
A
)c

= (Ac) and
(
A
)c

=
◦

(Ac)

Example 13.2.7 For any closed set F ⊆ X, A = ∂F = F\ ◦
F is nowhere dense.

For any open set B ⊆ X, A = ∂B = B \ B is nowhere dense.

Example 13.2.8 The union of finitely many nowhere dense sets is nowhere dense. A subset
of a nowhere dense set is nowhere dense.

13.2.3 First and Second Category Sets, Residual Sets

Let (X, d) be a metric space and M ⊆ X a set.

Definition 13.2.9 We say that “M is of the first category in X” if it is possible to
present M as a countable union of nowhere dense sets.

Example 13.2.10 In R, Q is of the first category. Q =
∞∪k=1 Ak, Ak =

1

k
Z. Then Ak is

closed and
◦

Ak= ∅.
In R, any countable set is of the first category.

Warning To be of the “first category” is a relative notion. e.g. N as a subset of R is
of the first category, but if we consider N as a metric space of its own with the metric
d(n,m) = |n − m|, then N is discrete and N is not of the first category in itself.

Example 13.2.11 If M0,M1, . . .Mn, . . . ⊆ X are of the first category in X, then the union

M = ∪n∈NMn is also of the first category in X. Indeed, if Mn = ∪k∈N An,k with
◦

An,k= ∅,
then M = ∪(n,k)∈N×NAn,k and

◦
An,k= ∅, ∀(n, k) ∈ N × N.

Definition 13.2.12 A subset M of a metric space (X, d) is said to be of the second cat-
egory in X, if M is not of the first category in X. Thus, a subset M of X is either of the
first category or of the second category in X.

Definition 13.2.13 A subset M of a metric space (X, d) is said to be a residual set iff
X \ M is of the first category in X.
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13.3 Various Forms of the Baire Category Theorem

Theorem 13.3.1 A complete metric space (X, d) is of the second category in X, i.e. if we

write X as ∪n∈NAn for some sets An, then for at least one n ∈ N,
◦

An �= ∅.

Proof 13.3.2 Suppose that for some sets An ⊆ X, we have ∪n∈NAn = X and ∀n ∈ N
◦

An= ∅.
Since ∪n∈NAn = X, ∪n∈NAn = X, too. Then, since

◦
An= ∅, the open set On = X \ An is

dense in X. So, it is enough to prove the following lemma.

Lemma 13.3.3 Let (X, d) be a complete m.s and On’s are open, dense sets. Then the set
D = ∩n∈NOn is a dense Gδ-set.

Proof 13.3.4 We have to prove that ∀x ∈ X, ∀ε > 0 : Bε(x) ∩ D �= ∅.
Fix an x ∈ X and an ε > 0. As O0 = X, Bε(x) ∩ O0 �= ∅. As, Bε(x) ∩ O0 is open, for any
x0 ∈ Bε(x)∩O0 there is ε0 > 0 such that B′

ε0
(x0) ⊆ Bε(x)∩O0. We can and do assume that

ε0 <
ε

2
.

Since O1 = X, Bε0(x0) ∩ O1 �= ∅. Hence for any x1 ∈ Bε0(x0) ∩ O1, there is ε1 <
ε0

2
such

that B′
ε1

(x1) ⊆ Bε0(x0) ∩ O1.

As O2 = X, Bε0(x0) ∩ O2 �= ∅. Hence for any x2 ∈ Bε0(x0) ∩ O2, there is ε2 <
ε1

2
such that

B′
ε2

(x2) ⊆ Bε1(x1) ∩ O2, . . . etc.

In this way we get sets Bεn(xn) such that

i ) Bε(x) ⊇ B′
ε0

(x0) ⊇ · · · ⊇ B′
εn

(xn) ⊇ · · · and εn <
ε

2n
→ 0.

ii ) B′
εn

(xn) ⊆ B′
εn−1

(xn−1) ∩ On.

Hence, (X, d) being complete, by “Cantor’s Nested Interval” theorem:
∩k∈NB′

εk
(xk) �= ∅.

Let y ∈ ∩k∈NB′
εk

(xk) be any point. Then by (ii), y ∈ On, ∀n ∈ N and by (i) y ∈ Bε(x).
Then, y ∈ Bε(x) ∩ D. Hence, Bε(x) ∩ D �= ∅ and D is dense in X.

Example 13.3.5 The set M = R \ Q is of the second category in R.
Indeed, we know that:
i) Q is of the first category in R.
ii) The union of two first category sets is of the first category.

So, if R \ Q was of the first category in R, then since R = Q ∪ (R \ Q) , Q would also be of
the first category in R.

Example 13.3.6 The space (C(K), d∞) is of the second category in itself.

Another form of theorem 13.3.1 is this:



13.3. VARIOUS FORMS OF THE BAIRE CATEGORY THEOREM 211

Theorem 13.3.7 Let (X, d) be a complete m.s. If for some closed sets Fn’s, we have

X = ∪n∈NFn, then the set ∪n∈N

◦
(Fn) is dense in X.

Proof 13.3.8 Let An = ∂Fn = Fn\
◦

Fn. We know that An is closed and
◦

An= ∅. Hence,
On = X \ An is a dense open set. So, by lemma 13.3.3 ∩n∈NOn is dense in X.

Let us see that ∩n∈NOn ⊆ ∪n∈N

◦
(Fn). Let x ∈ ∩n∈NOn be any point. Hence, x ∈ On, ∀n ∈ N.

Now, since X = ∪n∈NFn, x ∈ Fp for some p ≥ 0. As,

{
x ∈ Op

x ∈ Fp
=⇒

{
x /∈ Ap

x ∈ Fp
=⇒ x ∈

◦
Fp .

Hence, ∩n∈NOn ⊆ ∪n∈N

◦
(Fn).

These three results (13.3.1,13.3.3,13.3.7) are known as “Baire Category Theorems”.

Theorem 13.3.9 In any complete metric space (X, d) :

1. Every residual set is of the second category in X.

2. Every dense Gδ − set is of the second category in X.

Proof 13.3.10 1. Let M ⊆ X be a residual set, i.e. X \M is of the first category in X.
If M was of the first category in X, M ∪ X \ M = X would be of the first category in
X, too, which is not possible since (X, d) is complete.

2. Let M be a dense Gδ-set. Let us see that M is residual, i.e. X \ M is of the first
category. Now, since M is a Gδ-set, M = ∩n∈NOn for some open sets On’s. Since,
M ⊆ On, each On is dense in X.

Hence, Fn = X \On is a closed nowhere dense set. So, ∪n∈NFn = X \M is of the first
category in X.

Example 13.3.11 1. In R, M = R \ Q is a residual set.

2. In R, Q is NOT a Gδ-set.

3. In any complete m.s (X, d), any set M ⊆ X such that
◦

M �= ∅ cannot be of the first
category in X.

Proposition 13.3.12 In a complete metric space (X, d), if M is of the first category, then
X \ M = X.

Proof 13.3.13 As M is of the first category in X, M = ∪n∈NAn with
◦

An= ∅, ∀n ∈ N.
Hence, by lemma 13.3.3, with On = X \ An, D = ∩n∈NOn is dense in X. But, M ∩ D = ∅.
So, we have

◦
M= ∅.

Example 13.3.14 1. In a complete m.s. (X, d), a set M ⊆ X and its complement M c

both may be of the second category in X.

2. In a complete m.s. (X, d), any set M containing a second category set is of the second
category.
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13.4 A Study of Discontinuous Functions (Baire’s Great

Theorem)

Let f : R → R be the “Riemann function”, i.e. f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ R \ Q
1 if x = 0
1

n
if x ∈ Q

Then f is continuous at every x ∈ R \ Q and discontinuous at every x ∈ Q. Hence,
Cf = {x ∈ R : f is continuous at x} = R \ Q, a Gδ-set.

Question: Let (X, d) be a m.s f : X → R be an arbitrary function and
Cf = {x ∈ X : f is continuous at x} . What is the structure of Cf ?

Theorem 13.4.1 For any metric space (X, d), for any f : X → R, Cf is a Gδ − set. (may
be ∅)

Proof 13.4.2 Let f̃ : X → R, f̃(x) = arctan (f(x)). Since, arctan : R →
]
−π

2
,
π

2

[
is a

homeomorphism, f̃ is continuous at a point x ∈ X ⇐⇒ f is continuous at x. The advantage
of f̃ over f is f̃ is bounded. So, if necessary replacing f by f̃ , we can assume that f is
bounded.

Definition 13.4.3 For any set A ⊆ X, A �= ∅, let O(f, A) = supx∈A(f(x)) − infx∈A(f(x)).
This quantity is said to be the oscillation of f on A.

Clearly, B ⊆ A =⇒ O(f, B) ≤ O(f, A).

Fix a point x0 ∈ X. Let O(f, x0) = limn→∞ O(f, B 1
n
(x0)). This limit exists. The number is

said to be the oscillation of f at x0.

Proposition 13.4.4 ∀α > 0, the set Aα = {x ∈ X : O(f, x) < α} is an open set.

Proof 13.4.5 Let x0 ∈ A be any point. So O(f, x0) < α. Hence, there is n > 1 such that
O(f, B 1

n
(x0)) < α. Then, B 1

n
(x0) ⊆ Aα. Hence, Aα is open.

Theorem 13.4.6 The function f is continuous at a point x0 ∈ X iff O(f, x0) = 0.

Conclusion: Cf is a Gδ-set.
Cf = {x ∈ X : f is continuous at x}

= {x ∈ X : O(f, x) = 0}
= ∩n≥1

{
x ∈ X : O(f, x) < 1

n

}
Example 13.4.7 • Let f : R → R, f(x) =

{
1 if x ∈ Q
0 if x ∈ R \ Q

. Then, Cf = ∅.
• If f : R → R, f(x) = sin x, then Cf = R.
• But we know that Q is not a Gδ-set. So, there is no f : R → R such that Cf = Q.
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Question Given a Gδ-set, A ⊆ R, is there a function such that Cf = A?

Theorem 13.4.8 Let (X, d) be a metric space. Suppose that there exists a set M ⊆ X such
that M = M c = X (i.e. X = R, M = Q) Let A be any Gδ-set. Then there exists a function
f : X → R such that Cf = A.

Proof 13.4.9 Since A is a Gδ-set, Ais of the form: A = ∩n∈NOn, where On’s are open. Let
O0 = X and replacing On by O1 ∩ · · · ∩ On we can assume that O0 ⊇ O1 ⊇ · · · ⊇ On ⊇ · · ·
so that ∩n∈NOn = A and A ⊆ On, ∀n ∈ N.

Then, X = A ∪ (O0 \ O1) ∪ (O1 \ O2) ∪ · · · ∪ (On \ On+1) ∪ · · · Any two of these sets are
disjoint. Then each x ∈ X belongs to only one of these sets. Now, define a function as
follows: Let x ∈ X be any point.

• If x ∈ A, let f(x) = 0.

• If x /∈ A, then x ∈ On \ On+1, for some n ∈ N. There are cases:

(i) x ∈ M ∩ (On \ On+1). In this case put f(x) =
1

n + 1
.

(ii) x ∈ M c ∩ (On \ On+1) . In this case put f(x) = − 1

n + 1
.

Let us see that Cf = A. To see this, let first a ∈ A be a point and xn ∈ X be any sequence
converging to a.

We have to show that f(xn) → f(a) = 0. If xn ∈ A for all but finitely many n ∈ N, then
f(xn) = 0 → f(a).

Otherwise, since a ∈ A = ∩n∈NOn, a ∈ Op, ∀p ∈ N. As, Op is open, xn ∈ Op, for all but
finitely many n ∈ N.

Hence, each Op \ Op+1 contains xn, for only finitely many n ∈ N.

Hence, f(x) = ± 1

n + 1
→ 0 = f(a), as n → ∞. Then, A ⊆ Cf . Now, suppose a /∈ A. Then,

a belongs to one and only one Op \ Op+1. So, f(a) = ± 1

p + 1
.

If a ∈ (Op \ Op+1) ∩ M, then let xn ∈ M c be such that xn → a. Then, f(xn) ≤ 0. So,

f(xn) �
1

p + 1
.

If a ∈ (Op \ Op+1) ∩ M c, then f(a) = − 1

p + 1
.

Then, let xn ∈ M : xn → a. Then f(xn) ≥ 0. So, f(xn) � − 1

p + 1
. Hence, f is discontinuous

at every a /∈ A. So, Cf = A.

13.4.1 Continuity of Baire-1 Functions

Let (X, d) be a metric space. fn : X → R be a sequence of continuous functions. Suppose
that, for each x ∈ X, (fn(x))n∈N converges to some f : X → R, i.e. fn → f pointwise on X.
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Question: What is Cf ?

Let, for n ∈ N and k = 1, 2, . . ., An(k) = supp∈N

{
x ∈ X : |fn+p(x) − f(x)| ≤ 1

k

}
.

Theorem 13.4.10 1. Cf =
∞∩k=1 ∪n∈N

◦
An (k)

2. If (X, d) is complete, then Cf is residual. (i.e., a dense Gδ-set)

Proof 13.4.11 1. Let B =
∞∩k=1 ∪n∈N

◦
An (k). Let x0 ∈ B be a point. We want to show

that f is continuous at x0. Let ε > 0 be arbitrary. Then choose k ≥ 1 such that
1

k
<

ε

3
.

Since, for this k, x0 ∈ ∪n∈N

◦
An (k), x0 ∈

◦
An0 (k), for some n0 ∈ N.

Hence, there is ηk > 0 such that Bηk
(x) ⊆

◦
An0 (k).

So, ∀x ∈ Bηk
(x), |fn0+p(x) − f(x)| ≤ 1

k
. In particular, |fn0+p(x0) − f(x0)| <

1

k
.

Now, since fn(x0) → f(x0), there is p ∈ N such that |fn0+p(x0) − f(x0)| ≤ 1

k
. (1)

As fn0+p is continuous at x0, there is η < ηk such that ∀x ∈ Bη(x0) :

|fn0+p(x) − fn0+p(x0)| ≤ 1

k
. (2)

Then, for x ∈ Bη(x0),

|f(x) − f(x0)| ≤ |f(x) − fn0+p(x)| + |fn0+p(x) − fn0+p(x0)| + |fn0+p(x0) − f(x0)| ≤ 3

k
.

Hence, B ⊆ Cf .

• Conversely, let x0 ∈ Cf and let k ≥ 1 be any number. Since fn(x0) → f(x0), for

some n ∈ N, |fn(x0) − f(x0)| ≤ 1

2k
. Now the function gn = fn − f is continuous at x0

and |gn(x0)| ≤ 1

2k
. So, there is η > 0 such that ∀x ∈ Bη(x0), |gn(x)| ≤ 1

k
. This says

that, Bη(x0) ⊆ An(k). So, x0 ∈
◦

An (k) =⇒ x0 ∈ ∪n∈N

◦
An (k). This being true for any

k ≥ 1, x0 ∈
∞∩k=1 ∪n∈N

◦
An (k). Thus, Cf ⊆ B.

Hence, B = Cf .

2. Now, let for all k ≥ 1, n ∈ N Bn(k) =

{
x ∈ X : supp∈N |fn+p(x) − f(x)| ≤ 1

k

}
Clearly Bn(k) ⊆ An(k).

Moreover, Bn(k) = ∩p∈N

{
x ∈ X : |fn+p(x) − f(x)| ≤ 1

k

}
. So, Bn(k) is closed since

fn+p and fn are continuous.



13.4. A STUDY OF DISCONTINUOUS FUNCTIONS (BAIRE’S GREAT THEOREM)215

Moreover, since for each x ∈ X, fn(x) converges, so it is Cauchy, so x ∈ Bn(k) for
some n ∈ N.

Hence, ∪n∈NBn(k) = X. By lemma 13.3.3
⋃

n∈N

( ◦
Bn (k)

)
is dense in X.

So, since
⋃

n∈N

( ◦
Bn (k)

)
⊆ ⋃n∈N

◦
An (k), Ok =

⋃
n∈N

◦
An (k) is open and dense in X.

Hence, Cf = ∩k≥1Ok is a dense Gδ-set.

Example 13.4.12 Let f : R → R, f(x) =

{
1 if x ∈ Q
0 if x ∈ R \ Q

Is there a sequence of continuous functions fn : R → R that converges pointwise to f on R?
i.e., is f a Baire-1 function?

As, Cf = ∅, f is not a Baire-1 function. But, ∀x ∈ R, f(x) = limn→∞ limm→∞ [cos(m!xπ)]2n .
So, f is a Baire-2 function.

Question: Given a function f : X → R how to recognize that f is a Baire-1 function?

Theorem 13.4.13 (Baire’s Great Theorem) Let (X, d) be a complete metric space and
f : X → R be a given function. Then, f is Baire-1 ⇐⇒ ∀F ⊆ X, closed, the restriction
function f|F : F → R is continuous at least at one point x0 ∈ F. (i.e. ∃fn : X → R
continuous, fn → f pointwise ⇐⇒ ∀F ⊆ X, ∀xn ∈ F, xn → x0 =⇒ f(xn) → f(x0))
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13.5 Exercises

Let (X, d) be a metric space.

1. A function f : X → R is said to be lsc(= lower semi-continuous) at a point x0 ∈ X
if

∀ ε > 0 ∃ η > 0 ∀x ∈ Bη(x0), f(x) > f(x) − ε

usc(= upper semi-continuous) at x0 if

∀ ε > 0 ∃ η > 0 ∀x ∈ Bη(x0), f(x) < f(x) + ε

(a) Show that f is usc at x0 iff −f is lsc at x0

(b) f is continuous at x0 iff both usc and lsc at x0.

(c) f is usc at every x ∈ X iff ∀ a ∈ R, the set f−1(]−∞, a[) is open in X.

(d) f is lsc at every x ∈ X iff ∀ a ∈ R, the set f−1(]a,∞[) is open in X.

(e) Let A ⊆ X and f = χA. Then f is lsc iff A is open; f is usc iff A is closed.

2. Let (fα)α∈I , fα : X → R be a family of continuous functions such that, for each
x ∈ X, the set {fα(x) : α ∈ I} is bounded. Let f(x) = sup{fα(x) : α ∈ I} and
g(x) = inf{fα(x) : α ∈ I} . Show that f is lsc on X and g is usc on X.

3. Let f :X → R be a function, x0 ∈ X and g(x) = Arc tan f(x). Show that f is

continuous at x0 iff f is continuous at x0. Show also that |g(x)| ≤ π

2
for all x ∈ X.

4. Let f : X → R be a bounded function. for x ∈ X, O(f, x) = infη>0 supy,z∈Bη(x) |f(y) − f(z)|
be the oscillation of f at x0. Show that

(a) f is continuous at x0 iff O(f, x0) = 0.

(b) The function g(x) = O(f, x0) is usc on X.

(c) The set Cf = {x ∈ X : O(f, x0) > 0} is a Gδ-set.

5. Let K ⊆ X be compact and f : X → R be a function. Show that

(a) If f is lsc on K, f(K) is bounded from below and for some x0 ∈ K,

f(x0) = infx∈K f(x).

(b) If f is usc on K, f(K) is bounded from above and for some x0 ∈ K,

f(x0) = supx∈K f(x).

6. Now let (X, d) is a complete ms.

(a) Let G1, G2 2 dense Gδ-sets. Show that G1 ∩ G2 is also a dense Gδ-subset of X.



13.5. EXERCISES 217

(b) Deduce from 6a that if G ⊆ X is a dense Gδ-set then G is of the second category
in X.

(c) Show that any set G ⊆ X that contains a second category set M is also of the
second category.

(d) If M ⊆ X is of the first category in X, then show that X \ M is dense in X.

7. Show that every subset G ⊆ R which is of the second category in R is uncountable.
Deduce that every dense Gδ-subset is uncountable.

8. Let fn : X → R be a sequence of continuous functions that converges pointwise to a
function f on X. Show that on some nonempty open set B ⊆ X f is bounded.

9. Let X = C([0, 1]), the space of the continuous function f : [0, 1] → R equipped with the
metric d(f, g) = supx∈[0,1] |f(x) − g(x)|. Show that the set M ⊆ X of the polynomial
functions is of the first category in X. Deduce that X \ M is dense in X. What does
this mean?

10. Let (X, d) be a complete m.s. A ⊆ X be a dense set and f : A → R be a continuous
function.

(a) Show that the set M = {a ∈ X : limx→a, x∈A does not exist} is of the first category
in X.

(b) Let G = X \ M . Show that there exists a function f∗ : G → R extending f and
continuous at each x ∈ G.
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