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Foreword
This is a revolving and continuously

changing textbook. The present version
is far from complete. It may contain

several errors, omissions, oversights etc.
Do not circulate and consult it only with
great suspicion. The new version can be

found at www.alinesin.org.
Chapters 1 through 19 form the first semester of a four semester course.
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Chapter 1

Preliminaries

1.1 Binary Operation

Let X be a set. A binary operation on X is just a function from X ×X into
X. The binary operations are often denoted by such symbols as +, ×, ·, ∗, ◦
etc. The result of applying the binary relation to the elements x and y of X is
denoted as x + y, x× y, x · y, x ∗ y, x ◦ y etc.

Examples.

i. Let X be a set and let c ∈ X be any fixed element. The rule x ∗ y = c
defines a binary operation on X. This binary operation satisfies x∗y = y∗x
for all x, y ∈ X (commutativity) and x∗(y∗z) = (x∗y)∗z (associativity).

ii. Let X be a set. The rule x ∗ y = x defines a binary operation on X.
Unless |X| ≤ 1, this binary operation is not commutative. But it is always
associative.

iii. Let U be a set. Let X := ℘(U) be the set of subsets of U . The rule
A ∗B = A ∩B defines a binary operation on X. This binary operation is
commutative and associative. Note that A∗U = U ∗A = A for all A ∈ X.
Such an element is called the identity element of the binary operation.
The rule A ∗ B = A ∪ B defines another binary operation on X, which
also commutative and associative. ∅ is the identity element of this binary
operation. Examples i and ii do not have identity elements unless |X| = 1.

iv. Let U be a set. Let X := ℘(U) be the set of subsets of U . The rule
A∗B = A\B defines a binary operation on X, which is neither associative
nor commutative in general. It does not have an identity element either,
although it has a right identity element, namely ∅.

v. Let U be a set. Let X := ℘(U) be the set of subsets of U . The rule
A ∗ B = (A \ B) ∪ (B \ A) defines a binary operation on X, which is

9



10 CHAPTER 1. PRELIMINARIES

commutative and associative (harder to check) and which has an identity
element. Every element in this example has an inverse element in the
sense that, if e denotes the identity element of X for this operation, then
for every x ∈ X there is a y ∈ X (namely y = x) such that x∗y = y∗x = e.

Exercises.

i. Let A be a set. Let X be the set of functions from A into A. For f, g ∈ X,
define the function f ◦ g ∈ X by the rule

(f ◦ g)(a) = f(g(a))

for all a ∈ A. Show that this is a binary operation on X which is as-
sociative, noncommutative if |A| > 1 and which has an identity element.
The identity element (the identity function) is denoted by IdA and it is
defined by the rule IdA(a) = a for all a ∈ A. Show that if |A| > 1 then
not all elements of X have inverses.

ii. Let A be a set. Let Sym(A) be the set of bijections from A into A. For
f, g ∈ Sym(A), define the function f ◦ g ∈ Sym(A) by the rule

(f ◦ g)(a) = f(g(a))

for all a ∈ A (as above). Show that this is a binary operation on X
which is associative, noncommutative if |A| > 2 and which has an identity
element. Show that every element of Sym(A) has an inverse.

1.2 Binary Relations

Let X be a set. A binary relation on X is just a subset of X ×X.
Let R be a binary relation on X. Thus R ⊆ X ×X. If (x, y) ∈ R, we will

write xRy. If (x, y) 6∈ R, we will write x 6 Ry.
Binary relations are often denoted by such symbols as R, S, T , <, >, ≤, ≥,

≺, ¹, ¿, v, ⊥, ∼, ≡, ', ≈ etc.

Examples.

i. R = X × X is a binary relation on the set X. We have xRy for all
x, y ∈ X.

ii. R = ∅ is a binary relation on X. For this relation, x 6 Ry for all x, y ∈ X.

iii. Let R := δ(X ×X) := {(x, x) : x ∈ X}. Then R is a binary relation on
X. We have xRy if and only if x = y.

iv. The set R := {(x, y) ∈ X ×X : x ∈ y} is a binary relation on X. Thus,
for all x, y ∈ X, (x, y) ∈ R if and only if x ∈ y.
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v. Let A and Y be two set and B ⊆ A. Let X be the set of functions from
A into Y . For f, g ∈ X, set f ≡ g if and only if f(b) = g(b) for all b ∈ B.
This is a binary relation on X. It has the following properties:

Reflexivity. For all f ∈ X, f ≡ f .

Symmetry. For all f, g ∈ X, if f ≡ g then f ≡ f .

Transitivity. For all f, g, h ∈ X, if f ≡ g and g ≡ h, then g ≡ h.

A relation satisfying the three properties above is called an equivalence
relation. The relation in Example iii is also an equivalence relation.

Exercises.

i. Let A and Y be two set. Let ℘ be a nonempty set of subsets of A satisfying
the following condition: For all B1, B2 ∈ ℘, there is a B3 ∈ ℘ such that
B3 ⊆ B1∩B2. Let X be the set of functions from A into Y . For f, g ∈ X,
set f ≡ g if and only if there is a B ∈ ℘ such that f(b) = g(b) for all
b ∈ B. Show that this is an equivalence relation on X.
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Chapter 2

Real Numbers

We will define the set of real numbers axiomatically. We will supply some
number of axioms (which are by definition statements that we accept without
proofs) and we will state that the set of real numbers is a set that satisfies
these axioms. We will neither ask nor answer the (important) question of the
existence of the set of real numbers. This question is part of Math 111. However
we will prove that the set of real numbers is unique in a sense to be made precise
(Theorem 3.3.1).

We will be interested just in two (binary) operations on R, called addition
and multiplication. Apart from these two operations, we will also be interested
in a (binary) relation <.

Our definition will take some time, till page 23.

Definition 2.0.1 A set R together with two binary operations + and ×, two
distinct constants 0 ∈ R and 1 ∈ R and a binary relation < is called a set of
real numbers if the axioms A1, A2, A3, A4, M1, M2, M3, M4, D, O1, O2,
O3, AO, MO and C (that will be stated in this chapter) hold.

The binary operation + is called addition, the binary operation × is called
multiplication, the element 0 is called zero, the element 1 is called one, the
binary relation < is called the order relation. For two elements x, y ∈ R, x+y
will be called the sum of x and y; instead of x× y we will often prefer to write
xy. xy will be called the product of x and y. If x < y, we will say that ”x is
less than y”. We will use the expressions “greater than”, “not less than” etc.
freely.

We also define the binary relations ≤, > and ≥ as follows:

x ≤ y ⇔ x < y or x = y
x > y ⇔ y < x
x ≥ y ⇔ x > y or x = y

The fact that 0 6= 1 (which is explicitly stated in the definition) is important
and will be needed later. One cannot prove this fact from the rest of the axioms.

13



14 CHAPTER 2. REAL NUMBERS

Indeed, the set {0} satisfies all the axioms (take 1 to be 0) that we will state.
In fact, if 0 = 1, then there can be only one element in R, namely 0, because,
for any x ∈ R,

x
M2= 1x = 0x

A2= 0.

2.1 Axioms for Addition

We start with the axioms that involve only the addition.

A1. Additive Associativity. For any x, y, z ∈ R, x+(y + z) = (x+ y)+ z.

The first axiom tells us that when adding, the parentheses are unnecessary.
For example, instead of (x + y) + z, we can just write x + y + z. Similarly,
instead of (x+ y)+ (z + t) or of ((x+ y)+ z)+ t, we can just write x+ y + z + t.
Although this fact (that the parentheses are useless) needs to be proven, we will
not prove it. The interested reader may look at Bourbaki.

A2. Additive Identity Element. For any x ∈ R, x + 0 = 0 + x = x.

A3. Additive Inverse Element. For any x ∈ R there is a y ∈ R such that
x + y = y + x = 0.

A set together with a binary operation, say +, and an element denoted 0
that satisfies the above axioms is called a group. Thus (R, +, 0) is a group.
Below, investigating the structure (R,+, 0), we will in fact investigate only the
properties of a group.

Note that the element y of A3 depends on x. Note also that A3 does not
tell us that x + y = y + x for all x, y ∈ R, it only tells us that it is so only for
the specific pair x and y.

We also note that 0 is the only element that satisfies A2; indeed if 01 also
satisfies A2, then 0 = 0 + 01 = 01.

We now prove our first result:

Lemma 2.1.1 Given x ∈ R, the element y as in A3 is unique.

Proof: Let x ∈ R. Let y be as in A3. Let y1 satisfy the equation x + y1 = 0.
We will show that y = y1, proving more than the statement of the lemma. We
start:

y
A2= y + 0 = y + (x + y1)

A1= (y + x) + y1
A3= 0 + y1

A2= y1.

Thus y = y1. ¤

Since, given x, the element y that satisfies A3 is unique, we can name this
element as a function of x. We will denote it by −x and call it the additive
inverse of x or just “minus x”. Therefore, we have:

x + (−x) = (−x) + x = 0.
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Since, by A2, 0 is its own inverse, we have −0 = 0.
As we have said, the proof of Lemma 2.1.1 proves more, namely the following:

Lemma 2.1.2 If x, y ∈ R satisfy x + y = 0, then y = −x.

We start to prove some number of “well-known” results:

Lemma 2.1.3 For all x ∈ R, −(−x) = x.

Proof: It is clear from A3 that if y is the additive inverse of x, then x is the
additive inverse of y. Thus x is the additive inverse of −x. Hence x = −(−x).
¤
Lemma 2.1.4 If x, y ∈ R satisfy x + y = 0, then x = −y.

Proof: Follows directly from lemmas 2.1.2 and 2.1.3. ¤
Lemma 2.1.5 For all x, y ∈ R, −(x + y) = (−y) + (−x).

Proof: We compute directly: (x+ y)+ ((−y)+ (−x)) = x+ y +(−y)+ (−x) =
x + 0 + (−x) = x + (−x) = 0. Here the first equality is the consequence of A1
(that states that the parentheses are useless).

Thus (x+y)+((−y)+(−x)) = 0. By Lemma 2.1.2, (−y)+(−x) = −(x+y).
¤

We should note that the lemma above does not state that −(x+y) = (−x)+
(−y). Although this equality holds in R, we cannot prove it at this stage; to
prove it we need Axiom A4, which is yet to be stated.

We now define the following terms:

x− y := x + (−y)
−x + y := (−x) + y
−x− y := (−x) + (−y)

Lemma 2.1.6 For all x, y ∈ R,

−(x− y) = y − x
−(−x + y) = −y + x
−(−x− y) = y + x

Proof: Left as an exercise. ¤

The next lemma says that we can simplify from the left.

Lemma 2.1.7 (Left Cancellation) For x, y, z ∈ R if x + y = x + z then
y = z.

Proof: Add −x to the left of both parts of the equality x + y = x + z, and
using associativity, we get y = z. ¤

Similarly we have,

Lemma 2.1.8 (Right Cancellation) For x, y, z ∈ R if y + x = z + x then
y = z.

Finally, we state our last axiom that involves only the addition.
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A4. Commutativity of the Addition. For any x, y ∈ R, x + y = y + x.

A set together with a binary operation, say +, and an element denoted 0
that satisfies the axioms A1, A2, A3 and A4 is called a commutative or an
abelian group. Thus (R, +, 0) is an abelian group.

2.2 Axioms for Multiplication

Let R∗ = R \ {0}. Since 1 6= 0, the element 1 is an element of R∗. In this
subsection, we will replace the symbols R, + and 0 of the above subsection, by
R∗, × and 1 respectively. For example, Axiom A1 will then read

M1. Multiplicative Associativity. For any x, y, z ∈ R∗, x × (y × z) =
(x× y)× z.

As we have said, we will prefer to write x(yz) = (xy)z instead of x×(y×z) =
(x× y)× z.

Axioms A2 and A3 take the following form:

M2. Multiplicative Identity Element. For any x ∈ R∗, x1 = 1x = x.

M3. Multiplicative Inverse Element. For any x ∈ R∗ there is a y ∈ R∗
such that xy = yx = 1.

We accept M1, M2 and M3 as axioms. Thus (R∗,×, 1) is a group.
All the results of the previous subsection will remain valid if we do the above

replacements. Of course, the use of the axioms A1, A2, A3 in the proofs must
be replaced by M1, M2, M3 respectively. That is what we will do now:

Lemma 2.2.1 Given x ∈ R∗, the element y as in M3 is unique.

The proof of this lemma can be translated from the proof of Lemma 2.1.1
directly:
Proof: Let x ∈ R∗. Let y be as in M3. Let y1 satisfy the equation xy1 = 1.
We will show that y = y1, proving more than the statement of the lemma. We
start:

y
M2= y1 = y(xy1)

M1= (yx)y1
M3= 1y1

M2= y1.

Thus y = y1. ¤

Since, given x ∈ R∗, the element y ∈ R∗ that satisfies M3 is unique, we can
name this element as a function of x. We will denote it by x−1 and call it the
multiplicative inverse of x or sometimes “x inverse”. Therefore, we have:

xx−1 = x−1x = 1.

Note that x−1 is defined only for x 6= 0. The term 0−1 will never be defined.
Since, by M2, 1 is its own inverse, we have 1−1 = 1.
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As we have noticed, the proof of Lemma 2.2.1 proves more, namely the
following:

Lemma 2.2.2 If x, y ∈ R∗ satisfy xy = 1, then y = x−1.

Lemma 2.2.3 For all x ∈ R∗, (x−1)−1 = x.

Proof: As in Lemma 2.1.3. ¤

Lemma 2.2.4 If x, y ∈ R∗ satisfy xy = 1, then x = y−1.

Proof: As in Lemma 2.1.4. ¤

Lemma 2.2.5 For all x, y ∈ R∗, (xy)−1 = y−1x−1.

Proof: As in Lemma 2.1.5. ¤

We should note that the lemma above does not state that (xy)−1 = x−1y−1.
Although this equality holds in R, we cannot prove it at this stage; to prove it
we need Axiom M4.

The next lemma says that we can simplify from the left and also from the
right.

Lemma 2.2.6 (Cancellation) Let x, y, z ∈ R∗.
i. If xy = xz then y = z.
ii. If yx = zx then y = z.

Proof: Left as an exercise. ¤

The lemma above is also valid if either y or z is zero (without x being zero),
but we cannot prove it yet.

Finally, we state our last axiom that involves only multiplication.

M4. Commutativity of the Multiplication. For any x, y ∈ R∗, xy = yx.

Thus (R∗,×, 1) is an abelian group.
Sometimes, one writes x/y or x

y instead of xy−1.

2.3 Distributivity

In the first subsection, we stated the axioms that involve only the addition,
and in the second subsection, the axioms that involve only the multiplication.
Until now there is no relationship whatsoever between the addition and the
multiplication. For the moment they appear to be two independent operations.
Consequently, at this point we cannot prove any equality that involves both
operation, e.g. the equalities (−1)−1 = −1 and (−1)x = −x cannot be proven
at this stage.

Below, we state an axiom that involves both addition and multiplication.
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LD. Left Distributivity. For all x, y, z ∈ R, x(y + z) = xy + xz.

Since the multiplication is commutative, we also have the partial right dis-
tributivity valid if x, y, z 6= 0 and y + z 6= 0:

(y + z)x M4= x(y + z) D= xy + xz
M4= yx + zx.

Lemma 2.3.1 For all x ∈ R, x0 = 0.

Proof: Since x0 + 0 A2= x0 A2= x(0 + 0) LD= x0 + x0, by Lemma 2.1.7, 0 = x0. ¤

I do not know whether one can prove the right distributivity in its full
generality or the equality “0x = 0” from the axioms above. It seems (but I may
be wrong) that we need to add the right distributivity to the list of our axioms
as well. This is what we will do now:

D. Distributivity. For all x, y, z ∈ R,

x(y + z) = xy + xz and (y + z)x = yx + zx.

Axiom D will be the only axiom relating the addition and the multiplication.

Lemma 2.3.2 For all x ∈ R, 0x = 0.

Proof: As in Lemma 2.3.1. ¤

It follows that M4 is valid for all x, y ∈ R.
A set R together with two binary operations + and × and constants 0 and

1 that satisfy the axioms A1, A2, A3, A4, M1, M2, M3, M4 and D is called a
field. Thus (R, +,×, 0, 1) is a field.

We investigate some other consequences of distributivity:

Lemma 2.3.3 For all x, y ∈ R,

(−x)y = −(xy)
x(−y) = −(xy)

(−x)(−y) = xy

Proof: We compute directly: 0 = 0y
A3= (x + (−x))y D= xy + (−x)y (the first

equality is Lemma 2.3.2). Thus (−x)y is the additive inverse of xy and so
(−x)y = −(xy). This is the first equality. The others are similar and are left as
exercise. ¤

It follows that we can write −xy for (−x)y or x(−y).

Corollary 2.3.4 For all x ∈ R, (−1)x = −x.

Corollary 2.3.5 (−1)−1 = −1.
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2.4 Axioms for the Order Relation

The first three axioms below involve only the binary relation “inequality” <.
Very soon we will relate the inequality to the operations + and ×.

O1. Transitivity. For all x, y, z ∈ R, if x < y and y < z then x < z.

O2. Irreflexivity. For all x ∈ R, it is not true that x < x, i.e. x 6< x.

O3. Total Order. For any x, y ∈ R, either x < y or x = y or y < x.

Lemma 2.4.1 For any x, y ∈ R, only one of the relations

x < y, x = y, y < x

hold.

Proof: Assume x < y and x = y hold. Then x < x, contradicting O2.
Assume x < y and y < x hold. Then by O1, x < x, contradicting O2.
Assume x = y and y < x hold. Then x < x, contradicting O2. ¤

Now we state the two axioms that relate the inequality with the two opera-
tions + and ×:

OA. For all x, y, z ∈ R, if x < y then x + z < y + z.

OM. For all x, y, z ∈ R, if x < y and 0 < z then xz < yz.

A set R together with two binary operations + and ×, two constants 0 and 1
and a binary relation < that satisfies the axioms A1, A2, A3, A4, M1, M2, M3,
M4, D, O1, O2, O3, OA and OM is called an ordered field. Thus (R, +,×, 0, 1)
is an ordered field. Below, we investigate the properties of ordered fields.

Lemma 2.4.2 If x < y then −y < −x.

Proof: Adding −x− y to both sides of the inequality x < y, by OA we get the
result. ¤

Lemma 2.4.3 If 0 < x < y then 0 < y−1 < x−1.

Proof: Left as an exercise. ¤

Lemma 2.4.4 If x < 0 and y < 0 then 0 < xy.

Proof: By Lemma 2.4.2, 0 < −x and 0 < −y. Then, 0 2.3.2= 0(−y)
OM
<

(−x)(−y) 2.3.3= xy. ¤

For any x, we define x2 to be xx.
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Corollary 2.4.5 For any x ∈ R, x2 ≥ 0.

Proof: Left as an exercise. ¤

If x < 0 we say that x is strictly negative, if x > 0 we say that x is strictly
positive. If x ≤ 0 we say that x is nonpositive and if x ≥ 0 we say that x is
nonpositive.

We let

R>0 = {x ∈ R : x > 0}
R≥0 = {x ∈ R : x ≥ 0} = R> 0 ∪ {0}
R<0 = {x ∈ R : x < 0} = −R>0

R≤0 = {x ∈ R : x ≤ 0} = R<0 ∪ {0} = −R≥0

To finish the axioms of real numbers, there is one more axiom left. This will
be the subject of one of the later subsections.

Exercises and Examples.

i. The set {0, 1} with the following addition

0 + 0 = 1 + 1 = 0
0 + 1 = 1 + 0 = 1

and multiplication defined by 0×x = x× 0 = 0 for x = 0, 1 and 1× 1 = 1
satisfies all the axioms about addition and multiplication (A1, A2, A3,
A4, M1, M2, M3, M4, D), but there is no order relation on {0, 1} that
satisfies the order axioms (O1, O2, O3, OA, OM).

ii. ¶ The set Z of integers, with the usual addition, multiplication and the
order relation, satisfies all the axioms except M3.

iii. ¶ The set Q of rational numbers, with the usual addition, multiplication
and the order relation, satisfies all the axioms. We will see that Q does not
satisfy the Completeness Axiom that we will state in the next subsection.

We assume for the rest that we are in a structure that satisfies the axioms
stated until now.

iv. Show that if xy = 0 then either x or y is zero.

v. Define 2 to be 1 + 1. Show that 2x = x + x.

vi. Show that the axioms above imply that R is infinite.

vii. Prove that (x + y)2 = x2 + 2xy + y2 and that x2 − y2 = (x − y)(x + y).
(Recall that x2 was defined to be xx).

viii. Prove that if 0 < x < y then x2 < y2.

ix. Prove that if x2 = y2 then either x = y or x = −y.
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x. Prove that if x < y and z < t then x + z < y + t.

xi. Prove that if 0 < x < y and 0 < z < t then xz < yt.

xii. Prove that if x < y, then x < x+y
2 < y.

xiii. Define |x| to be max(x,−x) (i.e. the largest of the two). For all x, y ∈ R,
show the following:

a) |x| ≥ 0.

b) |x| = 0 if and only if x = 0.

c) | − x| = |x|.
d) |x + y| ≤ |x|+ |y|.
e) Conclude from (d) that |x| − |y| ≤ |x− y|.
f) Show that ||x| − |y|| ≤ |x− y|. (Hint: Use (e)).

g) Show that |xy| = |x||y|.
The number |x| is called the absolute value of x.

xiv. Let x, y ∈ R. Show that

max(x, y) =
x + y + |x− y|

2
, min(x, y) =

x + y − |x− y|
2

.

xv. Show that ||x| − |y|| ≤ |x− y| for any x, y ∈ R.

xvi. Show that Example v on page 9 is a commutative group.

2.5 Totally Ordered Sets

Let X be a set together with a binary relation < that satisfies the axioms O1,
O2 and O3. We will call such a relation < a totally ordered set, or a linearly
ordered set, or a chain. Thus R is a totally ordered set. Thus (R, <) is a
totally ordered set. We define the relations x ≤ y, x > y, x ≥ y, x 6< y etc. as
usual.

In a totally ordered set (X,<) one can define intervals as follows (below a
and b are elements of X):

(a, b) = {x ∈ X : a < x < b}
(a, b] = {x ∈ X : a < x ≤ b}
[a, b) = {x ∈ X : a ≤ x < b}
[a, b] = {x ∈ X : a ≤ x ≤ b}
(a,∞) = {x ∈ X : a < x}
[a,∞) = {x ∈ X : a ≤ x}
(−∞, a) = {x ∈ X : x < a}
(−∞, a] = {x ∈ X : x ≤ a}
(−∞,∞) = X
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An element M of a totally ordered set X is called maximal if no element
of X is greater than M . An element m of a poset X is called minimal if no
element of X is less than m.

Let (X, <) be a totally ordered set. Let A ⊆ X be a subset of X. An element
x ∈ X is called an upper bound for A if x ≥ a for all a ∈ A.

An element a ∈ X is called a least upper bound for A if,
i) a is an upper bound of A, and
ii) If b is another upper bound of A, b 6< a.
Let X be a poset. A subset of X that has an upper bound is said to be

bounded above.
The terms lower bound, greatest lower bound and a set bounded

below are defined similarly.

Lemma 2.5.1 A subset of a totally ordered set which has a least upper bound
(resp. a greatest lower bound) has a unique least upper bound (resp. greatest
lower bound).

Proof: Let X be a totally ordered set. Let A ⊆ X be a subset which has a
least upper bound, say x. Assume y is also a least upper bound for A. By
definition y 6< x and x 6< y. Then x = y by O3. ¤

Thus if A is a subset of a totally ordered set whose least upper bound exists,
then we can name this least upper bound as a function of X. We will use the
notation lub(A) or sup(A) for the least upper bound of A. We use the notations
glb(A) and inf(A) for the least upper bound.

Examples and Exercises.

i. Let X = (R, <). Let A = (0, 1) ⊆ R. Then any number ≥ 1 is an upper
bound for A. 1 is the only least upper bound of A. Note that 1 6∈ A.

ii. Let X = (R, <). Let A = [0, 1] ⊆ R. Then any number ≥ 1 is an upper
bound for A. 1 is the only least upper bound of A. Note that 1 ∈ A.

iii. Let X = (R, <). Let A = (0,∞) ⊆ R. Then A has no upper bound. But
it has a least upper bound.

iv. Let X = (R, <) and A = { x
x+1 : x ∈ R and x ≥ 1}. Show that 1 is the

only least upper bound of A.

v. Let X = (R, <) and A ⊆ R any subset of R. Define −A = {−a : a ∈ A}.
i. Show that if x is an upper bound for A then −x is a lower bound for
−A.

ii. Show that if x is the least upper bound for A ⊆ R then −x is the
greatest lower bound for −A.
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vi. Let (X, <) be a totally ordered set and A ⊆ X. Let

B := {x ∈ X : x is an unpper bound for A}.

a) Assume that sup(A) exists. Show that inf(B) exists and inf(B) =
sup(A).

b) Assume that inf(B) exists. Show that sup(A) exists and sup(A) =
inf(B).

vii. Let X be a totally ordered set and b ∈ X. Show that b is the only least
upper bound of (−∞, b], and also of (−∞, b).

viii. On R × R define the relation ≺ as follows (x, y) ≺ (x1, y1) by “either
y < y1, or y = y1 and x < x1”.

a) Show that this is a total order (called lexicographic ordering).

b) Does every subset of this linear order which has an upper bound has a
least upper bound?

ix. On N× N define the relation ≺ as above (lexicographic order).

a) Show that this is a total order.

b) Does every subset of this linear order which has an upper bound has a
least upper bound?

x. Find a poset where the intersection of two intervals is not necessarily an
interval.

2.6 Completeness Axiom

We now state the last axiom for R. This axiom is different from the others in
the sense that all the other axioms were about a property of one, two or at most
three elements of R. But this one is a statement about subsets of R.

C. Completeness. Any nonempty subset of R which is bounded above has a
least upper bound.

It follows from Lemma 2.5.1, that a subset X of R which has an upper bound
has a unique least upper bound. We denote it by sup(X) or lub(X). The least
upper bound of a set is sometimes called the supremum of the set. Note that
the supremum of a set may or may not be in the set.

This completes our list of axioms. From now on we fix a set R together with
two binary operations + and ×, two distinct constants 0 ∈ R and 1 ∈ R and a
binary relation < that satisfies the axioms A1, A2, A3, A4, M1, M2, M3, M4,
D, O1, O2, O3, AO, MO and C stated above. (The existence of such a structure
is proven in Math 112.)
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Lemma 2.6.1 Any nonempty subset of R which is bounded below has a greatest
lower bound.

Proof: Left as an exercise. Use Exercise v, 22 or Exercise i, 24 below. ¤

The greatest lower bound of a (nonempty) set is denoted by inf(X) or
glb(X). The greatest lower bound is sometimes called the infimum of the
set. Note that the infimum of a set may or may not be in the set.

Exercises.

i. Show that if X ⊆ R has a least upper bound then the set −X := {−x :
x ∈ X} has a greatest lower bound and inf(−X) = − sup(X).

ii. Suppose X, Y ⊆ R have least upper bounds. Show that the set X + Y :=
{x + y : x ∈ X, y ∈ Y } has a least upper bound and that sup(X + Y ) =
sup(X) + sup(Y ).

iii. Suppose X, Y ⊆ R≥0 have least upper bounds. Show that the set XY :=
{xy : x ∈ X, y ∈ Y } has a least upper bound and sup(XY ) = sup(X) sup(Y ).
Does the same equality hold for any two subsets of R?

¶ The completeness axiom makes the difference between Q and R. The
equation x2 = 2 has no solution in Q but has a solution in R. This is what we
now prove.

Theorem 2.6.2 Let a ∈ R>0. Then there is an x ∈ R such that x2 = a.

Proof: Replacing a by 1/a if necessary, we may assume that a ≥ 1. Let
A = {x ∈ R≥0 : x2 ≤ a}. For x ∈ A, we have x2 ≤ a ≤ a2. It follows that
0 ≤ a2 − x2 = (a − x)(a + x), so a ≥ x. We proved that a is an upper bound
for A. Let b = lub(A). We will show that b2 = a. Clearly b ≥ 1 > 0.

Assume first that b2 < a. Let ε = min(a−b2

2b+1 , 1) > 0. Then (b + ε)2 =
b2 +2bε+ ε2 ≤ b2 +2bε+ ε = b2 + ε(2b+1) ≤ b2 +(a− b2) = a. Hence b+ ε ∈ A.
But this contradicts the fact that b is the least upper bound for A.

Assume now that b2 > a. Let ε = min( b2−a
2b , b) > 0. Now (b − ε)2 =

b2 − 2bε + ε2 > b2 − 2bε ≥ b2 − (b2 − a) = a. Thus (b − ε)2 > a. Let x ∈ A be
such that b−ε ≤ x ≤ b. (There is such an x because b−ε is not an upper bound
for A). Now we have a < (b− ε)2 ≤ x2 ≤ a (because b− ε ≥ 0), a contradiction.

It follows that b2 = a. ¤

Remark. Since every nonnegative real number has a square root, the order
relation < can be defined from + and × as follows: for all x, y ∈ R,

x < y if and only if ∃z (z 6= 0 ∧ y = x + z2).
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Exercises.

i. Let A ⊆ R be a subset satisfying the following property: “For all a, b ∈ A
and x ∈ R, if a ≤ x ≤ b then x ∈ A”. Show that A is an interval.

ii. Let x3 mean x× x× x. Show that for any x ∈ R there is a unique y ∈ R
such that y3 = x.
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Chapter 3

Other Number Sets

3.1 Natural Numbers and Induction

We say that a subset X of R is inductive if 0 ∈ X and if for all x ∈ X, x+1 is
also in X. For example, the subsets R≥0, R, R \ (0, 1) are inductive sets. The
set R>0 is not an inductive set.

Lemma 3.1.1 An arbitrary intersection of inductive subsets is an inductive
subset. The intersection of all the inductive subsets of R is the smallest inductive
subset of R.

Proof: Trivial. ¤

We let N denote the smallest inductive subset of R. Thus N is the intersection
of all the inductive subsets of R.

The elements of N are called natural numbers.

Theorem 3.1.2 (Induction Principle (1)) Let X be a subset of R. Assume
that 0 ∈ X and for any x ∈ R, if x ∈ X then x + 1 ∈ X. Then N ⊆ X.

Proof: The statement says that X is inductive. Therefore the theorem follows
directly from the definition of N. ¤

Suppose we want to prove a statement of the form “for all x ∈ N, σ(x)”.
For this, it is enough to prove

i) σ(0),
ii) If σ(x) then σ(x + 1).
Indeed, assume we have proved (i) and (ii). let X := {x ∈ R : σ(x)}. By

(i), 0 ∈ X. By (ii), if x ∈ X then x + 1 ∈ X. Thus, by the Induction Principle,
N ⊆ X. It follows that for all x ∈ N, σ(x).

Lemma 3.1.3 i. lub(N) = 0, i.e. 0 is the least element of N.
ii. If x ∈ N \ {0} then x− 1 ∈ N.

27
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iii. N is closed under addition and multiplication, i.e. if x, y ∈ N then
x + y, xy ∈ N.

iv. If 0 < y < 1 then y 6∈ N.
v. Let x ∈ N. If x < y < x + 1, then y 6∈ N.
vi. Let x, y ∈ N. If x < y then x + 1 ≤ y.
vii. Let x, y ∈ N. Assume y < x. Then x− y ∈ N.
viii. If x, y ∈ N and y < x + 1, then either y = x or y < x.

Proof: i. Clearly R≥0 is an inductive set. But N is defined to be the smallest
inductive subset of R. Thus N ⊆ R≥0. Since 0 ∈ N, it follows that 0 is the least
element of N.

ii. Assume that for x ∈ N\{0}, x−1 6∈ N. Then the set N\{x} is an inductive
set (check carefully). Since N is the smallest inductive set, N ⊆ N \ {x} and
x 6∈ N.

iii. Let x, y ∈ N. We proceed by induction y to show that x + y ∈ N, i.e.
letting σ(y) denote the statement x+y ∈ N, we show that σ(0) holds and that if
σ(y) holds then σ(y + 1) holds. If y = 0 then x + y = x + 0 = x ∈ N. Thus σ(0)
holds. Assume now σ(y) holds, i.e. that x+y ∈ N. Then x+(y+1) = (x+y)+1.
Since x + y ∈ N by assumption, we also have x + (y + 1) ∈ N. Thus σ(y + 1)
holds also. Therefore σ(y) holds for all ∈ N.

The proof for the multiplication is left as an exercise.
iv. The set N \ (0, y] is an inductive set as it can be shown easily. Thus

N ⊆ N \ (0, y] and y 6∈ N.
v. We proceed by induction on x. The previous part gives us the case x = 0.

Assume the statement holds for x and we proceed to show that the statement
holds for x + 1. Let x + 1 < y < (x + 1) + 1, then x < y − 1 < x + 1. By
the inductive hypothesis, y − 1 6∈ N. By part (i), either y = 0 or y 6∈ N. Since
0 < x + 1 < y, we cannot have y = 0. Thus y 6∈ N.

vi. Assume not. Then x < y < x + 1, contradicting part (v).
vii. By induction on x. If x = 0, then the statement holds because there is

no y ∈ N such that y < x. Assume the statement holds for x. We will show that
it holds for x+1. Let y ∈ N be such that y < x+1. Then either y < x or y = x.
Now (x + 1) − y = (x − y) + 1. In case y < x, the induction hypothesis gives
x− y ∈ N and so (x + 1)− y ∈ N. In case y = x, we have (x + 1)− y = 1 ∈ N.

viii. By (v), y ≤ x. ¤

Lemma 3.1.4 Any nonempty subset of N has a least element.

Proof: Let ∅ 6= X ⊆ N. Assume X does not have a least element. We will
prove that X = ∅, which is the same as proving that no element of N is in X.
We will first show the following statement φ(n) for all n: “No natural number
m < n is in X”.

Since there are no natural numbers < 0 the statement φ holds for 0.
Assume φ(n) holds. If φ(n + 1) were false, then n would be in X by Lemma

3.1.3.viii and it would be the smallest element of X, a contradiction.
Thus φ(n) holds for any n. Now if a natural number n were in X, since φ(n)

holds, n would be the smallest element of X, a contradiction. ¤
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There is a slightly more complicated version of the inductive principle that
is very often used in mathematics:

Theorem 3.1.5 (Induction Principle (2)) Let X be a subset of N. Assume
that for any x ∈ N,

(∀y ∈ N (y < x → y ∈ X)) → x ∈ X.

Then X = N.

Proof: Assume not. Then N \ X 6= ∅. Let x be the least element of N \ X.
Thus ∀y ∈ N (y < x → y ∈ X). But then by hypothesis x ∈ X, a contradiction.
¤

How does one use Induction Principle (2) in practice? Suppose we have
statement σ(x) to prove about natural numbers x. Given x ∈ N, assuming σ(y)
holds for all natural numbers y < x, one proves that σ(x) holds.This is enough
to prove that σ(x) holds for all x ∈ N.

We immediately give some applications of the Induction Principles.

Theorem 3.1.6 (Archimedean Property) Let ε ∈ R>0 and x ∈ R, then
there is an n ∈ N such that x < nε.

Proof: Assume not, i.e. assume that nε ≤ x for all n ∈ N. Then the set N is
bounded above by x/ε. Thus N has a least upper bound, say a. Hence a − 1
is not an upper bound for N. It follows that there is an element n ∈ N that
satisfies a− 1 < n. But this implies a < n+1. Since n+1 ∈ N, this contradicts
the fact that a is an upper bound for N. ¤

Lemma 3.1.7 Any nonempty subset of N that has an upper bound contains its
least upper bound.

Proof: Let ∅ 6= A ⊆ N be a nonempty subset of N that has an upper bound.
Let x be the least upper bound of A. Since x− 1 is not an upper bound for A,
there is an a ∈ A such that x − 1 < a ≤ x. By parts (iv) and (v) of Lemma
3.1.3.vii a is the largest element of A. ¤

Theorem 3.1.8 (Integral Part) For any x ∈ R≥0, there is a unique n ∈ N
such that n ≤ x < n + 1}.

Proof: Let A = {a ∈ N : a ≤ x}. Then 0 ∈ A and A is bounded above by x.
By Lemma 3.1.7, A contains its least upper bound, say n. Thus n ≤ x < n + 1.
This proves the existence. Now we prove the uniqueness. Assume m ∈ N and
m ≤ x < m + 1. If n < m, then by Lemma 3.1.3.vii, x < n + 1 ≤ m ≤ x, a
contradiction. Similarly m 6< n. Thus n = m. ¤

Theorem 3.1.9 (Division) For any n, m ∈ N, m 6= 0 there are unique q, r ∈
N such that n = mq + r and 0 ≤ r < m.
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Proof: We first prove the existence. We proceed by induction on n (Induction
Principle 2). If n < m, then take q = 0 and r = n. Assume now n ≥ m. By
induction, there are q1 and r1 such that n − m = mq1 + r1 and 0 ≤ r1 < m.
Now n = m(q1 +1)+ r1. Take q = q1 +1 and r = r1. This proves the existence.

We now prove the existence. Assume n = mq + r = mq1 + r1, 0 ≤ r < m
and 0 ≤ r1 < m. Assume q1 > q. Then m > m − r1 > r − r1 = mq1 −mq =
m(q1 − q) ≥ m. This is a contradiction. Similarly q 6> q1. Hence q1 = q. It
follows immediately that r = r1. ¤

Exercises.

i. Show that for any n ∈ N \ {0}, 1 + 3 + . . . + (2n− 1) = n2.

ii. Show that for any n ∈ N\{0}, 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)/6.

iii. Show that for any n ∈ N,

1
1

1
3

+
1
3

1
5

+ . . . +
1

2n− 1
1

2n + 1
=

n

2n + 1
.

iv. Show that for any n ∈ N \ {0}, 1 + 3 + . . . + (2n− 1) = n2.

v. Show that for any n ∈ N\{0}, 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)/6.

vi. Show that for any n ∈ N,

1
1

1
3

+
1
3

1
5

+ . . . +
1

2n− 1
1

2n + 1
=

n

2n + 1
.

vii. Show that for any n ∈ N \ {0}, 12 + 22 + . . . + n2 = n(2n+1)(n+2)
6 .

3.1.1 Exponentiation

Let r ∈ R. For n ∈ N, we define rn, nth power of r, as follows by induction
on n:

r0 = 1 if r 6= 0
r1 = r
rn+1 = rnr

Note that 00 is not defined. We will leave it undefined. Note also that the
previous definition of r2 coincides with the one given above: r2 = r1+1 = r1r =
rr.

Proposition 3.1.10 For r ∈ R and n ∈ N not both zero, we have,
i. (rs)n = rnsn.
ii. rnrm = rn+m.
iii. (rn)m = rnm.
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Proof: Left as an exercise. ¤

Theorem 3.1.11 i. Let r ∈ R≥0 and n ∈ N \ {0}. Then there is a unique
s ∈ R such that sm = r.

ii. Let r ∈ R and let n ∈ N be odd. Then there is a unique s ∈ R such that
sm = r.

Proof: (ii) follows from (i). (i) is proved as in Theorem 2.6.2. Left as an
exercise. ¤

The number s is called the mth-root of r.

3.1.2 Factorial

For n ∈ N, we define n! by induction on n: Set 0! = 1, 1! = 1 and (n + 1)! =
n!(n + 1). This just means that n! = 1× 2× . . .× n.

Exercises.

i. Show that a set with n elements has n! bijections.

ii. Find a formula that gives the number of injections from a set with n
elements into a set with m elements.

iii. Prove that for n ∈ N, the set {0, 1, . . . , n− 1} has 2n subsets. (Hint: You
may proceed by induction on n).

iv. Show that n! > 2n for all n large enough.

v. Show that (x − 1)n ≥ xn − nxn−1 for all x > 1. (Hint: By induction on
n).

vi. Show that if 0 < x < 1 and n > 0 is a natural number, then (1 − x)n ≤
1− nx + n(n−1)

2 x2.

vii. Show that for any n ∈ N \ {0}, 13 + 23 + . . . + n3 = (1 + 2 + . . . + n)2.

viii. Show that for any n ∈ N \ {0}, 14 + 24 + . . . + n4 = n(n+1)(6n3+9n2+n−1)
30 .

n Choose k. For n, k ∈ N and k ≤ n, define

(
n
k

)
=

n!
k!(n− k)!

.
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Exercises.

i. Show that
(

n
k

)
=

(
n

n− k

)
.

ii. Show that
(

n
0

)
=

(
n
n

)
= 1.

iii. Show that
(

n
1

)
= n.

iv. Show that
(

n + 1
k + 1

)
=

(
n
k

)
+

(
n

k + 1

)
.

v. Deduce that
(

n
k

)
∈ N. (Hint: By induction on n).

vi. Show that for n ∈ N and 0 ≤ k ≤ n, a set with n elements has
(

n
k

)

subsets with k elements.

vii. Show that for n ∈ N and k ∈ N with k ≤ n, a set with n elements has(
n
k

)
subsets with k elements.

viii. Show that for x, y ∈ R and n ∈ N,

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k.

(Hint: By induction on n).

ix. Show that
∑n

k=0

(
n
k

)
= 2n.

x. Show that
∑n

k=0(−1)k

(
n
k

)
= 0.

xi. Compute (x + y + z)3 in terms of x, y and z.

xii. Compute (x + y + z)4 in terms of x, y and z.

xiii. Show that for x > 1 and n ∈ N, (x− 1)n ≥ xn − nxn−1.

xiv. Show that for x < 1, (1− x)n ≥ 1− nx.

xv. Show that for n ∈ N\{0}, (1+ 1
n )n ≤ (1+ 1

n+1 )n+1. (See Theorem 6.8.1).
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3.1.3 Sequences

Let X be a set. A sequence in X is just a function x : N −→ X. We let
xn := x(n) and denote x – by listing its values – (xn)n rather than by x. We
can also write

x = (x0, x1, x2, x3, . . . , xn, . . .).

If X = R, we speak of a real sequence. For example
(

1
n+1

)
n

is a real
sequence. We can write this sequence more explicitly by listing its elements:

(1, 1/2, 1/3, 1/4, 1/5, . . . , 1/(n + 1), . . .).

If we write a sequence such as (1/n)n, we will assume implicitly that the
sequence starts with n = 1 (since 1/n is undefined for n = 0). Thus, with this
convention, the above sequence ( 1

n+1 )n may also be denoted by (1/n)n. For

example, the sequence
(

1
n(n−1)

)
n

starts with n = 2 and its elements can be
listed as

(1/2, 1/6, 1/12, 1/20, 1/30, . . . , 1/n(n− 1), . . .).

A sequence (xn)n is called increasing or nondecreasing, if xn ≤ xn+1 for
all n ∈ N. A sequence (xn)n is called strictly increasing, if xn < xn+1 for all
n ∈ N. The terms decreasing, strictly decreasing and nonincreasing are
defined similarly.

Let (xn)n be a sequence. Let (kn)n be a strictly increasing sequence of
natural numbers. Set yn = xkn . Then we say that the sequence (yn)n is a
subsequence of the sequence (xn)n. For example, let xn = 1

n+1 and kn = 2n.
Then yn = xkn = x2n = 1

2n+1 . Thus the sequence (yn)n is

(1, 1/3, 1/5, 1/7, . . . , 1/(2n + 1), . . .).

If we take k0 = 1 and kn = 2n := 2×2× . . .×2 (n times), then the subsequence
(yn)n becomes

(1/2, 1/3, 1/5, 1/9, 1/17, . . . , 1/(2n + 1), . . .).

We now prove an important consequence of the Completeness Axiom:

Theorem 3.1.12 (Nested Intervals Property) Let (an)n and (bn)n be two
real sequences. Assume that for each n, an ≤ an+1 ≤ bn+1 ≤ bn. Then
∩n∈N[an, bn] = [a, b] for some real numbers a and b. In fact a = sup{an : n ∈ N}
and b = infn{an : n ∈ N}.
Proof: Since the set {an : n ∈ N} is bounded above by b0, it has a least upper
bound, say a. Similarly the set {bn : n ∈ N} has a greatest lower bound, say b.
I claim that ∩n∈N[an, bn] = [a, b].

If x ≥ a, then x ≥ an for all n. Likewise, if x ≤ b, then x ≤ bn for all n.
Hence, if x ∈ [a, b], the x ∈ [an, bn] for all n.

Conversely, let x ∈ ∩n∈N[an, bn]. Then an ≤ x ≤ bn for all n. Thus x is
an upper bound for {an : n ∈ N} and a lower bound for {bn : n ∈ N}. Hence
a ≤ x ≤ b. ¤
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Exercises.

i. Can you find an increasing sequence (an)n and a decreasing sequence
(bn)n ∈ N of real numbers with an < bm for all n, m ∈ N such that⋂

n[an, bn) = ∅?
ii. Prove Theorem 3.1.12 for Rn (with closed cubes or balls rather than closed

intervals).

iii. Let G be a subset of R∗ containing 1, closed under multiplication and
inversion. Let Seq(R) be the set of sequences of R. For a = (an)n and
b = (bn)n in Seq(R), set a ≡ b if and only if for some g ∈ G, an = gbn

eventually. Show that ≡ is an equivalence relation on Seq(R). Find the
equivalence classes when G = {1}, G = {1,−1} and G = R∗.

3.2 Integers and Rational Numbers

In N, we can add and multiply any two numbers, but we cannot always subtract
one number from another. We set Z = {n −m : n, m ∈ N}. Now in Z we can
add, multiply and subtract any two numbers. The elements of Z are called
integers.

In Z, we can add, multiply and subtract any two numbers, but we cannot
always divide one number to another. We set Q = {n/m : n, m ∈ Z, m 6=
0}. The elements of Q are called rational numbers. Now in Q we can add,
multiply, subtract and divide any two numbers, with the only exception that
we cannot divide a rational number by0.

We will not go into further detail about these number systems. We trust the
reader in proving any elementary statement about numbers, for example the
decomposition of integers into prime factors.

The structure (Q, +,×, 0, 1, <) satisfies all the axioms A1-4, M1-4, O1-3,
OA, OM. But it does not satisfy the Completeness Axiom C as the following
lemma shows (compare with Theorem 2.6.2).

Lemma 3.2.1 There is no q ∈ Q such that q2 = 2.

Proof: Assume not. Let q ∈ Q be such that q2 = 2. Let a, b ∈ Z be such that
q = a/b. Simplifying if necessary, we may choose a and b so that they are not
both divisible by 2. From (a/b)2 = q2 = 2 we get a2 = 2b2. Thus a2 is even. It
follows that a is even. Let a1 ∈ Z be such that a = 2a1. Now 4a2

1 = a2 = 2b2

and 2a2
1 = b2. Hence b is even as well, a contradiction. ¤

Theorem 3.2.2 Q is dense in R, i.e. for any real numbers r < s, there is a
rational number q such that r ≤ q ≤ s.

Proof: By Theorem 3.1.6, there is a natural number such that 1 < n(r − s).
Now consider the set A := {m ∈ N : m/n < s}. By Theorem 3.1.6 again, A
is a bounded set. By Lemma 3.1.7, A has a maximal element, say m. Thus
m/n < s and m+1

n ≥ s. We compute: s ≤ m+1
n = m

n + 1
n < s + (r − s) = r. ¤
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3.2.1 Exponentiation

Let r ∈ R. At page 30, we have defined rn for n ∈ N (except for 00, which was
left undefined). If r 6= 0, we can extend this definition to Z by r−n = (rn)−1.
Note that the previous definition of r−1 coincides with the one given above.

Proposition 3.2.3 For r ∈ R and n ∈ Z not both zero, we have,
i. (rs)n = rnsn.
ii. rnrm = rn+m.
iii. (rn)m = rnm.

Proof: Left as an exercise. ¤
If r ∈ R≥0 and q ∈ Q, we can also define rq as follows: Let m ∈ N \ {0}, by

Theorem 3.1.11, there is a unique s ∈ R such that sm = r. Set s = r1/m. Now
for n ∈ Z and m ∈ N \ {0}, define rn/m to be (r1/m)n.

Proposition 3.2.4 For r ∈ R≥0 and q, q1, q2 ∈ Q, we have,
i. (rs)q = rqsq.
ii. rq1rq2 = rq1+q2 .
iii. (rq1)q2 = rq1q2 .

Proof: Left as an exercise. ¤

Exercises

i. Show that if q ∈ Q is a square in Q, then 2q is not a square in Q.

ii. Let a < b be real numbers. Show that for each n ∈ N, there are rational
numbers an < bn such that ∩n[an, bn] = [a, b]. Hint: See Theorem 3.2.2.

iii. Let a < b be real numbers. Show that for each n ∈ N, there are rational
numbers an < bn such that ∩n(an, bn) = [a, b]. Hint: See the exercise
above.

iv. Let a < b be real numbers. Show that for each n ∈ N, there are rational
numbers an < bn such that ∪n[an, bn] = (a, b). Show that if a and b are
nonrational numbers (an and bn are still rational numbers), then we can
never have ∪n[an, bn] = [a, b]. Hint: See the exercise above.

v. For each n ∈ N, let an and bn be such that an+1 < an < bn < bn+1. Show
that ∪n(an, bn) is an open interval (bounded or not).

vi. Show that for all rational number q > 0, there is a rational number x for
which 0 < x2 < q.

vii. a) Show that if x and y are two nonnegative rational numbers whose sum
is 1, then a ≤ ax + by ≤ b.

b) Let q be a rational number such that a ≤ q ≤ b. Show that there
are two nonnegative rational numbers x and y such that x + y = 1 and
q = ax + by.

c) Show that the numbers x and y of part b are unique.
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viii. Show that for any x ∈ R, there is a unique n ∈ Z such that n ≤ x < n+1}.
ix. Show that for any n, m ∈ Z, m 6= 0 there are unique q, r ∈ Z such that

n = mq + r and 0 ≤ r < m.

x. Let A` and Ar be two nonempty subsets of Q such that

a) A` ∪Ar = Q.

b) A` ∩Ar = ∅.
c) Any element of A` is less than any element of Ar.

Show that sup(A`) = inf(Ar).

3.3 Uniqueness of the Real Number System

We assumed without a proof that there was a structure (R, +,×, <, 0, 1) that
satisfies all our axioms. Assuming there is really such a structure, can there
be other structures satisfying the axioms of real numbers? Of course! Just
rename the elements of R and define the addition, the multiplication and the
order accordingly to get another structure that satisfies the same axioms. For
example, the structure (R′, +′,×′, <′, 0′, 1′) defined by

R′ = {0} × R
0′ = (0, 0)
1′ = (0, 1)
(0, r) +′ (0, s) = (0, r + s)
(0, r)×′ (0, s) = (0, r × s)
(0, r) <′ (0, s) ⇐⇒ r < s

satisfies the axioms of R.
One might argue that this structure we have just defined is not very different

from the old one, that all we did was renaming the element r of R by (0, r).
Indeed... And that is all one can do as we will soon prove.

Note that in the above example, the map f : R −→ R′ defined by f(r) =
(0, r) is a bijection that has the following properties:

f(0) = 0′

f(1) = 1′

f(r + s) = f(r) +′ f(s)
f(r × s) = f(r)×′ f(s)
r < s ⇐⇒ f(r) <′ f(s)

for all r, s ∈ R.
We will show that if (R′,+′,×′, <′, 0′, 1′) is a structure that satisfies all the

axioms of real numbers then there is a bijection f : R −→ R′ that satisfies
the above properties. This means that R′ is just R with its elements renamed:
r ∈ R is named f(r). Note also that all the theorems we have proved for
(R, +,×, <, 0, 1) are also valid for (R′, +′,×′, <′, 0′, 1′). In particular R′ has a
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smallest inductive set N′, contains a dense subset Q′ similar to Q in R (Theorem
3.2.2) etc.

Theorem 3.3.1 (Uniqueness of the Real Number System) Let

(R′, +′,×′, <′, 0′, 1′)
be a structure that satisfies all the axioms of the real numbers. Then there is a
unique nonconstant map f : R −→ R′ such that for all r, s ∈ R,

(1) f(r + s) = f(r) +′ f(s) (f is additive)
(2) f(r × s) = f(r)×′ f(s) (f is multiplicative)

Furthermore such a map must be a bijection and must also satisfy

(3) r < s ⇐⇒ f(r) <′ f(s) (f is order preserving)
(4) f(0) = 0′

(5) f(1) = 1′.

Proof: 1. We first prove that a map that satisfies (1) and (2) must be a
bijection that satisfies (3), (4), (5).

1a. f(0) = 0′. A map f that satisfies (1) must send 0 to 0′, because
0′ +′ f(0) = f(0) = f(0 + 0) = f(0) +′ f(0) and so by simplifying we get
f(0) = 0′.

1b. f(−x) = −f(x). (Here the sign − on the right hand side stands for
the additive inverse in R′ for the binary operation +′). Indeed, 0′ = f(0) =
f(x + (−x)) = f(x) +′ f(−x) and so f(−x) = −f(x).

1c. f is one to one. Assume f(x) = 0′ for some x ∈ R \ {0}. We will get
a contradiction. We compute: f(1) = f(x−1×x) = f(x−1)×′ f(x) = f(x−1)×′
0′ = 0′ and so, for all r ∈ R, f(r) = f(r × 1) = f(r) ×′ f(1) = f(r) ×′ 0′ = 0′,
contradicting the fact that f is nonconstant. Thus f(x) = 0′ implies x = 0.

We can now show that f is one to one. Assume f(x) = f(y). Then 0′ =
f(x)−′ f(y) = f(x) +′ (−f(y)) = f(x) +′ f(−y) = f(x + (−y)) = f(x− y). By
above x− y = 0, and x = y. Hence f is one to one.

1d. f(1) = 1′. Since f(1) = f(1× 1) = f(1)×′ f(1), f(1) is either 0′ or 1′.
But since f(0) = 0′ and f is one to one, f(1) = 1′.

1e. f(N) = N′. We can show by induction on n that f(n) ∈ N′. Thus
f(N) ⊆ N′. It is also clear that f(N) is an inductive subset of N′. Hence
f(N) = N′.

1f. f(Q) = Q′. By 1e and 1b, f(Z) = Z′. Let n/m ∈ Q with n, m ∈ Z,
m 6= 0. Then f(m) ×′ f(n/m) = f(m × n/m) = f(n) ∈ f(Z) = Z′. Since
f(m) ∈ f(Z) and since f(m) 6= 0 (because m 6= 0, see 1c), from this we get
f(n/m) ∈ Q′. Thus f(Q) ⊆ f(Q′). Since f(Z) = Z′, it is also easy to show that
f(Q) = Q′.

1g. If x < y in R then f(x) <′ f(y) in R′. Note first that, in R, x ≤ y if
and only if x + z2 = y for some z ∈ R. The same statement holds in R′.

Assume x, y ∈ R are such that x < y. Then there is a z ∈ R \ {0} such that
y = x + z2. Therefore f(y) = f(x) +′ f(z)2 (here f(z)2 is the squaring in R′,
i.e. f(z)2 = f(z)×′ f(z)). Since f(z) 6= 0′, we get f(x) <′ f(y).
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1h. f is onto. Let r ∈ R′ \Q′. Consider the sets

L′r = {q ∈ Q′ : q <′ r} = Q′ ∩ (−∞, r)

and
R′r = {q ∈ Q′ : r <′ q} = Q′ ∩ (r,∞).

The sets L′r and R′r partition Q′. Since f : Q −→ Q′ is an order preserving bi-
jection, f−1(L′r) and f−1(L′r) partition Q into two nonempty convex subsets (of
Q) and every element of f−1(L′r) is strictly less than every element of f−1(R′r).
Then sup(f−1(L′r)) = inf(f−1(R′r) (Exercise x, page 36). Let r be this number.
Thus r = sup(f−1(L′r)) = inf(f−1(R′r). We claim that f(r) = r′. If f(r) < r′,
then (because Q′ is dense in R) there is a q′ ∈ Q′ such that f(r) < q′ < r′.
Thus q′ ∈ L′r. Let q ∈ Q be such that f(q) = q′. Thus q ∈ f−1(L′r). So q < r,
hence q′ = f(q) < f(r), a contradiction. Thus f(r) ≥ r′. Similarly f(r) ≤ r′.
Therefore f(r) = r′.

2. Existence. We now prove the existence of the map f .
We define our map f first on N. We let f(0) = 0′ and assuming f(n) has

been defined for n ∈ N, we define f(n + 1) to be f(n) +′ 1′. Thus by definition,

f(0) = 0′

f(n + 1) = f(n) +′ 1′

By induction on n, one can prove that for all n ∈ N, f(n) ∈ N′. Also f(N)
is clearly an inductive subset of R. Hence f(N) = N′.

We claim that f : N −→ R′ is one to one. Assuming f(n) = f(m) for
n, m ∈ N, we will show that n = m. We proceed by induction on n. If n = 0,
then 0′ = f(0) = f(n) = f(m), therefore, by the very definition of f , m cannot
be of the form k + 1 for some k ∈ N, i.e. m = 0′. If n = k + 1 for some k ∈ N,
then f(k)+′ 1′ = f(k +1) = f(n) = f(m), therefore m 6= 0 and so m = `+1 for
some ` ∈ N. Now f(k) +′ 1′ = f(m) = f(` + 1) = f(`) +′ 1′ and so f(k) = f(`).
By induction k = ` and n = k + 1 = ` + 1 = m, proving then f : N −→ R is one
to one.

We will denote the image of n ∈ N under f by n′, i.e. we let f(n) = n′.
The proofs that for n, m ∈ N, f(n + m) = f(n) +′ f(m) and f(n ×m) =

f(n) ×′ f(m) are easy as well and are left as an exercise. From the additivity
of f , it follows that f must preserve the order on N.

Now consider the subset

Q′ := {a/b : a ∈ N′ and b ∈ N′ \ {0}
of R′. Here a/b stands for a ×′ b−1 and b−1 denotes the multiplicative in-
verse of b ∈ R′ with respect to ×′. We extend f : N −→ R′ to Q by setting
f(n/m) = f(n)/f(m) ∈ Q′ ⊆ R′. We should first check that this map is well-
defined, meaning that n/m = p/q for n, m, p, q ∈ N should imply f(n)/f(m) =
f(p)/f(q). Indeed, if n/m = p/q for n, m, p, q ∈ N, then nq = mp, so
f(n)f(q) = f(nq) = f(mp) = f(m)f(p) and f(n)/f(m) = f(p)/f(q). Thus
f : Q −→ Q′ ⊆ R′. We still denote by f this extended map.
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f : Q −→ Q′ is certainly onto: If a/b ∈ Q′ with a, b ∈ N, then f(n) = a and
f(m) = b for some n, m ∈ N and so f(n/m) = f(n)/f(m) = a/b.

It is also easy to check that f : Q −→ R′ is one to one, additive, multiplicative
and order preserving.

We now extend f to R. Let r ∈ R. Consider the disjoint sets

Lr = {q ∈ Q : q ≤ r}
and

Rr = {q ∈ Q : r < q}.
Note that the sets Lr and Rr partition Q and they do define r, as r is both
supLr and inf Rr. Consider the sets f(Lr) and f(Rr). Since f : Q −→ R
is order preserving, any element of f(Lr) is strictly less than any element of
f(Rr). Also, since f(Q) = Q′, the sets f(Lr) and f(Rr) partition Q′. Therefore
sup f(Lr) = inf f(Rr). We let f(r) = sup f(Lr) = inf f(Rr).

It is a matter of writing to show that f : R −→ R′ satisfies all the required
properties.

3. Uniqueness. Assume f : R −→ R′ and g : R −→ R′ are such maps.
Then g−1 ◦ f : R −→ R is such a map as well. Therefore it is enough to show
that a nonconstant map f : R −→ R satisfying (1) and (2) (therefore also (3),
(4) and (5)) is IdR. One can show quite easily (as above) that f is identity on
Q. Since Q is dense in R, it follows that f = IdR. ¤

3.4 Complex Numbers

Let C = R×R. On C we define two operations called addition and multiplication
as follows:

Addition : (x, y) + (z, t) = (x + z, y + t)
Multiplication : (x, y)(z, t) = (xz − yt, xt + yt)

It is easy to check that the first nine axioms about the addition and multiplica-
tion of real numbers do hold in C:

• A1, A2, A3, A4 (with OC = (0, 0) as the additive identity and (−x,−y)
as the additive inverse of (x, y)),

• M1, M2, M3, M4 (with 1C := (1, 0) as the multiplicative identity and
( x

x2+y2 , −y
x2+y2 ) as the multiplicative inverse of the nonzero element (x, y))

and

• D

hold. It can be checked that no order satisfying the axioms O1, O2, O3, OA
and OM can be defined on C (See Exercise x, page 42). Thus C is a field which
is not an ordered field.

The set C together with the addition and multiplication is called the field
of complex numbers, each element of C is called a complex number.
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The following property is easy to check

(∗) (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0)(0, 1).

Let us consider the map α : R −→ C given by α(r) = (r, 0). Then the
following hold:

α is one to one
α(r + s) = α(r) + α(s)
α(0) = 0C
α(−r) = −α(r)
α(rs) = α(r)α(s)
α(1) = 1C
α(r−1) = α(r)−1

Thus the map α transports the structure (R, +,×, 0, 1) onto the substructure
(α(R), +,×, 0C, 1C) of (C, +,×, 0C, 1C); in other words, the only difference be-
tween the two structures (R, +,×, 0, 1) and (α(R), +,×, 0C, 1C) is the names of
the objects, what is called r in the first one is called (r, 0) in the second.

The property (∗) above now can be written as

(∗∗) (x, y) = α(x) + α(y)(0, 1)

We also note the following:

α(r)(x, y) = (rx, ry).

From now on, we will identify R and its image α(R) via the map α, i.e.
we will let r = α(r) = (r, 0). Although r 6= (r, 0) = α(r), we will make the
identification r = α(r) for the sake of notational simplicity. In particular, we
identify 0 and 0C, as well as 1 with 1C. In this way we will see R as a subset of
C. Thus the two properties above are now written as

(∗ ∗ ∗) (x, y) = x + y(0, 1)

r(x, y) = (rx, ry)

Let i = (0, 1). Note that

i2 = ii = (0, 1)(0, 1) = (−1, 0) = −1,

and that for any (x, y) ∈ C, we have

(∗ ∗ ∗∗) (x, y) = x + yi

From now on, we will represent a complex number z as x + iy (or as x + yi)
for x, y ∈ R rather than as the pair (x, y). Note that, given z ∈ C, the real
numbers x, y for which z = x + iy are unique (this would not have been so
if we assumed x and y were in C rather than in R). The addition and the
multiplication of complex numbers with this notation become:

(x + yi) + (z + ti) = (x + z) + (y + t)i
(x + yi)(z + ti) = (xz − yt) + (xt + yz)i
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As is the custom, we will write x− yi instead of x + (−y)i.
The inverse of a nonzero complex number is given by the formula

(x + yi)−1 =
x

x2 + y2
− y

x2 + y2
i.

Conjugation. We consider the following map : C −→ C given by x + yi =
x− yi (here x, y ∈ R). For every α, β ∈ C, the following properties are easy to
verify:

α + β = α + β

αβ = α β

α−1 = α−1

Also,
α = α if and only if α ∈ R.

The complex number a is called the conjugate of α.

Norm. If α = x + yi with x, y ∈ R then it is easy to check that

αa = x2 + y2 ∈ R≥0.

Thus we can take its square root. We define

|α| :=
√

αα =
√

x2 + y2.

Hence
|α|2 = x2 + y2.

The nonnegative real number |α| is called the norm —indexnorm of a com-
plex number of α. Note that if α ∈ R ⊆ C, then the norm of α is equal to the
absolute value of α, so that the two meanings that we have given to the notation
|α| coincide.

For all α, β ∈ C, we have the following properties:

P1 |α| ≥ 0 and |α| = 0 if and only if α = 0
P2 |αβ| = |α| |β|

Lemma 3.4.1 For all α, β ∈ C,
i. |α + β| ≤ |α|+ |β|,
ii. ||α| − |β|| ≤ |α− β|.

Proof: i. On the one hand, |α + β|2 = (α + β)α + β = (α + β)(α + β) =
αa + αβ + aβ + ββ = |α|2 + αβ + aβ + |β|2.

On the other hand, (|α|+ |β|)2 = |α|2 + 2|α||β|+ |β|2.
Thus we need to prove that αβ +αβ ≤ 2|α||β|, or that αβ +αβ ≤ 2

√
ααββ.

Setting γ = αβ, this means that it is enough to prove that γ + γ ≤ 2
√

γγ for all
γ ∈ C. Set γ = x + yi where x, y ∈ R. Then γ + γ = 2x and

√
γγ =

√
x2 + y2.

Thus the statement “γ +γ ≤ 2
√

γγ for all γ ∈ C” is equivalent to the statement
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“x ≤
√

x2 + y2 for all x, y ∈ R. We will prove this last inequality. Since
x2 ≤ x2 + y2, taking the square roots of both sides, we infer |x| ≤

√
x2 + y2.

Thus x ≤ |x| ≤
√

x2 + y2.
ii. From part (i) we have |α| = |β +(α−β)| ≤ |β|+ |α−β|. Thus |α|− |β| ≤

|α− β|.
Again from part (i), we have |β| = |α+(β−α)| ≤ |α|+ |β−α| = |α|+ |α−β|.

Thus |β| − |α| ≤ |α− β|.
These two inequalities mean exactly that ||α| − |β|| ≤ |α− β|. ¤

Exercises.

i. Show that (
√

3
2 + 1

2 i)3 = i.

ii. Show that (
√

2
2 +

√
2

2 i)2 = i.

iii. Show that for any complex number α there is a polynomial p(X) = aX2 +
bX + c ∈ R[X] such that p(α) = 0. (Note: a, b and c should be real
numbers).

iv. Show that for every α ∈ C there is a β ∈ C such that β2 = α.

v. Let α, β, γ ∈ C. Assume that not both α and β are zero. Show that the
equation αx2 + βx + γ = 0 has a solution in C. Show that this equation
has at most two solutions in C. (Hint: Recall the quadratic formula and
its proof).

vi. Show that for every α ∈ C and every n ∈ N \ {0}, there is a β ∈ C such
that β2n

= α.

vii. Let a0, a1, . . . , an ∈ R. Show that if α ∈ C is a solution of a0 + a1x +
. . . + anxn then α is also a solution of this equation.

viii. Show that there is a bijection between {α ∈ C : |α| > 1} and {α ∈ C : 0 <
|α| < 1}.

ix. For α, β ∈ C, define the distance, d(α, β) by d(α, β) = |α−β|. Show the
following:

i. d(α, β) = 0 if and only if α = β,

ii. d(α, β) = d(β, α),

iii. d(α, β) ≤ d(α, γ) + d(γ, β).

x. Show that no order satisfying the axioms O1, O2, O3, OA and OM can
be defined on C (Hint: See Corollary 2.4.5).
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Real Vector Spaces

Let Rn denote the cartesian product of n copies of R, i.e.

Rn = {(r1, . . . , rn) : ri ∈ R for i = 1, . . . , n}.
The elements of Rn will be called vectors. We will denote a vector by ~x, ~v,
~a etc. To denote the vectors we will use the following convention as a rule:
~x = (x1, . . . , xn), ~v = (v1, . . . , vn), ~a = (a1, . . . , an).

The vector (0, . . . , 0) will be denoted by ~0.
Given ~v = (v1, . . . , vn), we let −~v = (−v1, . . . ,−vn).
Given ~v = (v1, . . . , vn) and ~w = (w1, . . . , wn), we define the sum ~v + ~w of ~v

and ~w as
~v + ~w = (v1 + w1, . . . , vn + wn).

Given ~v = (v1, . . . , vn) and r ∈ R, we define the scalar multiplication of
r ∈ R with the vector ~v as

r~v = (rv1, . . . , rvn).

With these definitions, letting V = Rn, the following hold:

A1. Additive Associativity. For any ~x, ~y, ~z ∈ V , ~x+(~y +~z) = (~x+~y)+~z.

A2. Additive Identity Element. There is a vector ~0 such that for any
~x ∈ V , ~x +~0 = ~0 + ~x = ~x.

A3. Additive Inverse Element. For any ~x ∈ V there is a ~y ∈ V (namely
−~x) such that ~x + ~y = ~y + ~x = ~0.

A4. Commutativity of the Addition. For any ~x, ~y ∈ V , ~x + ~y = ~y + ~x.

B1. Associativity of the Scalar Multiplication. For any r, s ∈ R and
~x ∈ V , r(s~x) = (rs)~x.

43
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B2. Distributivity of the Scalar Multiplication 1. For any r, s ∈ R and
~x ∈ V , (r + s)~x = r~x + s~x.

B3. Distributivity of the Scalar Multiplication 2. For any r ∈ R and
~x, ~y ∈ V , r(~x + ~y) = r~x + r~y.

B4. Identity. For any ~x ∈ V , 1~x = ~x.

Note that the properties A1, A2, A3, A4 are the same as in section 2.1. Thus
(Rn, +,~0) is a commutative group. A set V on which a binary operation + and
a ”scalar multiplication” R × V −→ V that sends a pair (r,~v) of R × V to
an element of V (denoted by r~v) satisfying the properties A1-A4 and B1-B4 is
called a vector space over R or a real vector space. More precisely, a real
vector space is a triple (V, +,R× V −→ V ) satisfying the properties above.

If in the above axioms R is replaced by a field F , the resulting structure is
called a vector space over F . Note that any vector space over R is also a
vector space over the field Q of rational numbers. But in this monograph, we
will only need real vector spaces.

As with the real numbers, one can show that the element ~0 of a vector space
satisfying A2 is unique. One can also show that, given ~x ∈ V , the element ~y that
satisfies A3 is unique. We set ~y = −~x. Of course all the consequences of Axioms
A1-A4 investigated in Section 2.1 hold. For example, we have ~(x) = −(−~x).

Examples.

i. Let V = {(x, y, z, t) ∈ R4 : x − 2y + 3t = 0}. Then V is a vector space
with the usual componentwise addition and scalar multiplication.

ii. R itself is a real vector space.

iii. The set C of complex numbers is a vector space over R.

iv. The singleton set {a} is a vector space over R if we define a + a = a and
ra = a for any r ∈ R. We will denote a by 0 of course.

v. Let R[x] be the set of real polynomials in x, i.e.

R[x] = {a0 + a1x + . . . + anxn : ai ∈ R}.
(We will avoid the mathematical definition of the polynomials. Keep in
mind only the fact two polynomials a0 + a1x + . . . + anxn and b0 + b1x +
. . . + bmxm are equal if and only if n = m and ai = bi for all i = 0, . . . , n.
The precise mathematical definition of polynomials is given in Math 211).
We define the addition of two polynomials

p(x) = a0 + a1x + . . . + anxn

and
q(x) = b0 + b1x + . . . + bmxm
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as
p(x) + q(x) = (a0 + b0) + (a1 + b1)x + . . . + (ak + bk)xk

where k = max(n,m) and ai = 0 in case i > n and bj = 0 in case m > j.
For example

(1− 2x2 + x3) + (3 + x + 2x2 + 3x5 + x6) = 4 + x + x3 + 3x5 + x6.

And we define the scalar multiplication of a real number r with a polyno-
mial a0 + a1x + . . . + anxn as

r(a0 + a1x + . . . + anxn) = ra0 + ra1x + . . . + ranxn.

With these definitions, it is easy to check that R[x] satisfies A1-A4 and
B1-B4, thus is a real vector space.

2. ¶ Consider the set R(x) := {p/q : p ∈ R[x], q ∈ R[x] \ {0}} with
the convention that p/q = p1/q1 if and only if pq1 = p1q. We define the
addition and scalar multiplication as expected:

p

q
+

p1

q1
=

pq1 + p1q

qq1

r
p

q
=

rp

q

for p, q, p1, q1 ∈ R[x] and r ∈ R.

With these definitions, it is easy to check that R(x) satisfies A1-A4 and
B1-B4, thus is a real vector space. (You may want to check that R(x) is
a field).

vi. Let X be any set and V any real vector space. Let Func(X,V ) be the set of
all functions from the set X into V . For two functions f, g ∈ Func(X,V )
and a real number r ∈ R, we define the functions f + g, rf ∈ Func(X,V )
as follows

(f + g)(x) = f(x) + g(x),

(rf)(x) = r · f(x),

for all x ∈ X. With these definitions the set Func(X, V ) becomes a real
vector space.

The element ~0 of Func(X,V ) corresponds to the function that sends every
element of X to ~0 ∈ V .

Given f ∈ Func(X, V ), the element −f ∈ Func(X, V ) that satisfies A3 is
defined by (−f)(x) = −f(x).

vii. Let V be a vector space. Consider the set Seq(V ) of sequences from V .
Thus – by definition – an element v ∈ Seq(V ) is of the form (vn)n∈N
where vn ∈ V for all n ∈ N. For two sequences v = (vn)n and w = (wn)n

and a real number r, set v + w = (vn + wn)n and rv = (rvn)n. Then
Seq(V ) becomes a vector space. The zero element ~0 of Seq(V ) is the zero
sequence that consists of zero vectors and −(vn)n = (−vn)n.
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viii. Let V be a vector space. Consider the set Seqf (V ) of sequences from V
which are zero after a while. Thus – by definition – an element v ∈ Seq(V )
is of the form (vn)n∈N where vn ∈ V for all n ∈ N and for which vn = ~0
for n large enough, i.e. for n ≥ N for certain N (that depends on v).
For two such sequences v = (vn)n and w = (wn)n and a real number
r, set v + w = (vn + wn)n and rv = (rvn)n. Then Seqf (V ) becomes a
vector space. The zero element ~0 is the zero sequence of zero vectors and
−(vn)n = (−vn)n.

Exercises. Suggestion: First do Exercise i.

i. Let V be a real vector space. Let W be a subset of V . Suppose that
W is closed under addition and scalar multiplication, i.e. suppose that
w + w′ ∈ W for all w, w′ ∈ W and rw ∈ W for all r ∈ R and w ∈ W .
Show that W is a vector space. Such a subset is called a subspace of V .

ii. Are the following sets vector space under the usual addition and scalar
multiplication?

{(x, y, z) ∈ R3 : x + y + z = 0}
{(x, y, z) ∈ R3 : x + y + z = 1}
{(x, y, z) ∈ R3 : xyz = 0}
{(x, y, z) ∈ R3 : x2 + y2 + z2 = 0}
{(x, y, z) ∈ R3 : x3 + y3 + z3 = 0}
{(x, y, z) ∈ R3 : xyz ≥ 0}
{(x, y, z) ∈ R3 : x ∈ Q}

iii. Which of the following are not vector spaces over R (with the componen-
twise addition and scalar multiplication) and why?

V1 = {(x, y, z) ∈ R3 : xy ≥ 0}
V2 = {(x, y, z) ∈ R3 : 3x− 2y + z = 0}
V3 = {(x, y, z) ∈ R3 : xyz ∈ Q}
V4 = {(x, y) ∈ R3 : x + y ≥ 0}
V5 = {(x, y) ∈ R2 : x2 + y2 = 0}
V6 = {(x, y) ∈ C2 : x2 + y2 = 0}

iv. Are the following sets vector space under the usual addition of functions
and scalar multiplication of a function with a real number?

{f ∈ Func(X,R) : f(x) = 0} where x is a fixed element of X
{f ∈ Func(R,R) : f(x) = 0 for any x ∈ (0, 1)}
{f ∈ Func(R,R) : f(0) ≥ 0}

v. Let V and W be two real vector spaces. Consider the set Hom(V,W )
of functions f : V −→ W such that f(v1 + v2) = f(v1) + f(v2) and
f(rv) = rf(v) for all v, v1, v2 ∈ V, r ∈ R Show that Hom(V, W ) is vector
space under the usual addition of functions and scalar multiplication (see
Example vi, page 45).
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vi. ¶ Show that R(x) is a field. Find all orders on R(x) that makes it an
ordered field.
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Chapter 5

Metric Spaces

5.1 Examples.

Real Numbers and Absolute Value. Let us consider the function d :
R × R −→ R≥0 defined by d(x, y) = |x − y|. This function has the follow-
ing properties: For all x, y, z ∈ R,

i. d(x, y) = 0 if and only if x = y,
ii. d(x, y) = d(y, x),
iii. d(x, y) ≤ d(x, z) + d(z, y).
We will see several examples of sets X together with a function d : X×X −→

R≥0 satisfying the three properties above.

Euclidean Spaces. For ~x = (x1, . . . , xn) ∈ Rn and ~y = (y1, . . . , yn) ∈ Rn

define
d(~x, ~y) =

√
|x1 − y1|2 + . . . + |xn − yn|2.

We will show that d satisfies the properties i, ii, iii stated above. The first two
are immediate. It will take us some time to prove the third equality.

For two vectors ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn), define their scalar
product as

~x~y =
n∑

i=1

xiyi.

We have for all ~x, ~y, ~z ∈ Rn and α, β ∈ R,

C1. (α~x + β~y)~z = α~x~z + β~y~z
C2. ~x~y = ~y~x
C3. ~x(α~y + β~z) = α~x~y + β~x~z

(C1 and C2 are direct consequences of the definition. C3 follows from C1 and
C2.) Note that ~x~x ≥ 0, so we can take its square root. Let ‖~x‖ = (~x~x)1/2. It is

49
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easy to show from the definition that, for all ~x ∈ Rn and α ∈ R, we have

C4. ‖~x‖ ≥ 0 ,and ‖~x‖ = 0 if and only if ~x = 0
C5. ‖α~x‖ = |α|‖~x‖

Now we show that for all ~x ∈ Rn we have

C6. |~x~y| ≤ ‖~x‖ ‖~y‖

Indeed, let ~z = α~x−β~y where α = ~x~y and β = ‖~x‖2. Use ‖~z‖2 ≥ 0 to prove C6.
Details: 0 ≤ (α~x− β~y)(α~x− β~y) = α2~x~x− 2αβ~x~y + β2~y~y = α2‖~x‖2 − 2αβ~x~y +
β2‖~y‖2 = (~x~y)2‖~x‖2−2(~x~y)2‖~x‖2 +‖~x‖4‖~y‖2 = −(~x~y)2‖~x‖2 +‖~x‖4‖~y‖2. Hence
(~x~y)2‖~x‖2 ≤ ‖~x‖4‖~y‖2. Simplifying we get (~x~y)2 ≤ ‖~x‖2‖~y‖2. Taking the square
roots we get ~x~y ≤ ‖~x‖ ‖~y‖. This proves C6.

Now we prove
C7. ‖~x + ~y‖ ≤ ‖~x‖+ ‖~y‖

For this we use C6 and the fact that

‖~x + ~y‖2 = ‖~x‖2 + 2~x~y + ‖~y‖2.

Details: ‖~x+~y‖2 = (~x+~y)(~x+~y) = ‖~x‖2 +2~x~y +‖~y‖2 ≤ ‖~x‖2 +2|~x~y|+‖~y‖2 A6≤
‖~x‖2 + 2|‖~x‖ ‖~y‖+ ‖~y‖2 = (‖~x‖+ ‖~y‖)2. Thus ‖~x + ~y‖2 ≤ (‖~x‖+ ‖~y‖)2. Taking
the square roots we finally obtain C7.

We now remark that d(~x, ~y) = ‖~x−~y‖1/2 and we prove the third property (iii)
above: d(~x, ~z) = ‖~x−~z‖1/2 = (‖(~x−~y)+(~y−~z)‖)1/2 C7= (‖~x−~y‖+‖~y−~z‖)1/2 ≤
‖~x− ~y‖1/2 + ‖~y − ~z‖1/2 = d(~x, ~y) + d(~y, ~z).

Thus we have proved the following result.

Theorem 5.1.1 For ~x = (x1, . . . , xn) ∈ Rn and ~y = (y1, . . . , yn) ∈ Rn define

d(~x, ~y) =
√
|x1 − y1|2 + . . . + |xn − yn|2.

Then the couple (Rn, d) satisfies the properties i, ii, iii above.

5.2 Definition and Further Examples

A set X together with a function d : X × X −→ R≥0 is said to be a metric
space if for all x, y, z ∈ X,

MS1. d(x, y) = 0 if and only if x = y.
MS2. d(x, y) = d(y, x).
MS3. (Triangular Inequality.) d(x, y) ≤ d(x, z) + d(z, y).

The function d is called a metric or a distance function on X.
We will give several examples of metric spaces.
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Euclidean Metric. By Theorem 5.1.1, (Rn, d) where

d(~x, ~y) =
√
|x1 − y1|2 + . . . + |xn − yn|2

is a metric space, called the Euclidean metric space, or sometimes the usual
metric on Rn.

Metric on a Product. The following theorem will be proven much later
(Lemma 14.5.4), when we will give a sense to the term xr for x ∈ R≥0 and
r ∈ R\{0}. In any event, the theorem below makes sense for p ∈ N even at this
point.

Theorem 5.2.1 For i = 1, . . . , n, let (Xi, δi) be a metric space. Let X =
X1 × . . . × Xn. Let p ≥ 1 be any real number. For x, y ∈ X let dp(x, y) =
(
∑n

i=1 δi(xi, yi)p)1/p. Then (X, dp) is a metric space.

If we take Xi = R and p = 2 in the theorem above with di(x, y) = |x − y|,
we get the Euclidean metric on Rn.

Unless stated otherwise, when we speak about the product of finitely metric
spaces, we will always take p = 2.

Induced Metric. Any subset of a metric space is a metric space with the
same metric, called the induced metric. More precisely we define the induced
metric as follows: Let (X, d) be a metric space. Let Y ⊆ X. Then (Y, d|Y×Y )
is a metric space. We say that the metric of Y is induced from that of X.

Sup Metric. For i = 1, . . . , n, let (Xi, di) be a metric space and let X =
X1 × . . .×Xn. For x, y ∈ X, set

d∞(x, y) = max{di(xi, yi) : i = 1, . . . , n}.
Then (X, d∞) is a metric space as it can be checked easily.

Discrete Metric. Let X be any set. For x, y ∈ X, set

d(x, y) =
{

1 if x 6= y
0 if x = y

Then (X, d) is a metric space. This metric on the set X is called the discrete
metric.

p-adic Metric. Let X = Z and p a positive (prime) integer. For distinct
x, y ∈ Z, set d(x, y) = 1/pn if pn divides x− y but pn−1 does not divide x− y.
Set d(x, x) = 0. Then (X, d) satisfies the properties i, ii and iii stated above. In
fact it satisfies the stronger triangular inequality d(x, y) ≤ max{d(x, z), d(z, y)}.
Such a metric is called ultrametric. Even further d(x, y) = max{d(x, z), d(z, y)}
if d(x, z) 6= d(y, z). It follows that any triangle in this space is isosceles.
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Metric on Sequences. Let X be any set. Consider the set Seq(X) of se-
quences from X. Thus an element x ∈ Seq(X) is of the form (xn)n∈N where
xn ∈ X for all n ∈ N. For two distinct sequences x = (xn)n and y = (yn)n, set
d(x, y) = 1/2n if n is the first natural number where xn 6= yn. Then (Seq(X), d)
is a metric space. Note that, in this metric, the maximum distance between two
sequences is 1.

We end this subsection with a simple but useful calculation.

Proposition 5.2.2 In a metric space (X, d), for all x, y, z ∈ X, we have
|d(x, z)− d(z, y)| ≤ d(x, y).

Proof: We have to show that d(x, z)− d(z, y) ≤ d(x, y) and d(z, y)− d(x, z) ≤
d(x, y).

We have d(x, z) ≤ d(x, y) + d(y, z) = d(x, y) + d(z, y), so the first inequality
follows. The second one is similar and is left as an exercise. ¤

Exercises.

i. Show that the discrete metric is ultrametric.

ii. Show that the metric on the set of sequences defined above is an ultra-
metric.

5.3 Normed Real Vector Spaces and Banach Spaces
and Algebras

Most of what one can say about R can be said mot à mot about Rn and C, and
most of what one can say about Rn and C can be said more generally (mot à
mot again) for Banach spaces and algebras, concepts that generalize R, Rn, C
and Cn and that will be defined in this section. Since the proofs are exactly the
same, we prefer treat the most general case. Readers who will be psychologically
affected by this generality may prefer to read this treatise by considering only
the cases of R and Rn, and sometimes C.

A normed real vector space is a vector space V together with a map
| | : V −→ R such that

NVS1. For all v ∈ V , |v| ≥ 0.
NVS2. For all v ∈ V , |v| = 0 if and only if v = 0.
NVS3. For all v ∈ V and r ∈ R, |rv| = |r||v|.
NVS4. For all v, w ∈ V , |v + w| ≤ |v|+ |w|.

Examples and Exercises.

i. The Euclidean space Rn with the usual norm is a normed space.
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ii. Consider the set ⊕ωR of real sequences (rn)n whose terms are all zero
except for finitely many of them. It is clear that ⊕ωR is a real vector
space. Define |(rn)n| =

∑∞
n=0 r2

n. The reader should show that this turns
⊕ωR into a normed vector space.

iii. Let X be a set and (V, | |) a normed vector space. Consider the set
B(X, V ) of functions from X into Y which are bounded. Thus, a function
f : X −→ V is in B(X, V ) if and only if there is a real number M such
that for all x ∈ X, |f(x)| < M . Show that B(X, V ) is a vector space.

For f ∈ B(X, V ), define |f | to be the minimum of the numbers M as
above. Thus

|f | = sup{|f(x)| : x ∈ X}.
Show that the vector space B(X,V ) together with | | defined as above is
a normed vector space.

Suppose V = R. Show that if f, g ∈ B(X,R), then f · g ∈ B(X,R) and
that |f · g| = |f | · |g|.

iv. Let X be a set and (V, | |) a normed vector space. Consider the set F(X,V )
of functions from X into Y . Show that F(X, V ) is a vector space.

For f ∈ F(X,V ), define

|f | = inf{sup{|f(x)| : x ∈ X}, 1}.

Show that the vector space F(X, V ) together with | | defined as above is
a normed vector space.

Suppose V = R. Is it true that if f, g ∈ B(X,R), then f · g ∈ F(X,R)
and that |f · g| = |f | · |g|.

Proposition 5.3.1 Let (V, | |) be a normed real vector space. The map d(v, w) =
|v − w| defines a metric on V .

Proof: Easy. ¤

A normed real metric space which is complete with respect to the metric
defined above is called a Banach space.

Define Banach algebra.
Problem. Suppose V is a normed real vector space and W ≤ V a subspace.

Can you make V/W into a normed vector space in a natural way?

Exercises.

i. Show that if V is a Banach space, then so is B(X,V ).

ii. Show that if V is a Banach space, then so is F(X, V ).
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5.4 Open Subsets of a Metric Space

Let (X, d) be a metric space, a ∈ X and r ∈ R. Then the open ball with
center a and radius r is defined as

B(a, r) = {x ∈ X : d(a, x) < r}.

The circle with center a and radius r is defined as

B(a, r) = {x ∈ X : d(a, x) = r}.

An arbitrary union of open balls in a metric space is called on open subset.

Proposition 5.4.1 A subset U of a metric space is open if and only if for every
a ∈ U there is an r ∈ R>0 such that B(a, r) ⊆ U .

Proof: (⇒) Let a ∈ U . Since U is a union of open balls, there is an open
ball in U that contains a. Set a ∈ B(b, s) ⊆ U . Let r = s − d(a, b). Then
r > 0. We claim that B(a, r) ⊆ B(b, s). Indeed, let x ∈ B(a, r). Then d(x, b) ≤
d(x, a) + d(a, b) < r + d(a, b) = r + (s − r) = s. Thus x ∈ B(b, s). This proves
the claim. Now B(a, r) ⊆ B(b, s) ⊆ U .

(⇐) Suppose that for any a ∈ U , there is an ra ∈ R>0 such that B(a, ra) ⊆
U . Since ra > 0, a ∈ B(a, ra). It follows that U =

⋃
a∈U B(a, ra). Hence U ,

being a union of open balls, is open. ¤

Lemma 5.4.2 In a metric space, the intersection of two open balls is an open
subset.

Proof: Let B(a, r) and B(b, s) be two open subsets of a metric space (X, d).
To show that B(a, r) ∩ B(b, s) is open, we will use Proposition 5.4.1. Let c ∈
B(a, r) ∩B(b, s). Then r − d(c, a) > 0 and s− d(c, b) > 0. Let

ε = min(r − d(c, a), s− d(c, b)).

Then ε > 0. We claim that B(c, ε) ⊆ B(a, r) ∩ B(b, s). Let x ∈ B(c, ε). Then
d(a, x) ≤ d(a, c) + d(c, x) < d(a, c) + ε ≤ d(a, c) + (r − d(a, c)) = r. Thus
x ∈ B(a, r). Similarly x ∈ B(b, s). ¤

Proposition 5.4.3 Let (X, d) be a metric space. Then,
i. ∅ and X are open subsets.
ii. An arbitrary union of open subsets is open.
iii. A finite intersection of open subsets is an open subset.

Proof: i. If a ∈ X, then the ball with center a and radius 0 is the emptyset.
Hence the emptyset is open (being an open ball). The whole space X is the
union of all the open balls of radius, i.e. X =

⋃ |x ∈ XB(x, 1). Thus X is open.
ii. This is clear by definition of an open subset.
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iii. Let U and V be two open subsets. Thus U and V are unions of open
balls. Write U =

⋃
a∈A B(a, ra) and V =

⋃
b∈B B(b, sb) where A and B are

subsets of X and ra and sb are real numbers. Now

U ∩ V =
⋃

a∈A

B(a, ra) ∩
⋃

b∈B

B(b, sb) =
⋃

a∈A, b∈B

(B(a, ra) ∩B(b, sb)).

Thus, by part ii, it is enough to show that B(a, ra) ∩B(b, sb) is open. But this
is the content of Lemma 5.4.2. ¤

Exercises.

i. Describe B(−→0 , 1) in the three metric spaces (Rn, d1), (Rn, d2) and (Rn, d∞)
defined above.

ii. Consider Rn with one of the distances dp (p ≥ 1) or d∞ defined above.
Show that any open subset of Rn is a countable union of open balls.

iii. An isometry between two metric spaces (X, d1) and (Y, d2) is a bijection
f : X −→ Y such that d1(x1, x2) = d2(f(x1), f(x2)). Find all isometries
of R into R.

iv. Find all isometries of R2 into R2.

v. Show that the metric spaces (Rn, dp) and (Rn, d∞) defined above all have
the same open subsets.

vi. Let X = {1/2n : n ∈ N} ⊆ R. Consider X with the natural metric (the
induced metric). Show that any subset of X is open.

vii. Let X = {1/2n : n ∈ N} ∪ {0} ⊆ R. Consider X with the natural
metric (the induced metric). Show that open subsets of X are the cofinite
subsets1 of X and the ones that do not contain 0.

viii. Show that a closed ball B(a, r) = {x ∈ Rn : d(a, x) ≤ r} is not open in
the Euclidean metric unless r < 0.

ix. Let (X, d) be a metric space. Show that d1(x, y) = d(x,y)
1+d(x,y) is a metric.

Show that the open subsets in both metrics are the same.

x. Show that R cannot be the union of two nonempty open subsets (for the
usual metric).

xi. Show that Rn cannot be the union of two nonempty open subsets (for the
usual metric).

1A subset Y of X is called cofinite if X \ Y is finite.
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Chapter 6

Sequences and Limits

6.1 Definition

Let (X, d) be a metric space, (xn)n∈N a sequence in X and x ∈ X. We say that
the sequence (xn)n∈N converges to x if for any ε > 0 there is an N ∈ N such that
d(xn, x) < ε for all natural numbers n > N . We then write limn→∞ xn = x. We
call x the limit of the sequence (xn)n. When the limit of a sequence (xn)n exists
we say that the sequence (xn)n is convergent or that it converges, otherwise
we say that the sequence is divergent or that it diverges.

Note that, above, we used the symbol “∞” without defining it. Above we
only defined “limx→∞ xn = x” as if it were one single word. We will never define
the symbol ∞, there is no such an object in mathematics.

Examples and Exercises.

i. A sequence (xn)n∈N where xn = x for all n ∈ N converges to x. Such a
sequence is called a constant sequence.

ii. A sequence (xn)n∈N where xn = x for all n greater than a certain n◦
converges to x. Such a sequence is called an eventually constant se-
quence.

iii. If we delete finitely many elements from a sequence or add finitely many
elements to a sequence, its divergence and convergence remains unaltered,
and its limit (if it exists) does not change.

iv. Let xn = n. Then the sequence (xn)n does not converge in the usual
metric of R.

v. Let xn = (−1)n. Then the sequence (xn)n does not converge in the usual
metric of R.

57
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vi. Let X be a metric space. Let a1, . . . , ak ∈ X. Let (xn)n be a sequence
of X such that for each n, xn = ai for some i = 1, . . . k. Show that the
sequence (xn)n converges if and only if it is eventually constant.

vii. Let xn = 0 if n is not a power of 2 and x2n = 1. Then the sequence (xn)n

does not converge in the usual metric of R.

viii. Consider Z with the 2-adic metric and set xn = 2n. Then the sequence
(xn)n converges to 0.

ix. Consider a set X with its discrete metric. Then a sequence (xn)n converges
to some element in X if and only if the sequence (xn)n is eventually
constant.

x. Show that if in Theorem 3.1.12, limn→∞(bn − an) = 0, then ∩n∈N[an, bn]
is a singleton set.

Remarks.

i. In the definition of convergence, ε should be thought as a small (but
positive) real number. The integer N depends on ε. The smaller ε is,
the larger N should be.

ii. In the definition of convergence, we could replace d(xn, x) < ε by d(xn, x) ≤
ε, i.e. the sequence (xn)n∈N converges to x if and only if for any ε > 0
there is an N ∈ N such that d(xn, x) ≤ ε for all natural numbers n > N .

iii. In the definition of convergence, since Q is dense in R, we could take ε to
range over Q instead of over R.

iv. The convergence of a sequence depends strongly on the metric. It is pos-
sible that a sequences converges to some element for a certain metric, but
that this same sequence diverges for some other metric.

v. The notation limx→∞ xn = x suggests that the limit of a sequence is
unique when it exists. This is indeed the case and will be proven right
now.

Theorem 6.1.1 In a metric space, the limit of a sequence, if it exists, is unique.

Proof: Let (X, d) be a metric space, (xn)n a sequence from X and a, b ∈ X.
Suppose that a and b are limits of the sequence (xn)n. We will show that a = b
by showing that d(a, b) < ε for any ε > 0.

Let ε > 0. Since a is a limit of (xn)n there is an N◦ such that d(xn, a) < ε/2
for all n > N◦. Similarly there is an N1 such that d(xn, b) < ε/2 for all n > N1.
Let N = max(N◦, N1) + 1. Then d(xN , a) < ε/2 and d(xN , b) < ε/2. Hence
d(a, b) ≤ d(a, xN ) + d(xN , b) < ε/2 + ε/2 = ε. ¤

Lemma 6.1.2 In a metric space, limn→∞ xn = x if and only if limn→∞ d(xn, x) =
0.
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Proof: This is a triviality. ¤

A subset of a metric space is said to be bounded if it is contained in a
ball. For example Z is not bounded in R (with its usual metric). But the set
{1/2n : n ∈ N} is bounded. A sequence (xn)n is called bounded if the set
{xn : n ∈ N} is bounded.

Theorem 6.1.3 A convergent sequence is bounded.

Proof: Let (xn)n be a sequence converging to some a. Take ε = 1 in the
definition of the convergence. Thus there exists an N such that d(xn, a) < 1
for any n > N . Let r = max(d(x1, a), . . . , d(xN , a), 1) + 1. Then the sequence
(xn)n is entirely in B(a, r). ¤

Exercises

i. Show that limn→∞ 1/n = 0 in the usual metric of R.

ii. For a natural number n we define ν(n) = sup{m ∈ N : 2m ≤ n}. Show
that limn→∞ ν(n)/n = 0.

iii. Let xn = 0 if n is not a power of 2 and x2n = 1/n. Show that the sequence
(xn)n converges to 0 in the usual metric of R.

iv. Show that a sequence of integers converges in the usual metric of R if and
only if it is eventually constant.

v. Let xn =
∑n

k=0(−1)n−k

(
n
k

)
2k. Does the sequence (xn)n converge?

vi. Let (xn)n be a real sequence. Assume that there is an r > 0 such that for
all n 6= m, |xn − xm| > r. Show that the sequence (xn)n diverges.

vii. Let (X, d) be a metric space, (xn)n a sequence in X and x ∈ X. Show
that limn→∞ xn = x if and only if limn→∞ d(xn, x) = 0.

viii. Let (an)n be a sequence of nonnegative real numbers. Suppose that the
sequence (a2

n)n converges to a. Show that the sequence (an)n converges
to
√

a. Does this hold for sequences which are not nonnegative?

ix. Let X be the set of sequences of zeroes and ones. For two distinct elements
x = (xn)n and y = (yn)n of X define d(x, y) = 1/2n if n is the least natural
number for which xn 6= yn. Let d(x, x) = 0. Then (X, d) is a metric space.
Let χn be the element of X whose first n coordinates are 1, the rest is 0.
Show that limn→∞ χn exists. Find the limit.

x. Let X◦ be the set of sequences of zeroes and ones with only finitely many
ones. Consider X◦ as a metric space with the metric defined above. Let
χn be the element of X considered above. Note that χn ∈ X◦. Show that
limn→∞ χn does not exist in X◦ (but it exists in X as the above exercise
shows).
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xi. Let X = Q with the 3-adic distance. Let xn = 1+3+32 + . . .+3n. Show
that (xn)n is convergent in Q.

xii. Let X◦ = Z with the 3-adic distance. Let xn = 1+3+32 + . . .+3n ∈ X◦.
Show that (xn)n is not convergent in Z (but it is in Q).

xiii. Let A be a bounded subset of a metric space (X, d). Show that for any
b ∈ X there is a ball centered at b that contains A.

xiv. Let A and B bounded subsets of Rn with its usual Euclidean metric. Let

A + B = {a + b : a ∈ A, b ∈ B}
and

AB = {ab : a ∈ A, b ∈ B}.
Show that A + B and AB are bounded subsets of Rn.

xv. Let A be a bounded subset of R (with its usual metric) that does not
contain 0. Let

A−1 = {a−1; a ∈ A}.
a) Show that A−1 is not necessarily bounded.

b) Assume there is an r > 0 such that B(0, r) ∩A = ∅. Show that A−1 is
bounded.

c) Conversely show that if A−1 is bounded then there is an r > 0 such
that B(0, r) ∩A = ∅.

xvi. Let (xn)n be a sequence of R (with its usual metric). Show that (xn)n is
bounded if and only if there is a real number r such that |xn| ≤ r for all
n ∈ N.

xvii. Show that any real number is the limit of a rational sequence.

6.2 Examples of Convergence in R and C
The most important cases for us are the case of R and C with their usual metric
d(x, y) = |x− y|. Translating the definition of convergence of a sequence to this
case, we obtain the following special case: A sequence (xn)n of real or complex
numbers converges to x ∈ R if and only if for any ε > 0 there is an N ∈ N such
that |xn − x| < ε for all natural numbers n > N . We know that the limit x,
when it exists, is unique.

In this subsection, we prove the convergence and divergence of some impor-
tant sequences: (1/n)∞n=1, (αn)n and αn/n! for any r. In the meantime we prove
a criterion for convergence (Sandwich Lemma).

The following result will be handy.

Theorem 6.2.1 Let αn ∈ C. Then limn→∞ αn = 0 if and if limn→∞ |αn| = 0.

Proof: This is an immediate consequence of the definition. ¤
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6.2.1 The Sequence (1/n)n

Let us start by showing that limn→∞ 1/n = 0.

Lemma 6.2.2 limn→∞ 1/n = 0.

Proof: Let ε > 0 be fixed. By Archimedean Property of the real numbers
(Theorem 3.1.6), there is a natural number N such that Nε > 1. Then 1/N < ε.
Now for all n > N , |1/n− 0| = 1/n < 1/N < ε. ¤

Exercises.

i. Prove that limn→∞
(

n+3
n2+n−5

)
= 0.

ii. Prove that limn→∞
(

n+3
n2+n−5

)n

= 0.

iii. Prove that limn→∞
(

n+3
n2+n−5

) n−1
3n+2

= 0.

iv. Prove that limn→∞
(

n+3
n2+n−5

)n2−1
2n−3

= 0.

6.2.2 The Sequence (αn)n

Proposition 6.2.3 If r ∈ (−1, 1) then the sequence (rn)n converges to 0. If
r 6∈ (−1, 1] the sequence (rn)n diverges.

Proof: We first claim that if s > −1, then for all natural numbers n, (1+s)n ≥
1+ns. We proceed by induction on n to prove the claim. The claim clearly holds
for n = 0. We now assume the claim holds for n and prove it for n + 1. Since
1 + s > 0, (1 + s)n+1 = (1 + s)n(1 + s) ≥ (1 + ns)(1 + s) = 1 + (1 + n)s + ns2 ≥
1 + (1 + n)s. This proves the claim.

We now return to the proof of the proposition. Assume r ∈ (−1, 1). Since
for r = 0 the statement is clear, we may assume that r 6= 0. Let ε > 0 be a
real number. We have to show that there exists a natural number N such that
for all n > N , |r|n = |rn − 0| < ε. We may therefore assume that r ≥ 0. Thus
r > 0. Let s = 1/r − 1. Note that r = 1

1+s . It is also easy to check that s > 0.
Thus by the claim (1 + s)n ≥ 1 + ns. Let N > 0 be a natural number such that
1/s ≤ Nε (Theorem 3.1.6). Now for all n > N ,

|rn| = rn =
(

1
1 + s

)n

≤ 1
1 + ns

<
1

1 + Ns
<

1
Ns

≤ ε.

This proves the first part of the proposition.
Claim. Let r > 1. Then the sequence (rn)n is unbounded.
Proof of the Claim. By the first part of the proposition the sequence

(1/rn)n converges to 0. Hence for all ε > 0 there is an N such that for all
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n > N , 1/rn < ε, i.e. rn > 1/ε. Thus (rn)n is unbounded. This proves the
claim.

Now by Theorem 6.1.3, (rn)n is divergent if r > 1. The case r ≤ −1 is left
as an exercise. ¤

Corollary 6.2.4 If r > 1 then the sequence (rn)n is unbounded.

Corollary 6.2.5 Let α ∈ C. Then the sequence (αn)n converges to 0 if |α| < 1,
converges to 1 if α = 1, diverges otherwise.

Proof: If |α| < 1 then the result follows from Theorem 6.2.1 and Proposition
6.2.3. If |α| = 1 then the statement is clear. Assume |α| > 1. Then the sequence
(|αn|)n is unbounded by Corollary 6.2.4. By Theorem 6.1.3, (αn)n is divergent.
¤

Exercises.

i. Find limn→∞
(

1
n

)n.

ii. Find limn→∞
(

1
2 + 1

n

)n.

6.2.3 The Sequence (αn/n!)n

Proposition 6.2.6 For any r ∈ R, the sequence (rn/n!)n converges to 0.

Proof: We may assume that r > 0. Let ε > 0. Let xn = rn/n!. Let N◦ be a
natural number such that r/N◦ < 1 (Theorem 3.1.6). We claim that for each
natural number k,

xN◦+k ≤ xN◦

(
r

N◦ + 1

)k

.

We prove this by induction on k. The claim is clear for k = 0. Assume it holds
for k. Then

xN◦+k+1 =
rN◦+k+1

(N◦ + k + 1)!
=

rN◦+k

(N◦ + k)!
r

N◦ + k + 1
= xN◦+k

r

N◦ + k + 1

≤ xN◦

(
r

N◦ + 1

)k
r

N◦ + k + 1
≤ xN◦

(
r

N◦ + 1

)k+1

.

This proves the claim.
Since 0 < r

N◦+1 < 1, by Proposition 6.2.3, the sequence (( r
N◦+1 )k)k converges

to 0. Therefore there exists an N1 such that for k ≥ N1, ( r
N◦+1 )k < ε/xN◦ .

Thus for n > N◦ + N1, by letting k = n−N◦ − 1, we see that xn < ε. This
proves the proposition. ¤

Corollary 6.2.7 For any α ∈ C, the sequence (αn/n!)n converges to 0.

Proof: Follows from Theorem 6.2.1 and Proposition 6.2.6. ¤



6.3. CONVERGENCE AND THE ORDER 63

6.3 Convergence and the Order

We first prove a result that will show that a sequence that is squeezed between
two sequences converging to the same number converges.

Lemma 6.3.1 (Sandwich Lemma) Let (xn)n, (yn)n and (zn)n be three real
sequences. Suppose that limn→∞ xn and limn→∞ zn exist and are equal. Suppose
also that xn ≤ yn ≤ zn eventually (i.e. for n > N◦ for some N◦). Then
limn→∞ yn exists and limn→∞ xn = limn→∞ yn = limn→∞ zn.

Proof: Let a be the common limit of (xn)n and (zn)n. Let ε > 0. Since
limn→∞ xn = a there is an N1 such that for n > N1, |xn − a| < ε/3. Since
limn→∞ zn = a there is an N2 such that for n > N2, |zn − a| < ε/3. Let
N = max(N◦, N1, N2). Then for n > N , we have |yn−a| ≤ |yn−zn|+ |zn−a| ≤
(zn − xn) + |zn − a| ≤ (zn − a) + (a− xn) + |zn − a| < ε/3 + ε/3 + ε/3 = ε. ¤

Corollary 6.3.2 limn→∞ 1/n2 = 0.

Proof: Follows from Lemmas 6.2.2 and 6.3.1. ¤
Second proof: Let ε > 0. Let N > 1 be such that 1/2 < Nε. Then for all
n > N , |1/n2 − 0| = 1/n2 ≤ 1/2n < 1/2N < ε. ¤

Corollary 6.3.3 Let (xn)n be a converging sequences and r ∈ R. Assume that
xn ≥ r. Then limn→∞ xn ≥ r.

Note that we could well have xn > r and limn→∞ xn = r, for example take
xn = r + 1/n.

Corollary 6.3.4 Let (xn)n and (yn)n be two converging sequences. Suppose
that xn ≤ yn for almost all n. Then limn→∞ xn ≤ limn→∞ yn.

Exercises.

i. Find limn→∞
(

1
n

)n.

ii. Show that limn→∞
(

1
2 + 1

n

)n = 0.

iii. Show that limn→∞(
√

n2 − n− n) = 1/2.

iv. Let (xn)n be a convergent sequence in C (or a Banach space X), r > 0
and assume that |xn| ≤ r for all n. Show that | limn→∞ xn| ≤ r.

v. Let (xn)n be a convergent complex sequence. Show that limn→∞ |xn| =
| limn→∞ xn|. (Solution: Let x be the limit. Since ||a| − |b|| ≤ |a− b| for
all a, b ∈ C, ||xn| − |x|| ≤ |xn − x|. Thus it is enough to show that the
limit of the right hand side is 0, which is obvious.)



64 CHAPTER 6. SEQUENCES AND LIMITS

6.4 Convergence and the Four Operations

In this subsection we study the behavior of the convergence of real sequences
under several operations.

We first show that a converging sequence of R that does not converge to an
element a is “bounded away from a”. We will need this result later in this
subsection.

Proposition 6.4.1 Let X be a metric space and a ∈ X. Let (xn)n be a con-
verging sequence of X that does not converge a. Then there is an r > 0 such
that B(a, r) ∩ {xn : n ∈ N} is finite.

Proof: Let b be the limit of (xn)n. Let r = d(a, b)/2. Then r > 0. Since b is
the limit of (xn)n, there exists an N such that d(xn, b) < r for all n > N . Thus,
for n > N , d(xn, a) ≥ |d(xn, b) − d(a, b)| = |d(xn, b) − 2r| = 2r − d(xn, b) > r.
(We used Lemma 5.2.2 in the first inequality). Hence B(a, r) ∩ {xn : n ∈ N} ⊆
{x1, . . . , xN}. ¤

Now we analyze the relationship between the four operations on R and the
convergence of sequences.

Theorem 6.4.2 Let (xn)n and (yn)n be sequences converging to a and b re-
spectively. Then the sequences (xn + yn)n and (xnyn)n converge to a+ b and ab
respectively. In particular, for r ∈ R the sequence (rxn)n converges to ra.

Proof: (+). Let ε > 0. Since the sequence (xn)n converges to a, there is an
N◦ such that |xn − a| < ε/2. Since the sequence (yn)n converges to b, there
is an N1 such that |xn − a| < ε/2. Let N = max(N◦, N1). Then for n > N ,
|(xn + yn)− (a+ b)| = |(xn− a)+ (yn− b)| ≤ |xn− a|+ |yn− b| < ε/2+ ε/2 = ε.
Thus (xn + yn)n converges to a + b.

(×). Assume first b = 0. We have to show that lim |n →∞xnyn = 0. Let
ε > 0. By Exercise xvi, page 60, there exists an r > 0 such that |xn| ≤ r for all
n. Since (yn)n converges to 0, there exists an N such that for all n > N , |yn| =
|yn − 0| < ε

r . Now for n > N , we have |xnyn − 0| = |xnyn| = |xn||yn| < r ε
r = ε.

Thus the sequence (xnyn)n converges to 0.
Assume next b 6= 0. Let ε > 0. Since b 6= 0 and (xn)n converges to a,, there

exists an N◦ such that |xn−a| ≤ ε
2|b| for all n > N◦. Since (xn)n is a convergent

sequence, it is bounded by Theorem 6.1.3. By Exercise xvi, page 60, there is an
M > 0 such that |xn| < M for all n ∈ N. Since (yn)n converges to b, there exists
an N1 such that for n > N1, |yn− b| < ε

2M . Let N = max(N◦, N1). For n > N ,
we have |xnyn − ab| = |xn(yn − b) + (xn − a)b| ≤ |xn(yn − b)| + |(xn − a)b| ≤
|xn||yn − b| + |xn − a||b| ≤ M ε

2M + ε
2|b| |b| = ε. Thus the sequence (xnyn)n

converges to ab.
For the last part: Take yn = r for all n apply the above part. ¤

Corollary 6.4.3 Let (xi)i and (yi)i be sequences converging to a and b respec-
tively. Then the sequence (xi − yi)i converges to a− b.
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Corollary 6.4.4 Let (xi)i be a sequence converging to a. Let k ∈ N\{0}. Then
the sequence (xk

i )i converges to ak.

Corollary 6.4.5 Let (xi)i and (yi)i be sequences converging to a and b respec-
tively. Let α, β ∈ C. Then the sequence (αxi + βyi)i converges to αa− βb.

Corollary 6.4.6 Let (xi)i be a sequence converging to a. Let a◦, a1, . . . , ak ∈
C. Then the sequence (a◦+a1xi + . . .+akxk

i )i converges to a◦+a1a+ . . .+akak.

If a◦, a1, . . . , ak ∈ C, then a term of the form a0 +a1x+ . . .+akxk is called a
(complex) polynomial. The numbers a◦, a1, . . . , ak are called its coefficients.
If ak 6= 0, then the natural number k is called the degree of the polynomial
p(x). A polynomial p(x) = a0 + a1x+ . . .+ akxk gives rise to a function from C
into C whose value at α ∈ C is p(r) := a0 +a1α+ . . .+akαk. Thus the corollary
above can be translated as follows:

Corollary 6.4.7 Let (xn)n be a sequence converging to α. Let p(x) ∈ R[x].
Then the sequence (p(xn))n converges to p(α).

In general, if the sequence (xn)n is convergent and xn 6= 0 for all n, then the
sequence (x−1

n )n is not necessarily convergent. This is what happens if we take
xn = 1/n. However if the limit of (xn)n is not zero, then the convergence of the
sequence (x−1

n )n is guaranteed as the following theorem shows:

Theorem 6.4.8 Let (xn)n be a sequence of C converging to a nonzero number
α. Assume xn 6= 0 for all n. Then the sequence (x−1

n )n converges to α−1.

Proof: Let ε > 0. By Proposition 6.4.1, there is an r > 0 such that B(0, r) ∩
{xn : n ∈ N} is finite. Let N◦ be such that |xn| ≥ r for all n > N◦. Since a and
r are nonzero and since the sequence (xn)n converges to α, there exists an N1

such that |xn − α| < ε for all n > N1. Let N = max(N◦, N1). Now for n > N
we have,

|x−1
n − a−1| = |xn − a|

|a||xn| ≤
|xn − a|
|a|r <

ε|a|r
|a|r = ε.

Thus the sequence (x−1
n )n converges to α−1. ¤

Corollary 6.4.9 Let (xn)n and (yn)n be sequences converging to α and β re-
spectively. Assume β 6= 0 and that yn 6= 0 for all n. Then the sequence (xn/yn)n

converges to α/β.

Corollary 6.4.10 Let p(x) and q(x) 6= 0 be two polynomials of degree d and e
respectively. Then the sequence (p(n)/q(n))n converges if and only if e ≥ f . If
e > f , then the limit is zero. If e = f then the limit is α/β where α and β are
the leading coefficients of p(x) and q(x) respectively.

Corollary 6.4.11 Assume limn→∞ an exists and is nonzero. Then the se-
quence (an/an+1)n converges to 1.
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The sequence (an/an+1)n may not converge if limn→∞ an = 0. For example,
choose

an =
{

1/n if n is even
1/n2 if n is odd

Clearly limn→∞ an = 0, but

an

an+1
=





(n+1)2

n if n is even

n+1
n2 if n is odd

And the subsequence (n+1)2

n diverges to ∞, although the subsequence n+1
n2 con-

verges to 0.

Corollary 6.4.12 Let (xn)n be a sequence converging to α. Let p(x), q(x) ∈
C[x]. Assume that q(a) 6= 0. Then the sequence (p(xn)/q(xn)n converges to
p(α)/q(α).

Exercises.

i. Find the following limits and prove your result using only the definition
of convergence.

a. limn→∞ 2n−5
5n+2

b. limn→∞ 2n−5
−n+2

c. limn→∞ 2n−5
−n2+2

ii. Let −1 < r ≤ 1. Show that the sequence (rn/n)n converges to 0.

iii. Show that

a. limn→∞ n+3
n2+3n+2 = 0.

b. limn→∞
(

n+3
n2+n−5

)n

= 0.

c. limn→∞
(

n+3
n2+n−5

) n−1
3n+2

= 0.

d. limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

= 0.

iv. Show that if a, b > 0 then limn→∞(an + bn)
1
n = max(a, b).

v. Let (an)n and (bn)n be two real sequences that converge to two different
numbers in the usual metric. Show that {an : n ∈ N} ∩ {bn : n ∈ N} is
finite.

vi. Show that the set of convergent sequences of R (in the usual metric) is a
real vector space. (For the addition of sequences and scalar multiplication
of a sequence by a real number, see Example vii, page 45).
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vii. Show that the set of sequences of R (in the usual metric) that converges
0 is a real vector space.

viii. Show that the set of bounded sequences of R (in the usual metric) is a
real vector space.

6.5 More On Sequences

Lemma 6.5.1 A subsequence of a convergent sequence is also convergent; fur-
thermore the limits are equal.

Proof: Let (xn)n converge to x and let (yi)i = (xni)i be a subsequence of
(xn)n. We will show that limi→∞ yi = x also. Let ε > 0. Since limn→∞ xn = x,
there is an N such that for all i > N , d(xi, x) < ε. Since the sequence (ni)i is
strictly increasing, ni ≥ i (one can prove this by induction on i). Thus for all
i > N , ni > N also and hence d(yi, x) = d(xni , x) < ε. ¤

Limit in the Topological Language. We can translate the definition of a
limit of a sequence in a language that involves only open subsets (rather than
the metric). This is what we will do now:

Theorem 6.5.2 Let (X, d) be a metric space, (xn)n a sequence from X and
x ∈ X. Then limn→∞ xn = x if and only if for any open subset U containing
x, the sequence (xn)n is eventually in U , i.e. there is an N such that xn ∈ U
for all n > N .

Proof: (⇒) Let U be an open subset containing x. By Proposition 5.4.1, there
is an ε > 0 such that B(x, ε) ⊆ U . Since limn→∞ xn = x, there is an N such
that for all n > N , d(xn, x) < ε, i.e. xn ∈ B(x, ε) ⊆ U .

(⇐) Let ε > 0. Then B(x, ε) is open. Thus, by hypothesis, there is an N
such that for all n > N , xn ∈ B(x, ε), i.e. d(xn, x) < ε. Hence limn→∞ xn = x
by definition of limits. ¤

Exercises.

i. Let (an)n be a convergent sequence of real numbers.

a. Does the sequence (a2n)n converge necessarily?

b. Assume an 6= 0. Does the sequence (an/an+1)n converge necessarily?

ii. Let xn,m = n
n+m . Find limn→∞ limm→∞ xn,m and limm→∞ limn→∞ xn,m.

iii. Let (xn)n and (yn)n be two sequences. Define

zn =
{

xn/2 if n is even
yn−1

2
if n is odd

Show that (zn)n converges if and only if (xn)n and (yn)n both converge
to the same number.



68 CHAPTER 6. SEQUENCES AND LIMITS

iv. Let (xn)n be a real sequence and (yn)n a complex sequence. Let y ∈ C.
Assume that limn→∞ xn = 0 and |yn − y| ≤ xn for all n. Show that
limn→∞ yn = y.

v. Let (xn)n be a convergent sequence of real numbers. Let

yn =
x1 + . . . + xn

n
.

Show that limn→∞ yn exists and is equal to limn→∞ xn.

6.6 Cauchy Sequences

The elements of a convergent sequence, since they approach to a fixed element,
should also approach to each other. A sequence that has this property is called
a Cauchy sequence. We formalize this as follows: A sequence (xn)n is called
a Cauchy sequence if for any ε > 0 there is an N such that d(xn, xm) < ε for
all n, m > N . We formalize this by writing limn,m→∞ d(xn, xm) = 0.

We first prove what we have said in a mathematical way:

Theorem 6.6.1 A convergent sequence is a Cauchy sequence.

Proof: Let (xn)n be a sequence converging to x. Let ε > 0. Since limn→∞ xn =
x, there is an N such that d(xn, x) < ε/2 for all n > N . Now if n, m > N , then
d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε/2 + ε/2 = ε. ¤

On the other hand, a Cauchy sequence need not be convergent (see Exercises
x, page 59 and xii, page 60). But we have the following:

Proposition 6.6.2 A Cauchy sequence that has a convergent subsequence is
convergent. Furthermore the limits are the same.

Proof: Let (xn)n be a Cauchy sequence. Let (yi)i = (xni)i be a convergent
subsequence of (xn)n. Say limi→∞ yi = x. We will show that limn→∞ xn = x.
Let ε > 0. Since (xn)n is a Cauchy sequence, there is an N◦ such that if
n, m > N◦, then d(xn, xm) < ε/2. Also, since limi→∞ yi = x, there is an N1

such that if i > N1 then d(yi, x) < ε/2. Let N = max(N◦, N1). Then for all
i > N , we have ni ≥ i > N (because the sequence (ni)i is strictly increasing)
and so d(xi, x) ≤ d(xi, yi) + d(yi, x) = d(xi, xni) + d(yi, x) < ε/2 + ε/2 = ε. ¤

Proposition 6.6.3 A Cauchy sequence is bounded.

Proof: Let (xn)n be Cauchy sequence. Take ε = 1 in the definition. Thus
there exists an N such that for all n, m > N , d(xn, xm) < 1. In particular, for
all n > N , d(xN+1, xn) < 1. Let

r = max(1, d(x0, xN+1) + 1, . . . , d(xN , xN+1) + 1).

Then {xn : n ∈ N} ⊆ B(xN+1, r). ¤



6.7. CONVERGENCE OF REAL CAUCHY SEQUENCES 69

Exercises.

i. Let (an)n and (bn)n be two Cauchy sequences such that the set {an : n ∈
N} ∩ {bn : n ∈ N} is infinite. Show that limn→∞ an = limn→∞ bn.

ii. Give an example of each of the following, or argue that such a request is
impossible.

a) A Cauchy sequence that is not monotone.

b) A monotone sequence that is not Cauchy.

c) A Cauchy sequence with a divergent subsequence.

d) An unbounded sequence with a Cauchy subsequence.

iii. Let X1, . . . , Xm be metric spaces. Let X = X1 × . . .×Xn be the product
space. Let (xn)n be a sequence in X. Set xn = (xn1, . . . , xnm). Then
(xn)n is Cauchy if and only if xni)n is Cauchy for all i = 1, . . . , m.

iv. Let x1 = 1, x2 = 2 and xn = (xn−1 + xn−2)/2 for n > 2.

a. Show that 1 ≤ xn ≤ 2 for all n. (Hint: By induction on n).

b. Show that |xn − xn+1| = 1/2n−1 for all n. (Hint: By induction on n).

c. Show that if m > n then xn − xm < 1/2n−2 for all n. (Hint: Use part
c).

d. Show that (xn)n is a Cauchy sequence.

e. Find its limit. Note that the sequence is formed by taking the arithmetic
mean of the previous two terms. It can be guessed that the limit is at the
two thirds of the way from x1 = 1 to x2 = 2, i.e. it is 5/3. This can
be shown by some elementary linear algebra. But there is an easier way:
Note that part b can be sharpened into xn − xn+1 = (−1)n/2n−1, thus
xn+1 − 1 = xn+1 − x1 = (xn+1 − xn) + ... + (x2 − x1) = 1− 1/2 + 1/4−
... + (−1)n1/2n−1. It follows that the limit x, that we know it exists from
the previous question, is equal to the infinite sum x = 1 + 1− 1/2 + 1/4−
. . . + (−1)n1/2n−1 + . . . Now just remarque that 2x = 2 + 2-1 + 1/2-1/4
+ . . . = 3 + (1/2-1/4 + 1/8 ...) = 3 + (2-x) and so x = 5/3.

v. We say that a sequence (xn)n is contractive if there is a constant c,
0 < c < 1, such that |xn+2 − xn+1 ≤ c|xn+1 − xn| for all n. Show that
every contractive sequence is convergent. Hint: |xn+1−xn| ≤ cn|x1−x0|.
Thus we can estimate |xn − xm| as is done above and show that such a
sequence is Cauchy.

6.7 Convergence of Real Cauchy Sequences

The purpose of this subsection is to prove the following important theorem:

Theorem 6.7.1 Every real Cauchy sequence is convergent.
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Recall that a sequence (xn)n of real numbers is called nondecreasing (resp.
nonincreasing) if xn ≤ xm (resp. xn ≥ xm) for all n ≤ m. A nonincreasing or
nondecreasing sequence is called a monotone sequence.

To prove this theorem, we first prove that every monotone and bounded
sequence converges.

Theorem 6.7.2 (Monotone Convergence Theorem) A monotone and bounded
sequence of R converges.

Proof: Let (xn)n be an increasing sequence of real numbers which is bounded
above. Then the set {xn : n ∈ N} has a least upper bound `. We claim that
limx−→∞ xn = `. Let ε > 0. Since ` − ε is not an upper bound, there is an N
such that ` − ε < xN . Since the sequence (xn)n is increasing, ` − ε < xn for
all n ≥ N . Since ` is an upper bound, ` − ε < xn ≤ ` for all n ≥ N . Thus
|`− xn| ≤ ε for all n ≥ N .

The second part follows easily from the first. ¤

Theorem 6.7.3 Every real sequence has either an increasing or a nonincreas-
ing subsequence.

Proof: We will choose an increasing sequence (ni)i such that given any i, either
xnj > xni for all j > i or either xnj ≤ xni for all j > i.

Let n◦ = 0.
Consider the sets

G0 = {n > 0 : xn > x0}
and

L0 = {n > 0 : xn ≤ x0}.
Either G0 or L0 is infinite. If G0 is infinite, consider only the subsequence that
consists of x0 and the xn’s for which n ∈ G0, deleting the rest. If G0 is finite,
consider only the subsequence that consists of x0 and the xn’s for which n ∈ L0,
deleting the rest.

Renaming the elements, assume that (yn)n is this new sequence. In this new
sequence y0 has the following property: “Either yn > y0 for all n > 0 or yn ≤ y0

for all n > 0”.
Now consider y1 and the sets

G1 = {n > 1 : yn > y1}
and

L1 = {n > 1 : yn ≤ y1}.
Either G1 or L1 is infinite. If G1 is infinite, consider only the subsequence that
consists of y0, y1 and the yn’s for which n ∈ G1, deleting the rest. If G1 is
finite, consider only the subsequence that consists of y0, y1 and the yn’s for
which n ∈ L1, deleting the rest.

Renaming the elements, assume that (yn)n is this new sequence. In this new
sequence y0 has the following property: “Either yn > y0 for all n > 0 or yn ≤ y0
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for all n > 0” and y1 has the following property: “Either yn > y1 for all n > 1
or yn ≤ y1 for all n > 1”.

Next we consider y2 and the sets

G2 = {n > 2 : yn > y2}

and
L2 = {n > 2 : yn ≤ y2}.

Either G2 or L2 is infinite. If G2 is infinite, consider only the subsequence that
consists of y0, y1, y2 and the yn’s for which n ∈ G2, deleting the rest. If G2 is
finite, consider only the subsequence that consists of y0, y1, y2 and the yn’s for
which n ∈ L2, deleting the rest.

Continuing this way, we find a subsequence, say (zn)n, of the original se-
quence (xn)n such that for all n, either for all m > n, xm > xn or for all m > n,
xm ≤ xn.

We call n red if the first case occurs, i.e. if for all m > n, xm > xn. We call
n green if the second case occurs, i.e. if for all m > n, xm ≤ xn.

Thus we gave a color, either red or green, to each natural number. If there
are infinitely many red numbers, then the sequence (zn)n is red is increasing.
If there are infinitely many green numbers, then the sequence (zn)n is green is
nonincreasing. ¤

Proof of Theorem 6.7.1. Let (xn)n be a real Cauchy sequence. By Proposi-
tion 6.6.3, (xn)n is bounded. By Theorem 6.7.3, (xn)n has a monotone subse-
quence, say (yn)n. The subsequence (yn)n is still bounded. By Theorem 6.7.2,
(yn)n converges. By Proposition 6.6.2, (xn)n converges. ¤

Theorem 6.7.1 can also be proven as a consequence of the following important
result:

Theorem 6.7.4 (Bolzano-Weierstrass Theorem) Every bounded sequence
in R has a convergent subsequence.

Proof: Let (xm)m be a bounded sequence in R. Choose a, b ∈ R such that
xm ∈ [a, b] for all m. We will choose a Cauchy subsequence (xmi). Let m0 = 0.
Separate the interval [a, b] into two parts [a, a+b

2 ] and [a+b
2 , b]. One of these

two smaller intervals contains xm for infinitely many m. Let m1 to be the
smallest index not equal to m0 which is in this smaller interval that contains
xm for infinitely many m. Now do the same with this smaller interval. Thus
the sequence yi = xmi has the property that for all i > j, d(yi, yj) ≤ (b− a)/2j .

By the Theorem of Nested Intervals 3.1.12, the intersection of these intervals
of length (b−a)/2j is nonempty. If y is in the intersection, then limi→∞ yi = y.
¤

Note that this theorem is false in general metric space: In a discrete metric
space a sequence of distinct elements does not have a Cauchy subsequence at
all.
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Second Proof of Theorem 6.7.1. Let (xn)n be a Cauchy sequence in Rn. By
Proposition 6.6.3, (xn)n is bounded. By Theorem 6.7.4, (xn)n has a convergent
subsequence. By Proposition 6.6.2, (xn)n converges. ¤

Exercises.

i. Let xn = 1/12 + 1/22 + 1/32 + . . . + 1/n2.

a. Show that for all integers n ≥ 1, xn ≤ 2− 1/n < 2.

b. Conclude that the sequence (xn)n converges.

c. Show that for an integer n large enough, n2 ≤ 2n.

d. Conclude that the sequence (xn)n is bounded above by 1+1/4+1/9+
1/8 (= 107/72).

We will see later that this sequence converges to π2/6.

ii. Show that the sequence
√

2,
√

2
√

2,
√

2
√

2
√

2 converges. Find its limit.

iii. Discuss the convergence of the sequence
√

a,
√

a
√

a,
√

a
√

a
√

a for aıR≥0.

iv. Show that if k ≥ 2 is an integer, the sequence (xn)n where xn = 1/1k +
1/2k + 1/3k + . . . + 1/nk is Cauchy and hence converges.

v. Let x0 = x and xn+1 = 1
4−xn

.

a) Assume that the sequence converges. Show that the limit is either
2 +

√
3 or 2−√3.

b) Show that if 2−√3 ≤ xn ≤ 2 +
√

3 then 2−√3 ≤ xn+1 ≤ 2 +
√

3.

c) Assume x ∈ [2−√2, 2 +
√

2]. Show that (xn)n is decreasing. Conclude
that limn→∞ xn = 2−√2.

d) Discuss the convergence and the divergence of (xn)n for other values
of x.

vi. Discuss the convergence of the sequence (xn)n defined by x0 = x and
xn+1 = 4− 1/xn in terms of x.

vii. Let x1 = x and xn+1 =
√

2xn.

a) Write the first four terms of xn when x =
√

2.

b) Show that if the sequence (xn)n converges, then, it must converge to
either 0 or 2.

c) Discuss the convergence of the sequence (xn)n according to the values
of x.

viii. Let x1 = x and xn+1 = xn/2 + 1/xn. Discuss the convergence of the
sequence (xn)n according to the values of x.
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ix. (Existence of Square Roots) Let x1 = 2 and xn+1 = (xn + 2/xn)/2. Show
that x2

n ≥ 2 for all n. Use this to prove that the sequence (xn)n is
decreasing. Show that limn→∞ xn =

√
2. Modify the sequence so that it

converges to
√

c.

x. Prove the Bolzano-Weierstrass Theorem for Rn. Deduce that every Cauchy
sequence of Rn converges.

6.8 Convergence of Some Sequences

6.8.1 The Sequence ((1 + 1/n)n)n

Proposition 6.8.1 The sequence ((1+1/n)n)n converges to some real number
between 2 and 3.

Proof: We will show that the sequence ((1+1/n)n)n is bounded and increasing.
Theorem 6.7.2 will then prove the theorem. We proceed in several steps.

Claim 1. For all natural numbers n > 0 and all real numbers x > −1,
(1 + x)n ≥ 1 + nx. In particular if y < 1 then (1− y)n ≥ 1− ny

For n = 0, this is clear. (Note that we need x 6= −1 for this). Assume
the inequality holds for n. Then we have (1 + x)n+1 = (1 + x)n(1 + x) ≤
(1 + nx)(1 + x) = 1 + (n + 1)x + nx2 ≤ 1 + (n + 1)x. (The second step is by
the induction hypothesis and for this step we also need the fact that 1 + x > 0,
which we know it holds).

Claim 2. 2 ≤ (1 + 1/n)n ≤ 3 for all natural numbers n > 0.
Replacing x by 1/n in the first claim, we get 2 ≤ (1 + 1/n)n for all natural

numbers n > 0. Now we show that (1 + 1/n)n ≤ 3, for all natural numbers
n > 0. We compute carefully. For n ≥ 1 we have,

(1 + 1/n)n =
∑n

i=1

(
n
i

)
1
ni

= 1 +
∑n

i=1
n(n−1)...(n−i+1)

1·2·...·i
1
ni

= 1 +
∑n

i=1
n
n

n−1
n . . . n−i+1

n
1

1·2·...·i
= 1 +

∑n
i=1(1− 1

n ) . . . (1− i−1
n ) 1

1·2·...·i
< 1 +

∑n
i=1

1
1·2·...·i

≤ ∑n
i=1

1
2i−1

= 1 + 1− 1
2n

1− 1
2

= 1 + 2(1− 1
2n )

< 3

Claim 3. n ∈ N \ {0}, (1 + 1
n )n ≤ (1 + 1

n+1 )n+1.
Since (1 + 1

n+1 )n+1 = (1 + 1
n − 1

n + 1
n+1 )n+1 = (1 + 1

n − 1
n(n+1) )

n+1, we
have to show that (1 + 1

n − 1
n(n+1) )

n+1 ≥ (1 + 1
n )n. By setting a = 1 + 1/n,

this is equivalent to the statement (a − 1
n(n+1) )

n+1 ≥ an, i.e. to the statement
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(1− 1
an(n+1) )

n+1 ≥ 1/a, i.e. to the statement (1− 1
(n+1)2 )n+1 ≥ n

n+1 . By Claim
1, if n ≥ 1, (1− 1

(n+1)2 )n+1 ≥ 1− 1
n+1 = n

n+1 . This proves Claim 3.
Now apply Theorem 6.7.2. ¤

Exercises.

i. We have seen in this paragraph that the sequence given ((1 + 1/n)n)n

converges to a real number > 2. Let e be this limit. Do the following
sequences converge? If so find their limit.

a) limn→∞
(
1 + 1

n+1

)n

.

b) limn→∞
(
1 + 1

2n

)n.

c) limn→∞
(
1 + 1

n

)2n.

d) limn→∞
(
1 + 1

2n

)3n.

e) limn→∞
(
1 + 1

3n

)2n.

6.8.2 The Sequences (21/n)n and (n1/n)n

Proposition 6.8.2 limn→∞ 21/n = 1.

Proof: Clearly 21/n > 1. It is also clear that the sequence (21/n)n is decreasing.
Therefore it has a limit, say `. Then ` = limn→∞ 21/n = limn→∞ 21/n = `1/2.
Hence ` = 1. ¤

Proposition 6.8.3 limn→∞ n1/n = 1.

Proof: Clearly n1/n ≥ 1. We will show that the sequence is nonincreasing
for n ≥ 3, i.e. we will show that (n + 1)1/(n+1) ≤ n1/n, which is equivalent to
(n + 1)n ≤ nn+1 and to (1 + 1/n)n ≤ n. But we have seen in the proof of
Theorem 6.8.1 that (1 + 1/n)n ≤ 3 for all n. Thus (1 + 1/n)n ≤ n for n ≥ 3.

Therefore limn→∞ n1/n exists, say `. We have, 1 ≤ ` = limn→∞(2n)1/2n =
limn→∞ 21/2nn1/2n = 1 ·

√
`. (We used Proposition 6.8.2 in the last equality).

Thus ` = 1. ¤

6.8.3 The Sequence (nxn)n

Proposition 6.8.4 limn→∞ nxn = 0 for |x| < 1. The sequence diverges other-
wise.

Proof: Since limn→∞ n
n+1 = 1, there is an N such that |x| < n

n+1 for all
n > N . Now for n > N , (n + 1)|x|n+1 = (n + 1)|x| · xn < nxn. Hence the
sequence (nxn)n is decreasing after a while. Therefore the sequence converges,
say to a. Assume a 6= 0. Then by Corollary 6.4.11, 1 = limn→∞ nxn

(n+1)xn+1 =
limn→∞ n

n+1
1
x = 1/x, a contradiction. Thus limn→∞ nxn = 0. The rest is left

as an exercise. ¤
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Exercises.

i. Let (xn)n be a sequence such that xn 6= 0 for every n ∈ N and |xn+1/xn| ≤
r for some fixed r ∈ (0, 1). Show that limn→∞ xn = 0.

ii. Let x1 = 1, x2 = 2 and

xn =
xn−1 + xn−2

2

for n > 2.

a) Show that 1 ≤ xn ≤ 2 for all n.

b) Show that |xn − xn+1| = 1/2n−1 for all n.

c) Show that if m > n then |xn − xm| < 1/2n−2 for all n.

d) Show that (xn)n is a Cauchy sequence.

e) Find its limit. Answer: Note that the sequence is formed by taking
the arithmetic mean of the previous two terms. It can be guessed that
the limit is at the two thirds of the way from x1 = 1 to x2 = 2, i.e. it
is 5/3. This can be shown by some elementary linear algebra. But there
is an easier way: Note that part b can be sharpened into xn − xn+1 =
(−1)n/2n−1, thus xn+1− 1 = xn+1−x1 = (xn+1−xn)+ . . .+(x2−x1) =
1−1/2+1/4 . . .+(−1)n−1/2n−1. It follows that the limit x, that we know
it exists from the previous question, is equal to limn→∞ 2−1/2+1/4 . . .+
(−1)n−1/2n−1. Now we just remarque that 2x = 2 limn→∞ 2 − 1/2 +
1/4− . . . + (−1)n−1/2n−1 = limn→∞ 4− 1 + 1/2− . . . + (−1)n−1/2n−2 =
limn→∞ 4− (1− 1/2− . . . + (−1)n/2n−2) = limn→∞ 5− (2− 1/2− . . . +
(−1)n/2n−2) = 5− x, so 3x = 5 and x = 5/3.

iii. Let x0 = 1, xn+1 = 1 + 1/xn. Show that (xn)n is convergent.

iv. For k ∈ N and x ∈ R, discuss the convergence of the sequence (nkxn)n.

v. Let f0 = f1 = 1, fn+2 = fn + fn+1. Show that the sequence ( fn+1
fn

)n is
convergent. (It converges to 2

1+
√

5
).

vi. We say that a sequence (xn)n is contractive if there is a constant c ∈
(0, 1) such that |xn+2 − xn+1| ≤ c|xn+1 − xn| for all n. Show that every
contractive sequence is convergent. Hint: Note first that |xn+1 − xn| ≤
cn|x1 − x0|. Now estimate |xn − xm| and show that such a sequence is
Cauchy.

vii. Let 0 < a0 = a < b0 = b. Define an+1 = (2anbn)/(an + bn), bn+1 =
(an + bn)/2. Show that (an)n and (bn)n are both convergent. Show that
their limits are equal. (Hint: Use mean inequalities.)

viii. Let a0 = a, b0 = b, c0 = c. Define an+1 = (bn + cn)/2, bn+1 = (cn + an)/2,
cn+1 = (an + bn)/2. Show that (an)n, (bn)n and (cn)n are convergent.
Compute their limits.(Hint: First take a = b = 0, c = 1.)
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6.9 Divergence to Infinity

Let (xn)n be a real sequence. We say that the sequence (xn)n diverges to
infinity if for all real numbers A there is an N such that for all n > N , xn > A.
Here, A should be regarded as a very large number, as large as it can be. In
this case one writes limn→∞ xn = ∞.

Similarly we say that the sequence (xn)n diverges to minus infinity if
for all real numbers A there is an N such that for all n > N , xn < A. Here,
A should be thought as a very small negative number. In this case, we write
limn→∞ xn = −∞

If an increasing sequence (an)n is bounded then limn→∞ xn ∈ R (Theorem
6.7.2), if it is unbounded, then limn→∞ xn = ∞ (Exercise vi, page 77). Similarly
for decreasing sequences.

Note that until now, we have not defined “infinity”, and we will never really
define it. Above, we only defined the phrase “limn→∞ xn = ∞” as if it were one
single entity.

Now we let ∞ and −∞ to be two new distinct symbols. We will never
give any meaning to these symbols. Their only property is that they are new
symbols. We let R := R ∪ {∞,−∞}, we extend the operations and the order
relation defined on R to R partially as follows:

−∞ < r < ∞ for all r ∈ R
r +∞ = ∞+ r = ∞ for all r ∈ (−∞,∞]
r + (−∞) = r −∞ = −∞+ r = −∞ for all r ∈ [−∞,∞)}
−(−∞) = ∞
r∞ = ∞r = ∞ for all r ∈ (0,∞]
r∞ = ∞r = −∞ for all r ∈ [−∞, 0)
r(−∞) = (−∞)r = −∞ for all r ∈ (0,∞]
r(−∞) = (−∞)r = ∞ for all r ∈ [−∞, 0)
r/∞ = r/(−∞) = 0 for all r ∈ R
±∞/r = ±∞(1/r) for all r ∈ R∗
r∞ = ∞ for all r ∈ (1,∞]
r∞ = 0 for all r ∈ (−1, 1)
r−∞ = 0 for all r ∈ (1,∞]
r−∞ = ∞ for all r ∈ (0, 1)
r−∞ = −∞ for all r ∈ (−1, 0)

Note that the following terms are not defined:
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(−∞) +∞
∞+ (−∞)
∞/∞
∞/(−∞)
(−∞)/∞
(−∞)/−∞
∞/0
−∞/0
∞0

(−∞)0

0∞

(±1)∞

Theorem 6.9.1 Let (xn)n and (yn)n be two sequences in R such that limn→∞ xn ∈
R and limn→∞ yn ∈ R. Let ∗ be any of the five basic arithmetic operations
(addition, substraction, multiplication, division and power). If limn→∞ xn ∗
limn→∞ yn is defined, then limn→∞ xn ∗ yn = limn→∞ xn ∗ limn→∞ yn.

Proof: Left as an exercise. ¤

Exercises.

i. Show that the sequences (n)n and (n2)n diverge to infinity.

ii. Show that the sequence ((−1)nn)n does not converge or diverge neither
to ∞ or to −∞.

iii. Show that limn→∞(3/2 + 1/n)n = ∞.

iv. Find the following limits and prove your result using only the definition:

a) limn→∞ 2n2−5
n+2 .

b) limn→∞ 2n2−5
−n+2 .

c) limn→∞ 2n3−5
n2−n+2 .

d) limn→∞ 2n2−1
n2−n−1

n
.

e) limn→∞
(
2 + 1

n

)n.

v. Show that if limn→∞ xn = ∞ then limn→∞−xn = −∞.

vi. Show that an increasing and unbounded sequence converges to ∞.

vii. Let p(x) and q(x) 6= 0 be two polynomials of degree d and e respectively
and with leading coefficients a and b respectively. Then the sequence
(p(n)/q(n))n diverges to infinity if and only if e < f and a/b > 0. And
the sequence (p(n)/q(n))n diverges to −∞ if and only if e < f and a/b < 0.



78 CHAPTER 6. SEQUENCES AND LIMITS

viii. Show that if limn→∞ xn = ∞ and limn→∞ yn = a ∈ R then limn→∞ xn +
yn = ∞.

ix. Show that if limn→∞ xn = ∞ and limn→∞ yn = ∞ then limn→∞ xn+yn =
∞.

x. Show that if limn→∞ xn = ∞ then limn→∞ x−1
n = 0.

xi. Show that there are sequences (xn)n such that limn→∞ xn = 0 but limn→∞ x−1
n 6=

±∞.

xii. Show that if limn→∞ xn = ∞ and limn→∞ yn > 0 then limn→∞ xnyn = ∞.

xiii. Show that if limn→∞ xn = −∞ and limn→∞ yn = −∞ then limn→∞ xnyn =
∞.

xiv. Let xn = 1 + 1/2 + . . . + 1/n. Show that limn→∞ xn = ∞. (See Theorem
7.1.3).

6.10 Limit Superior and Inferior

Let (an)n be a sequence of real numbers. We let

limnan = lim
n→∞

sup{an, an+1, . . .} ∈ R.

Since the sequence (sup{an, an+1, . . .})n is decreasing, limnan is either a real
number or is ±∞. limnan is called the limit superior of the sequence (an)n.

We also define

limnan = lim
n→∞

inf{an, an+1, . . .} ∈ R.

Since the sequence inf{an, an+1, . . .} is increasing, limnan is either a real number
or is ±∞. limnan is called the limit inferior of the sequence (an)n.

We always have limnan ≤ limnan.

Lemma 6.10.1 i. limnan 6= ∞ if and only if the sequence (an)n has an upper
bound.

ii. limnan = ∞ if and only if the sequence (an)n is unbounded by above.
iii. If limnan = r ∈ R then for all ε > 0 there is an N such that for all

n > N , an < r + ε.

Proof: (i) and (ii) are clear We prove (iii). Let ε > 0. Let N be such that for
all n > N , | sup{an, an+1, . . .}−r| < ε. Thus −ε < sup{aN+1, aN+2, . . .}−r < ε
and so sup{aN+1, aN+2, . . .} < r + ε. Thus an < r + ε for all n > N . ¤

We leave to the reader the task of stating and proving the analogue of the
above lemma for the limit inferior.
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Theorem 6.10.2 Let (an)n be a sequence of real numbers. Then limn→∞ an

exists if and only if limnan and limnan are real numbers and are equal. In this
case, limnan = limn→∞ an = limnan.

Proof: This follows from Lemma 6.10.1.iii and its analogue for the limit infe-
rior. ¤

Exercises.

i. Suppose (un)n and (vn)n are positive sequences. Let U = limn−→∞un and
V = limn−→∞ vn. Assume that if one of U and V is ∞, then the other is
nonzero. Then L = limn−→∞unvn = UV .

6.11 Complete Metric Spaces

A metric space is called complete if its Cauchy sequences converge. Thus Q is
not complete. Theorem 6.7.1 says that R is complete with its usual metric. We
can generalize this to the Euclidean spaces.

Theorem 6.11.1 The Euclidean space Rn is complete.

To prove this we only need to prove the following.

Theorem 6.11.2 Let xk = (xk,1, . . . , xk,n) ∈ Rn with Rn considered with its
Euclidean metric. Then

i) (xk)k is a Cauchy sequence if and only if (xk,i)k is a Cauchy sequence for
all i = 1, . . . , n.

ii) (xk)k is convergent if and only if (xk,i)k is convergent for all i = 1, . . . , n.
And in this case

lim
k→∞

xk = ( lim
k→∞

xk,1, . . . , lim
k→∞

xk,n).

Proof: i. Assume (xk)k is a Cauchy sequence. Let i = 1, . . . , n. Let ε > 0. Let
N be such that for all k, ` > N , d(xk, x`) < ε. Then for all k, ` > N ,

|xk,i − x`,i| ≤
√

(xk,1 − x`,1)2 + . . . (xk,n − x`,n)2 = d(xk, x`) < ε.

Thus (xk,i)k is a Cauchy sequence.
Conversely, assume that (xk,i)k is a Cauchy sequence for all i = 1, . . . , m.

Let ε > 0. Let Ni be such that for all k, ` > Ni, |xk,i − x`,i| < ε/n. Let
N = max(N1, . . . , Nn). Now for all k, ` > N ,

d(xk, x`) =
√

(xk,1 − x`,1)2 + . . . (xk,1 − x`,1)2
≤ |xk,1 − x`,1|+ . . . + |xk,n − x`,n| < ε/n + . . . + ε/n = ε.

ii. The proof is similar and we leave it as an exercise. ¤

One can generalize this theorem easily:
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Theorem 6.11.3 For i = 1, . . . , n, let (Xi, di) be a metric space. Consider
X = X1 × . . . × Xn with the product metric. Let xk = (xk,1, . . . , xk,n) ∈ X.
Then

i) (xk)k is a Cauchy sequence if and only if (xk,i)k is a Cauchy sequence for
all i = 1, . . . , n.

ii) (xk)k is convergent if and only if (xk,i)k is convergent for all i = 1, . . . , n.
And in this case

lim
k→∞

xk = ( lim
k→∞

xk,1, . . . , lim
k→∞

xk,n).

Proof: Left as an exercise. ¤

Exercises.

i. Show that limn→∞ nxn = 0 if 0 ≤ x < 1.

Corollary 6.11.4 Let (xn)n and (yn)n be two converging sequences in Rm.
Then (xn + yn)n and (xnyn)n are converging sequences and

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn

and
lim

n→∞
(xnyn) = lim

n→∞
xn lim

n→∞
yn.

Corollary 6.11.5 Let (xn)n be a converging sequence in Rm. Then any subse-
quence of (xn)n is convergent and it converges to the same limit.

Corollary 6.11.6 Product of finitely many complete metric spaces is complete.

Corollary 6.11.7 The metric space of complex numbers C is complete.

Exercises.

i. Let X be any set. Show that the space Seq(X) defined on page 52 is
complete.

6.12 Completion of a Metric Space

In this subsection, given a metric space X, we will find ”the smallest” complete
metric space containing X.

Let (X, d) be a metric space. Consider the set C(X) of Cauchy sequences of
X. On C(X) define the following equivalence relation:

(xn)n ≡ (yn)n ⇐⇒ lim
n→∞

d(xn, yn) = 0.

Lemma 6.12.1 The relation ≡ is an equivalence relation on the set C(X).
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Proof: Trivial. ¤

Set X = C(X)/ ≡. For (xn)n ∈ C(X), let (xn)n ∈ X be its class.
We will turn the set X into a metric space. To do this we need the following.

Lemma 6.12.2 i. Let (xn)n and (yn)n be two Cauchy sequences in X. Then
limn→∞ d(xn, yn) exists.

ii. Let (xn)n, (x′n)n, (yn)n, (y′n)n be four Cauchy sequences in X. If (xn)n ≡
(x′n)n and (yn)n ≡ (y′n)n, then limn→∞ d(xn, yn) = limn→∞ d(x′n, y′n).

Proof: We first note the following:

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn),

implying
d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(ym, yn).

Exchanging n and m, we get

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(ym, yn).

i. It is enough to show that the real sequence (d(xn, yn))n is Cauchy. Let ε >
0. Let N be large enough so that for n, m > N , d(xn, xm) < ε/2 and d(ym, yn) <
ε/2. By the above inequality for n, m > N , |d(xn, yn)− d(xm, ym)| > ε. ¤.

ii. By assumption limn→∞ d(xn, x′n) = limn→∞ d(yn, y′n) = 0. So the second
part also follows from the inequality proven in the beginning. ¤

The lemma above says that we are allowed to define a map d from X ×X
into R≥0 by the rule,

d((xn)n, (yn)n) = lim
n→∞

d(xn, yn).

Lemma 6.12.3 (X, d) is a metric space.

Proof: Suppose d((xn)n, (yn)n) = 0, i.e. limn→∞ d(xn, yn) = 0. By definition
(xn)n = (yn)n.

Clearly d((xn)n, (yn)n) = d((yn)n, (xn)n).
It remains to prove the triangular inequality:

d((xn)n, (yn)n) = limn→∞ d(xn, yn) ≤ limn→∞(d(xn, zn) + d(xn, zn))
= limn→∞ d(xn, zn) + limn→∞ d(xn, zn)
= d((xn)n, (zn)n) + d((zn)n, (yn)n)

.

¤

Lemma 6.12.4 The map i that sends x ∈ X to the class (x)n of the con-
stant sequence (x)n is a continuous embedding of X into X. Furthermore
d(i(x), i(y)) = d(x, y).
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Proof: If (x)n = (y)n, then limn→∞ d(x, y) = 0, i.e. d(x, y) = 0, hence x = y,
proving that i is one to one.

For the last equality: d(i(x), i(y)) = limn→∞d(x, y) = d(x, y).
Let us now show that i is continuous. Let (xk)k be a sequence from X

converging to a. Let us show that the class of constant sequences (xk)n con-
verge to the class of the constant sequence (a)n when k goes to infinity. By
Lemma 6.1.2, it is enough to show that limn→∞ d((xk)n, (a)n) = 0. We have:
limk→∞ d((xk)n, (a)n) = limk→∞ d(xk, a) = 0. This proves it. ¤

Lemma 6.12.5 (X, d) is a complete metric space.

Proof:

From now on we identify X with its image i(X) and we assume that X is a
subset of X.

Lemma 6.12.6 X is dense in X.

Lemma 6.12.7 Let Y be a metric space. Let f : X −→ Y be a continuous
map. Then there is a unique continuous extension f : X −→ Y of f .

Lemma 6.12.8 Uniqueness of X.

6.13 Supplementary Problems

i. One tosses a coin. Each head adds one point, each tail adds two points. Let
p(n) be the probability of reaching the integer n. Show that limn→∞ p(n) =
2/3.

ii. Fibonacci Sequence. Let f0 = 0, f1 = 1 and define fn+2 = fn+1 +
fn. The sequence (fn)n is called the Fibonacci sequence. Show that
limn→∞ fn/fn+1 = 2

1+
√

5
.

iii. Let (an)n be a bounded real sequence with the property that every con-
verging subsequence converges to the same limit. Show that the sequence
converges.

iv. Let (an)n be a bounded real sequence. Let

S = {x ∈ R : x < an : for infinitely many n}.

Show that there exists a subsequence converging to sup(S). Deduce the
Bolzano-Weierstrass Theorem from this.
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Series

7.1 Definition and Examples

DO IT IN BANACH SPACES
Let (ai)i be a sequence of complex numbers. (For most of what follows

we can also assume that (ai)i is a sequence in a normed vector space). Let
sn :=

∑n
i=0 ai. Assume that the sequence (sn)n converges in C. Then we write

∞∑

i=0

ai = lim
n→∞

n∑

i=0

ai

and we say that the series
∑∞

i=0 ai converges to limn→∞
∑n

i=0 ai or that its
sum is limn→∞

∑n
i=0 ai. Else, we say that the series

∑∞
i=0 ai is divergent.

The numbers sn :=
∑n

i=0 ai are called the partial sums of the series∑∞
i=0 ai.
Although we defined a series for complex numbers, the reader is welcome to

consider only real series, i.e. series where ai ∈ R for all i.
If

∑∞
i=0 ai is a real series and limn→∞

∑n
i=0 ai = ∞, we say that the series∑∞

i=0 ai diverges to ∞ and we write
∑∞

i=0 ai = ∞. Similarly for −∞.
Whenever we write

∑∞
i=0 ai = ∞, we will assume that ai ∈ R even if this is

not explicitly stated.

Examples.

i. If ai = 1 for all i, then
∑∞

i=0 ai = limn→∞
∑n

i=0 ai = limn→∞ n = ∞.
In general, if (ai)i is a constant sequence of real numbers, then the series∑∞

i=0 ai converges if and only if ai = 0. If the sequence (ai)i is a real
constant nonzero sequence, then

∑∞
i=0 ai diverges to ±∞ depending on

the sign of ai.

ii. If ai = (−1)i for all i, then
∑∞

i=0 ai does not exist (is not even ±∞).

83
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Theorem 7.1.1 The set of sequence (ai)i such that
∑

i ai converges form a
vector space. Furthermore we have,

∑

i

(αai + βbi) = α
∑

i

ai + β
∑

bi.

The equality persists if
∑

i ai and
∑

i bi are in R ∪ {∞,−∞} if the operations
in the equality are allowed.

Proof: Easy. ¤

Remarks.

i. Regrouping the terms of a series may change the convergence of the series.
For example consider the series

∑∞
i=0 ai where ai = (−1)i. If we let

bi = a2i + a2i+1, then
∑∞

n=0 bi = 0 because each bi = 0. Thus a divergent
sequence may turn into a convergent sequence.

On the other hand regrouping the terms of a convergent series does not
change its convergence and the sums are equal. For example, the terms
of the alternating series

∑∞
i=1(−1)i/i that we will show is convergent can

be regrouped two by two to get that the series
∑∞

i=1 1/(2i + 1)(2i + 2)
converges to the same limit.

As we have seen we cannot dissociate a series without altering its sum
(unless the terms are positive).

ii. A rearrangement of the terms of the series may change the convergence
of the series (unless the terms are positive, see Theorem 7.3.2). Consider
the series

∑

i

(−1)i/i = 1− 1/2 + 1/3− 1/4 + 1/5− . . . .

We will see later that this series converges to a nonzero number. Now
shuffle the terms as follows:

(1−1/2−1/4)+(1/3−1/6−1/8)+. . .+(1/(2n+1)−1/2(2n+1)−1/2(2n+2))+. . .

Regrouping a positive term with the next term which follows it, we get

1/2− 1/4 + 1/6− 1/8 + . . . + 1/2(2n + 1)− 1/2(2n + 2)) + . . .

and this is half of the initial series.

iii. On the other hand, if
∑∞

i=0 ai converges, then if we regroup the terms
without changing the order, then the sum

(a1 + a2 + . . . + an1) + (an1+1 + . . . + an2) + (an2+1 + . . . + an3) + . . . ,
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remains unaltered. This may be called the associativity of series (see
Exercise v, page 86). But we cannot dissociate: For example

(1 + (−1)) + (1 + (−1)) + . . . = 0,

but
1 + (−1) + 1 + (−1) + . . .

is not convergent.

iv. The ordering of the terms of the series is important and in some cases
the sum may change. For example, summing first the terms with even
subscripts a2i and then the terms with odd subscripts a2i+1 and then
adding these two sums may change the sum. We give an example in page
89.

The series
∑∞

i=0 ri is called geometric series. This will be our first example
of a convergent series.

Theorem 7.1.2 (Geometric Series) Let α ∈ C. Then series
∑∞

i=0 αi is con-
vergent if and only if |α| < 1. In this case

∞∑

i=0

αi =
1

1− α
.

Proof: If |α| ≥ 1, then limn→∞ αn 6= 0, so that
∑∞

i=0 αi cannot be convergent.
Assume |α| < 1. Let sn =

∑n
i=0 αi. Then (1−α)sn = sn−αsn = 1−αn+1 and

so sn = 1−αn+1

1−α . Therefore by Proposition 6.2.3,
∑∞

i=1 αi = 1
1−α . ¤

The series
∑∞

i=1 1/i is called harmonic series.

Theorem 7.1.3 (Harmonic Series)
∑∞

i=1 1/i = ∞.

Proof: For any natural number k and for the 2k−1 many natural numbers
i ∈ [2k−1, 2k), we have 1/i > 1/2k, so that

∑2k−1
i=2k−1 1/i > 2k−1 1

2k = 1/2. It

follows that s2n−1 =
∑2n−1

i=1 1/i =
∑n

k=1

∑2k−1
i=2k−1 1/i >

∑n
k=1 1/2 = n/2, so

that the sequence sn diverges to infinity. ¤

Exercises.

i. Show that the series
∑∞

i=1 1/ii converges. Find an upper bound for the
sum.

ii. Show that the series
∑∞

i=1 1/2i and
∑∞

i=0 1/(2i + 1) diverge.

iii. Show that the sum of the reciprocals of natural numbers whose decimal
expansion contains at least a zero 1/10 + . . . + 1/90 + 1/100 + 1/101 +
. . . + 1/109 + 1/110 + 1/120 + . . . diverges.
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iv. Let k ∈ N be ≥ 2. Show that the series
∑∞

i=1 1/ni converges. (Hint: See
Exercise iv, page 72).

v. Suppose
∑∞

i=0 ai converges. Let (nk)k be a strictly increasing sequence of
natural numbers with n0 = 0. Set bk = ank

+ . . . + ank+1−1. Show that∑∞
k=0 bk converges to

∑∞
i=0 ai.

7.2 Easy Consequences of the Definition

Proposition 7.2.1 If
∑∞

i=0 ai converges then limi→∞ ai = 0.

Proof: Let ε > 0. Since
∑∞

i=0 ai converges, the partial sums sn =
∑n

i=0 ai

form a Cauchy sequence. Thus there exists an N such that for all n, m > N ,
|sn−sm| < ε. Taking m = n+1, we see that for all n > N , |an+1| = |sn−sn+1| <
ε. Thus for all n > N + 1, |an| < ε. This shows that limn→∞ an = 0. ¤

Corollary 7.2.2 If limi→∞ ai 6= 0 then the series
∑∞

i=0 ai cannot converge.

Since the convergence of a series is nothing else but the convergence of the
sequence of partial sums, we can use the completeness of R:

Proposition 7.2.3 (Cauchy’s Criterion) A sequence
∑∞

i=0 ai converges if
and only if for all ε > 0, there exists an N such that for all n > m > N ,
|∑n

i=m ai| < ε.

Proof: The condition just expresses the fact that the sequence of partial sums
(
∑n

i=0 ai)n is Cauchy. ¤

Theorem 7.2.4 If ai ≥ 0 and if the partial sums
∑n

i=0 ai are bounded then∑∞
i=0 ai converges.

Proof: Follows from Theorem 6.7.2. ¤

Corollary 7.2.5 (Comparison Test) Let 0 ≤ ai ≤ bi.
a. If

∑∞
i=0 bi converges, then

∑∞
i=0 ai converges as well. Furthermore

∑∞
i=0 ai ≤∑∞

i=0 bi.
b. If

∑∞
i=0 ai = ∞ then

∑∞
i=0 bi = ∞.

Corollary 7.2.6 Suppose that un, vn > 0 and un+1/un ≤ vn+1/vn eventually.
If

∑
n vn converges then

∑
n un converges. Hence if

∑
n un diverges then

∑
n vn

diverges.

Proof: Let n0 be a witness for the “eventuality”. Let n > n0. Multiply the
inequalities from n0 to n − 1 to get un/un0 ≤ vn/vn0 , i.e. un ≤ rvn where
r = un0

vn0
. Clearly

∑
n vn converges if and only if

∑
n rvn converges. Now apply

the comparison test (Corollary 7.2.5). ¤
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Exercises.

i. Cauchy Condensation Test. Let (xi)i be a nonincreasing, nonnegative
real sequence. Show that

∑∞
i=0 xi converges if and only if

∑∞
i=0 2ix2i

converges. [A, page 53]

ii. Let an > 0, bn > 0. Show that if limi→∞ bi/ai = 0 and
∑∞

i=0 ai converges
then

∑∞
i=0 bi converges as well.

iii. Let ai > 0, bi > 0. Show that if limi→∞ bi/ai = ∞ and
∑∞

i=0 ai = ∞ then∑∞
i=0 bi = ∞.

7.3 Absolute Convergence

If
∑∞

i=0 |ai| converges, then we say that the series
∑∞

i=0 ai converges abso-
lutely.

Theorem 7.3.1 (Cauchy) An absolutely convergent series is convergent.

Proof: Let
∑∞

i=0 ai be an absolutely convergent series. We will show that∑∞
i=0 ai converges by using Cauchy’s Criterion (Proposition 7.2.3). Let ε > 0.

Let N such that for all n > m > N ,
∑n

i=m |ai| < ε. Then for all n > m > N ,
|∑n

i=m ai| ≤
∑n

i=m |ai| < ε. ¤

But the converse of this theorem is false. Indeed, we will see that the series∑∞
i=1(−1)i/i converges (Corollary 7.4.2), but we know that it does not converge

absolutely (Theorem 7.1.3).
We will later show that permuting the terms of a series may change its value.

However, this is not the case with the absolutely convergent series.

Theorem 7.3.2 (Rearrangement of the Terms) Let
∑∞

i=0 ai be an abso-
lutely convergent series. Let f : N −→ N be a bijection. Let bi = af(i). Then∑∞

i=0 bi is also absolutely convergent and its sum is equal to
∑∞

i=0 ai

Proof: Let sn and tn be the partial sums of the series
∑∞

i=0 ai and
∑∞

i=0 bi

respectively. Let a =
∑∞

i=0 ai. We will show that limn→∞ tn = a as well.
Let ε > 0. Since limm→∞ sm = a, there is an N1 such that |sm − a| < ε/2

for all m > N1.
Since

∑∞
i=0 ai converges absolutely, there is an N2 such that for all m > N2,∑∞

k=i |ai| < ε/2.
Choose an m > max(N1, N2).
Let N be such that {0, . . . ,m} ⊆ {f(0), . . . , f(N)}. Now for n > N , we have,

|tn − a| ≤ |tn − sm|+ |sm − a| < |tn − sm|+ ε/2 = |(b0 + . . . + bn)− (a0 + . . . +
am)|+ε/2 = |(af(0) + . . .+af(n))−(a0 + . . .+am)|+ε/2 ≤ ∑∞

k=m+1 |ak|+ε/2 <
ε/2 + ε/2 = ε. ¤

We can also partition an absolutely convergent series in two (or more) pieces:
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Theorem 7.3.3 Let us partition the terms (ai)i of an absolutely convergent
series

∑∞
i=0 ai in two disjoint and infinite subsets (bi)i and (ci)i. Then

∑∞
i=0 bi

and
∑∞

i=0 ci are absolutely convergent series and
∑∞

i=0 ai =
∑∞

i=0 bi +
∑∞

i=0 ci.

Proof: Let αn, βn and γn be the partial sums of the three series in this order.
Given n, we can find mn and pn such that every term of the partial sum αn

appears in one of the partial sums βmn
and γpn

. Thus 0 ≤ βmn
+ γpn

− αn ≤∑∞
i=n+1 ai, so that limn→∞(βmn

+ γpn
− αn) = 0. ¤

Corollary 7.3.4 Let
∑

i ai be absolutely convergent. Let (bi)i be the positive
terms and (ci)i the negative terms of (ai)i. Then

∑
i ai =

∑
i bi +

∑
i ci.

Exercises.

i. Suppose
∑

i ai converge absolutely. Show that |∑i ai| ≤
∑

i |ai|. (First
Solution: Let R =

∑
i |ai|. Then

∑n
i ai ∈ B(0, R). Since B(0, R) is

closed (why?), the limit
∑∞

i ai is still in B(0, R). Second Solution:
Let xn =

∑n
i ai. By Exercise v, page 63, |∑∞

i ai| = | limn→∞ xn| =
limn→∞ |xn| ≤ limn→∞

∑n
i |ai| =

∑∞
i |ai|.)

ii. Show that
∑∞

i=0 ai converges absolutely, then
∑∞

i=0 a2
i converges (abso-

lutely) as well. (See also Exercise vi, page 89).

7.4 Alternating Series

A series of the form
∑∞

i=0(−1)iai where ai ≥ 0 is called alternating series.

Theorem 7.4.1 (Alternating Series Test) Let (ai)i be a decreasing sequence
such that limi→∞ ai = 0. Then

∑∞
i=0(−1)iai converges. Furthermore,

2n+1∑

i=0

(−1)iai ≤
∞∑

i=0

(−1)iai ≤
2n∑

i=0

(−1)iai.

for all n.

Proof: Let sn = a0 − a1 + . . . + (−1)nan. We consider the sequences (s2n)n

and (s2n+1)n of even and odd partial sums.
Since s2n+1 = (a0 − a1) + . . . + (a2n − a2n+1), the sequence (s2n+1)n is

increasing.
Since s2n = a0 − (a1 − a2) − . . . − (a2n−1 − a2n), the sequence (s2n)n is

decreasing.
Since s2n+1 − s2n = −a2n+1 ≤ 0, s2n+1 ≤ s2n. By the Monotone Conver-

gence Theorem (6.7.2), both the series (s2n)n and (s2n+1)n converge, say to a
and b respectively. Then a− b = limn→∞ s2n − limn→∞ s2n+1 = limn→∞(s2n −
s2n+1) = limn→∞ a2n+1 = 0, so that a = b. Hence the sequence (sn)n converges
to a as well (see Exercise iii, page 67). ¤

Corollary 7.4.2
∑∞

i=1(−1)i/i converges to a number in (0, 1).
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Example. [A, page 36] We now give an example (necessarily non-absolutely
convergent, see Theorem 7.3.2) of a convergent series that, when the terms are
permuted, converges to a different number. We consider series

∑∞
i=1(−1)i/i.

Let S be its sum. Multiply the series by 1/2 and compute S + S/2:

3S/2 = S + S/2 =
∞∑

i=1

(−1)i/i +
∞∑

i=1

(−1)i/2i

and it is easy to see that the partial sums of the right hand side are exactly the
partial sums of the sequence

1 + 1/3− 1/2 + 1/5 + 1/7− 1/4 + 1/9 + . . . = 1 +
∞∑

i=1

(
1

4i− 1
− 1

2i
+

1
4i + 1

)
,

which is a rearrangement of the alternating series
∑∞

i=1(−1)i/i. Since this sum
is nonzero, we see that a different rearrangement of the terms of a series may
change the sum.

Exercises.

i. Show that
∑∞

i=1(−1)i/
√

i converges.

ii. Prove the Alternating Series Test by showing that the sequence of partial
sums is a Cauchy sequence.

iii. Show that
∑

n
1

(2n+1)(2n+3) converges. (Hint: Note that 1
2n+1 − 1

2n+2 =
1

(2n+1)(2n+3)

iv. Prove the Alternating Series Test by using the Nested Intervals Property
(Theorem 3.1.12).

v. Find diverging series
∑∞

i=0 xi and
∑∞

i=0 yi such that
∑∞

i=0 xiyi converges.

vi. Find a converging series
∑∞

i=0 xn such that
∑∞

i=0 x2
i is divergent.

7.5 Criteria for Convergence

We first generalize Theorem 7.1.2:

Proposition 7.5.1 Let (xi)i be a sequence such that for some r ∈ (0, 1), |xi+1| ≤
r|xi| eventually. Then

∑∞
i=0 xi converges absolutely.

Proof: We may assume that xi ∈ R≥0 and that the condition |xi+1| ≤ r|xi|
holds for all i. By induction xi ≤ rix0. Thus 0 ≤ ∑n

i=0 xi ≤ x0

∑n
i=0 ri. Since

the latter sequence converges,
∑∞

i=0 xi converges as well (Corollary 7.2.5). ¤



90 CHAPTER 7. SERIES

Corollary 7.5.2 (Ratio Test, d’Alembert) Let (xi)i be a nonzero sequence
in a Banach space such that

lim
n→∞

|xi+1/xi|

exists and is < 1. Then
∑∞

i=0 xi converges absolutely.

Proof: We may assume that xi > 0 for all i. Let s be the limit of the sequence
(xi+1/xi)i. By hypothesis 0 ≤ s < 1. Let ε = 1−s

2 . Then ε > 0 and there is an
N such that for all i > N , |s− xi+1

xi
| < ε. Let r = s + ε. Then xi+1

xi
< r and the

corollary follows from Proposition 7.5.1. ¤

Examples.

i. The series
∑∞

i=0 zn/n! converges for all z in all Banach spaces.

ii. Consider the series

1 + αz +
α(α− 1)

2!
z2 + . . .

α(α− 1) . . . (α− n + 1)
n!

zn + . . .

where α ∈ C. The series converges for |z| < 1 according to d’Alembert
(Corollary 7.5.2).

Corollary 7.5.3 (d’Alembert) If limi→∞|ai+1/ai| < 1, then
∑∞

i=0 ai con-
verges absolutely. If limi→∞|ai+1/ai| > 1, then

∑∞
i=0 ai diverges.

Proof: As the proof of Corollary 7.5.2, using Lemma 6.10.1. ¤

Example. Let

ai =
{

1/i2 i is even
2/(i + 1)2 i is odd

Then limi→∞|ai+1/ai| = 2 > 1 and limi→∞|ai+1/ai| = 1/2 < 1. But
∑∞

i=0 ai

converges.

Corollary 7.5.4 For any z ∈ C, the series

exp(z) =
∑∞

i=0 zi/i!
sin(z) =

∑∞
i=0(−1)iz2i+1/(2i + 1)!

cos(z) =
∑∞

i=0(−1)iz2i/(2i)!

converge absolutely.

These series then give rise to functions from C into C. They are called
exponentiation, sine and cosine respectively.

Theorem 7.5.5 (Root Test, Cauchy) If limi→∞|ai|1/i < 1, then
∑∞

i=0 ai

converges absolutely. If limi→∞|ai|1/i > 1, then
∑∞

i=0 ai diverges.
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Proof: Let r = limi→∞|ai|1/i < 1. Let ε = 1−r
2 . Note that r + ε < 1.

By Lemma 6.10.1 there is an N such that for all i > N , |ai|1/i < r + ε, i.e.
|ai| < (r + ε)i. Now our theorem follows from theorems 7.2.5 and 7.1.2. ¤

Corollary 7.5.6 If R = 1/limi→∞|ai|1/i, then
∑∞

i=0 aiz
i converges absolutely

if |z| < R and diverges if |z| > R.

R = 1/limi→∞|ai|1/i is called the radius of convergence of the series∑∞
i=0 aiz

i.
A series of the form

∑∞
i=0 aiz

i is called a power series. If R is its radius of
convergence, such a series gives rise to a function from the ball of center 0 and
radius R into C.

Theorem 7.5.7 Let f(z) =
∑∞

i=0 aiz
i be a power series with radius of conver-

gence R. Then
∑∞

i=1 iaiz
i−1 has the same radius of convergence.

Theorem 7.5.8 (Abel, form due to Lejeune-Dirichlet) The (complex or
real) series

∑∞
i=0 vnεn converges if

i. The sum |vm + . . . + vn| is bounded for all m ≤ n.
ii. The series

∑∞
n=0 |εn − εn+1| converges.

iii. limn→∞ εn = 0.

Proof: We will use Cauchy criterion of convergence (7.2.3). Let ε > 0. For
m ≤ n, let Vm,n = vm + . . . + vn. By hypothesis, there is an A such that
|Vm,n| < A for all m ≤ n. Let N1 be such that for all n ≥ m > N1, |εm −
εm+1| + . . . + |εn−1 − εn| < ε/2A and let N2 be such that for all n > N2,
|εn| > ε/2A. Let N = max{N1, N2}. For n ≥ m > N we compute as follows:

Since Vk,k+1−Vk,k = vk+1, we have, vmεm+. . .+vnεn = Vm,mεm+(Vm,m+1−
Vm,m)εm+1 + . . . + (Vm,n − Vm,n−1)εn = Vm,m(εm − εm+1) + Vm,m+1(εm+1 −
εm+2) + . . . + Vm,n−1(εn−1 − εn) + Vm,nεn. Thus vmεm + . . . + vnεn ≤ A(|εm −
εm+1|+ |εm+1 − εm+2|+ . . . + |εn−1 − εn|+ |εn|) < A(ε/2A) + A(ε/2A) = ε. ¤

Corollary 7.5.9 The (complex or real) series
∑∞

i=0 vnεn converges if
i. The sum |vm + . . . + vn| is bounded for all m ≤ n.
ii. (εn)n is positive, nondecreasing and limn→∞ εn = 0.

Proof: We check that the above conditions are met. We only have to be
concerned with condition (ii):

∑∞
n=0 |εn − εn+1| =

∑∞
n=0(εn − εn+1) = ε0. ¤

We can obtain the alternating series test (Theorem 7.4.1) as a consequence:

Corollary 7.5.10 (Alternating Series Test) Let (vi)i be a decreasing se-
quence such that limi→∞ vi = 0. Then

∑∞
i=0(−1)ivi converges.

Proof: Take vn = (−1)n in the corollary above. ¤
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Exercises.

i. Discuss the convergence and absolute convergence of the alternating series
1− 1/2α + 1/3α − 1/4α + . . . for various values of α ∈ Q.

ii. Decimal Expansion. Let r ∈ R≥0. Then there are k ∈ Z and ai ∈
{0, 1, . . . , 9} such that r =

∑∞
i=k ai10−i.

iii. Let n > 0 be a natural number. Let r ∈ R≥0. Then there are k ∈ Z and
ai ∈ {0, 1, . . . , n− 1} such that r =

∑∞
i=k ain

−i.

iv. Show that 1/3 =
∑∞

i=1 2−2i.

v. Let (ai)i be a positive decreasing sequence, k an integer greater than 1.
Show that the series

∑∞
i=1 ai and

∑∞
i=1 kiaki either both converge or both

diverge.

vi. Show that if the ratio test says that a sequence converges, so does the root
test.

vii. Show that if ai > 0 and limi→∞ iai exists and is nonzero, then
∑∞

i=0 ai

diverges.

viii. Assume ai > 0 and limi→∞ i2ai exists. Show that
∑∞

i=0 ai converges.

7.6 Supplementary Problems

i. Show that the sum of the reciprocals of natural numbers whose decimal
expansion does not contain a 0, i.e. the series 1/1 + . . . + 1/9 + 1/11 +
. . . + 1/19 + 1/21 + . . . + 1/29 + 1/31 + . . . + 1/99 + 1/111 + . . . + 1/119 +
1/121 + . . . + 1/129 + . . . is convergent.

ii. Let
∑∞

i=0 ai is given. For each i ∈ N, let pi = ai if ai ≥ 0 and assign
pi = 0 if ai < 0. In a similar manner, let qi = ai if ai ≤ 0 and qi = 0
otherwise.

a. Show that if
∑∞

i=0 ai diverges, then at least one of
∑∞

i=0 pi or
∑∞

i=0 qi

diverges (to ∞ and −∞ resp.)

b. Show that if
∑∞

i=0 ai converges conditionally (i.e. not absolutely), then∑∞
i=0 pi = ∞ and

∑∞
i=0 qi = −∞. [A, Ex. 2.7.3, page 68]

c. Show that if
∑∞

i=0 ai converges conditionally and r ∈ R, then there is
a bijection f : N −→ N such that

∑∞
i=0 af(i) = r. [A, Section 2.9]

iii. Let xi = 1/12 + 1/22 + 1/32 + . . . + 1/i2.

a. Show that for all integers i ≥ 1, xi ≤ 2− 1/i < 2.

b. Conclude that the series
∑∞

i=1 1/i2 converges.

c. Show that for an integer i large enough, i2 ≤ 2i.

d. Conclude that
∑∞

i=1 1/i2 ≤ 1 + 1/4 + 1/9 + 1/8 = 107/72.
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iv. Show that the series
∑∞

i=1
1

i2+i converges. Find its value.

v. Show that the series
∑∞

i=1
1

i2+2i converges. Find its value.

vi. Which of the following series converge? Can you estimate their sum?
∑∞

i=1
1

i2−i∑∞
i=3

1
i2−3i+2∑∞

i=0
1

3i−2∑∞
i=0

i
3i2−2∑∞

i=0
i

3i3−2∑∞
i=0

3i+4i

5i∑∞
i=0

2i

i!∑∞
i=0(−1)i i

i+1∑∞
i=0(−1)i i

i2−i+1∑∞
i=1

(−1)i

√
i∑∞

i=0(−1)i 2ii3

i!

7.6.1 Midterm of Math 152

i. Decide the convergence of the series
∑

n

1√
|n2 − 2| .

ii. Decide the convergence of the series
∑

n

1√
n2 + 1

.

iii. Decide the convergence of the series
∑

n

1√
|n4 − 6| .

iv. Suppose that the series
∑

n an is convergent. Show that limn→∞ an = 0.

v. Suppose that (an)n is a positive and decreasing sequence and that the
series

∑
n an is convergent. Show that limn→∞ nan = 0.

vi. Find a positive sequence (an)n such that the series
∑

n an is convergent
but that limn→∞ nan 6= 0.

vii. Suppose that series
∑

n an is absolutely convergent and that the sequence
(bn)n is Cauchy. Show that the series

∑
n anbn is absolutely convergent.

viii. Let (an)n be a sequence. Suppose that
∑∞

n=1 |an− an+1| converges. Such
a sequence is called of bounded variation. Show that a sequence of
bounded variation converges.
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7.6.2 Solutions of the Midterm of Math 152

i. Decide the convergence of the series

∑
n

1√
|n2 − 2| .

Answer: Since for all n > 1,

1√
|n2 − 2| =

1√
n2 − 2

≥ 1√
n2

=
1
n

and since
∑

n
1
n diverges, the series

∑
n

1√
|n2−2| diverges as well.

ii. Decide the convergence of the series

∑
n

1√
n2 + 1

.

Answer: Since for n > 0,

1√
n2 + 1

≥ 1√
n2 + n2

=
1

n
√

2

and since
∑

n
1
n diverges, the series

∑
n

1√
n2+1

diverges as well.

iii. Decide the convergence of the series

∑
n

1√
|n4 − 6| .

Answer: Since for n > 1,

1√
|n4 − 6| =

1√
n4 − 6

≤ 1√
n4 − n4/2

=
√

2
n2

and since
∑

n
1

n2 converges, the series
∑

n
1√

n4−6
converges as well.

iv. Suppose that the series
∑

n an is convergent. Show that limn→∞ an = 0.

Proof: Let sn = a0 + . . . + an and s =
∑

n an. Thus limn→∞ sn = s. We
have limn→∞ an = limn→∞(sn − sn−1) = s− s = 0.

v. Suppose that (an)n is a positive and decreasing sequence and that the
series

∑
n an is convergent. Show that limn→∞ nan = 0.

Proof: We know that limn→∞ an = 0. Let sn = a0 + . . . + an and
s =

∑
n an. Thus limn→∞ sn = s.
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Since (an)n is decreasing,

na2n ≤ an+1 + . . . + a2n = s2n − sn.

Thus limn→∞ na2n = limn→∞(s2n−sn) = s−s = 0. Hence limn→∞ 2na2n =
0.

Also 0 < (2n + 1)a2n+1 ≤ (2n + 1)a2n = 2na2n + a2n. By the above and
the fact that limn→∞ a2n = 0, the right hand side converges to 0. Hence
by the squeezing lemma limn→∞(2n + 1)a2n+1 = 0.

From the above two paragraphs it follows that limn→∞ nan = 0.

(Remark: As we will see later, the series
∑∞

n=2
1

n ln n diverges. This ex-
ample shows that the conditions that (an)n is positive and decreasing and
that limn→∞ nan = 0 are not enough for the series

∑
n an to be conver-

gent.)

vi. Find a positive sequence (an)n such that the series
∑

n an is convergent
but that limn→∞ nan 6= 0.

Solution: Take an = 1/n2 if n is not a square and an = 1/n if n is a
square. Then (nan)n does not converge as limn→∞(n2 + 1)an2+1 = 0 and
limn→∞ n2an2 = 1. On the other hand

∑
n an =

∑
n non square an +∑

n a square an =
∑

n non square 1/n2 +
∑

n 1/n2 < 2
∑

n 1/n2 < 4.

vii. Suppose that series
∑

n an is absolutely convergent and that the sequence
(bn)n is Cauchy. Show that the series

∑
n anbn is absolutely convergent.

Proof: Since (bn)n is Cauchy the sequence (|bn|)n is bounded. In fact
that is all we need to conclude. Indeed, let B be an upper bound of
the sequence (|bn|)n. Then |anbn| ≤ B|an| and since

∑
n |an| converges,∑

n |anbn| converges as well.

viii. Let (an)n be a sequence. Suppose that
∑∞

n=1 |an− an+1| converges. Such
a sequence is called of bounded variation. Show that a sequence of
bounded variation converges.

Proof: Since
∑∞

n=1 |an−an+1| converges,
∑∞

n=1(an−an+1) converges as
well. Thus the sequence of partial sums whose terms are

n−1∑

i=1

(ai − ai+1) = a1 − an

converges, say to a. Thus (an)n converges to a1 − a.
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Chapter 8

Supplementary Topics

8.1 Liouville Numbers

A real number r is called algebraic (over Q) if there is a nonzero polynomial
p(x) ∈ Q[x] (equivalently p(x) ∈ Z[x]) such that p(r) = 0. Otherwise r is called
nonalgebraic or transcendental over Q.

Consider the root α ∈ R of a polynomial f(x) ∈ Z[x]. Set f(x) =
∑n

i=0 aix
i

where an 6= 0.

Lemma 8.1.1 If M = max{|ai/an| : i = 0, . . . , n− 1} then |α| < 1 + M .

Proof: We may assume α 6= 0. Since 0 = f(α) = a0 + a1α
i + . . . + anαn and

anαn 6= 0, we have

−1 =
an−1α

n−1 + . . . + a1α + a0

anαn
=

an−1

anα
+ . . . +

a0

anαn
.

Now if |α| ≥ 1 + M , then the absolute value of the right hand side is less than

M(
1

1 + M
+

1
(1 + M)2

+ . . . +
1

(1 + M)n
) <

M(
1

1 + M
+

1
(1 + M)2

+ . . . +
1

(1 + M)n
+ . . .) =

M

1 + M

1
1− 1

1+M

= 1,

a contradiction. ¤

Assume now 0 < α 6∈ Q is a root of f(x) =
∑n

i=0 aix
i ∈ Q[x] with an 6= 0.

Let M be as above. Let q ∈ N be any natural number large enough so that,
1) 1/q < α,
2) f has no root in (α− 1/q, α + 1/q),
3) α + 1/q < 1 + M , and
4) q > n

∑n
i=1 |ai|(1 + M)i−1.

97
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Note that if q0 satisfies these conditions then any q > q0 also satisfies these
conditions.

Note also that there are exactly two natural numbers such that |α− p/q| <
1/q: if p is the smallest such natural number then α − 1/q < p/q < α <
(p + 1)/q < α + 1/q < 1 + M . Let p ∈ N be such that |α− p/q| < 1/q. We will
show that |α− p/q| > 1/qn+1.

Clearly f(p/q) = A/qn for some A ∈ Z. By (2), A 6= 0. We also have,

−A/qn = −f(p/q) = f(α)− f(p/q) = (α− p/q)f ′(β)

for some β between p/q and α. Note that β < max{p/q, α} < 1 + M . Since
f ′(x) =

∑n
i=1 iaix

i−1,

|f ′(β)| = |
n∑

i=1

iaiβ
i−1| ≤ n

n∑

i=1

|ai|βi−1 ≤ n

n∑

i=1

|ai|(1 + M)i−1 < q.

Thus, since A 6= 0,

1/qn ≤ | −A/qn| = |α− p/q||f ′(β)| < |α− p/q|q.

Hence |α− p/q| > 1/qn+1.
Thus if α is an irrational root of a polynomial of degree n, for large enough

q, if |α− p/q| < 1/q then |α− p/q| > 1/qn+1.
It follows that if α is irrational and if there are infinitely many natural

numbers q for which |α − p/q| < 1/qn+1 (< 1/q) for some natural number p
(that may depend on q), then α is not the root of a polynomial of degree ≤ n.
If this happens for infinitely many integers n, then α is not algebraic. This is
what happens for numbers of the form

α =
∞∑

i=1

ai

10i!

where ai = 0, 1, . . . , 9, but the values of ai are not all 0 after a while.
Because the decimal expansion is not periodic, a 6∈ Q. We check the second

condition.
Let n be any natural number and m > n + 1. Let q = qm = 10m! and

p/q =
∑m

i=1
ai

10i! . Then

0 < α− p/q =
∞∑

i=m+1

ai

10i!
≤

∞∑

i=m+1

9
10i!

=
9

10(m+1)!

∞∑

i=0

1
10i

=

=
10

10(m+1)!
<

1
(10m!)m

= 1/qm.

Thus α cannot be an algebraic number. Such a number is called a Liouville
number.
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Theorem 8.1.2 (Liouville) If

α =
∞∑

i=1

ai

10i!

where ai = 0, 1, . . . , 9, but the values of ai are not all 0 after a while, then α is
not an algebraic number.
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Chapter 9

Convergence of Functions

9.1 Pointwise Convergence of a Sequence of Func-
tions

Let X be a set and (Y, d) be a metric space. Let (fn)n be a sequence of functions
from X into Y . Assume that for all x ∈ X, the sequence (fn(x))n of the metric
space Y converges. Let f(x) be this limit:

f(x) := lim
n→∞

fn(x).

Then the rule x 7→ f(x) defines a function f from X to Y . we say that the
function f is the pointwise limit of the sequence (fn)n. In this case we write

f = lim
n→∞

fn

or sometimes
f

p
= lim

n→∞
fn

to precise that the convergence is pointwise (soon we will define other kinds of
convergence).

Clearly, if fn = g for all n, then limn→∞ fn
p
= g.

Exercises and Examples.

i. Let X = R, Y = R with the usual metric and fn : R −→ R be defined by
fn(x) = x/n. Then the zero function is the pointwise limit of the sequence
(fn)n.

ii. Let X = Y = (0, 1) and let fn(x) = 1/n for all n ∈ N\{0}. Unfortunately,
the pointwise limit of the sequence (fn)n does not exist because 0 6∈ Y .
This is of course only a minor problem. It is enough to change Y with
[0, 1), or even with R, in which case the pointwise limit is the constant
zero function.

101
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iii. Let X = Y = [0, 1] and fn(x) = xn. Then the function f defined by

f(x) =
{

0 if x 6= 1
1 if x = 1

is the limit of the sequence (fn)n.

iv. Let X = Y = R and let fn : R −→ R be defined by fn(x) = xn/n!. Then
the zero function is the pointwise limit of the sequence (fn)n.

v. Let X = Y = [0, 1]. Let

fn(x) =
{

2(x− k
2n ) if k

2n ≤ x ≤ k+1
2n and k ∈ 2N

2(k+1
2n − x) if k

2n ≤ x ≤ k+1
2n and k ∈ N \ 2N

Draw the graph of fn. What is its length? Show that the zero function is
the pointwise limit of the sequence (fn)n. What is the length of the limit
function?

vi. Let X = Y = C (or R). define

fn(z) =
∑n

i=0 zi/i!
gn(z) =

∑n
i=0(−1)iz2i+1/(2i + 1)!

hn(z) =
∑n

i=0(−1)iz2i/(2i)!

Then
limn→∞ fn = exp
limn→∞ gn = sin
limn→∞ fn = cos .

Theorem 9.1.1 Let Y = Rk with the usual metric. Let limn→∞ fn
p
= f and

limn→∞ gn
p
= g. Then

i. limn→∞(fn + gn)
p
= f + g

ii. For all r ∈ R, limn→∞ rfn
p
= rf .

iii. If Y = R, then limn→∞(fngn)
p
= fg.

iv. If Y = R and f(x) 6= 0 for all x ∈ R, then limn→∞ 1/fn
p
= 1/f.

Proof: Trivial ¤

Note that the first two parts of the theorem above says that the set of
pointwise convergent sequences of functions from X into the Euclidean space
Rn is a real vector space.
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9.2 Uniform Convergence of a Sequence of Func-
tions

As we defined the convergence of a series of numbers
∑∞

i=0 ai, we can also
define the convergence of a series of functions

∑∞
i=0 fi as the pointwise limit of

the sequence of functions
∑n

i=0 fi. Here f and each fi are functions from a set
X into Rk (fixed k) or even into any Banach space (a complete normed vector
space). Thus, we say that the series

∑∞
i=0 fi converges (pointwise) to f if for

all x ∈ X, the series
∑∞

i=0 fi(x) converges to f(x).
Let us rewrite the definition of pointwise convergence: Let X be a set and

(Y, d) be a metric space. Let (fn)n be a sequence of functions from X into Y

and f a function from X into Y . Assume that f
p
= limn→∞ fn. This means

that for all x ∈ X, f(x) = limn→∞ fn(x); in other words, for all x ∈ X and all
ε > 0, there is an N such that d(fn(x), f(x)) < ε whenever n > N . Here, N
depends on ε, but also on x. That is why, one sometimes writes Nε,x instead of
N .

When N is independent of x, we say that the convergence is uniform.
More precisely, the sequence (fn)n converges uniformly to f if for all ε > 0
there is an N (that depends only on ε) such that for all x ∈ X and n > N ,
d(fn(x), f(x)) < ε. When that is the case, one writes f

u= limn→∞ fn.
Clearly, if fn = g for all n, then limn→∞ fn

u= g.
It is also clear that the uniform convergence is stronger than the pointwise

convergence, in other words, if f
u= limn→∞ fn then f

p
= limn→∞ fn. But the

converse fails as the following example shows.

Examples.

i. Let X = (−1, 1) and Y = R with the usual metric. Consider the sequence
(fn)n of functions from X into Y defined by

fn(x) =
1− xn

1− x
.

It is clear that the pointwise limit of the sequence (fn)n is the function f
defined by

f(x) =
1

1− x
.

Therefore the uniform limit of this sequence - if it exists at all - should
also be the same function. Assume limn→∞ fn

u= f . Then for all ε > 0
there is an N such that

|x|n
1− x

= |fn(x)− f(x)| < ε

for all n > N and x ∈ X. But whatever n is, the function |x|n
1−x is un-

bounded on X, so that there cannot be such an N (independent of all
x).
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ii. Let α ∈ (0, 1). Let X = (−1, α) and Y = R with the usual metric.
Consider the sequence (fn)n of functions from X into Y defined by

fn(x) =
1− xn

1− x

(as above). It is clear that the pointwise limit of the sequence (fn)n is the
function f defined by

f(x) =
1

1− x
.

Therefore the uniform limit of this sequence – if it exists at all – should
also be the same function. Indeed it is. Let us prove that. Let ε > 0. Since
0 < α < 1, limn→∞ αn = 0, so that there is an N such that αn < ε(1−α)
for all n > N . (Note that N depends only on ε). Now, for all n > N and
for all x ∈ X, we have,

|fn(x)− f(x)| = |x|n
1− x

<
|x|n

1− α
<

αn

1− α
< ε.

Thus limn→∞ fn
u= f .

iii. Let fn : [−1, 1] −→ R be defined by fn(x) = |x|1+ 1
2n+1 . Show that

limn→∞ fn(x) u= |x|.
The second example above shows that the domain X is important for the

uniform convergence. For this reason, one says that the sequence (fn)n “con-
verges uniformly on X”.

Theorem 9.2.1 Let X be any set and Y = Rn with the usual metric. Let
fn, gn, f, g (n ∈ N) be functions from X into Y . Let limn→∞ fn

u= f and
limn→∞ gn

u= g. Then
i. limn→∞(fn + gn) u= f + g

ii. For all r ∈ R, limn→∞ rfn
u= rf .

Proof: Trivial. ¤

It is false that if (fn)n and (gn)n are sequences functions that converge
uniformly, then the sequence (fngn)n converges uniformly.

Suppose the sequence (fn)n of functions from a set into a metric space
converges uniformly (hence pointwise) to f . Let Tn = supx{d(fn(x), f(x))} ∈
R≥0∪{infty}. Take ε = 1 in the definition to find an N such that for all n > N
and x, d(fn(x), f(x)) < 1, i.e. for all n > N , Tn < 1. It follows that if the
sequence (fn)n of functions from a set into a metric space converges uniformly
(hence pointwise) to f , then the sequence Tn = supx{d(fn(x), f(x))} ∈ R≥0 ∪
{∞} is eventually bounded.

Lemma 9.2.2 Suppose the sequence (fn)n of functions from a set into a metric
space converges pointwise to f . Let Tn = supx{d(fn(x), f(x))} ∈ R≥0∪{infty}.
Then limn→∞ fn = f if and only if limn→∞ Tn = 0.
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Proof: Trivial. ¤

Consider the set of functions F from a set X into a metric space (Y, d). For
f, g ∈ F , let d∞(f, g) = min{supx∈X{d(f(x), g(x))}, 1}.
Lemma 9.2.3 (F , d∞) is a metric space and a sequence (fn)n from F con-
verges to a function in f ∈ F if and only if limn→∞ d∞(fn, g) = 0.

Proof: Easy. ¤

If we consider the set B of bounded functions from X into the metric space
(Y, d), then in the lemma above we can take d∞(f, g) = supx∈X{d(f(x), g(x))}
as the next lemma will show.

If (X, d) is a normed vector space (V, | |), then ‖f‖ = sup{|f(x)| : x ∈ X} is
a norm on the vector space of bounded functions from the set X into V , as it
can easily be checked.

Lemma 9.2.4 Suppose the sequence (fn)n of functions from a set X into a
metric space (Y, d) converges uniformly to f . Assume that the functions fn are
eventually bounded. Then f is bounded.

Proof: Take ε = 1 in the definition of the uniform convergence. Let N be such
that for all n > N and all x, d(fn(x), f(x)) < 1. Let n◦ > N be such that fn◦
is bounded. Let b ∈ Y and R ∈ R be such that fn◦(x) ∈ B(b, R) for all x ∈ R.
Then for all x ∈ R, d(f(x), b) ≤ d(f(x), fn◦(x)) + d(fn◦(x), b) < 1 + R. ¤

Let F be the set functions from X into the metric space (Y, d). Set d∞(f, g) =
supx∈X{d(f(x), g(x)), 1}. Then d∞ is a distance on F and a sequence (fn)n of
functions converge uniformly if and only if the sequence converges in this metric
space.

The following criterion à la Cauchy shows the uniform convergence of a
sequence without explicitly calculating the limit:

Theorem 9.2.5 (Cauchy Criterion for Uniform Convergence) A sequence
(fn)n of functions from a set X into a complete metric space (Y, d) converges
uniformly if and only if for any ε > 0 there is an Nε such that for all n, m > N
and for all x ∈ X, d(fn(x), fm(x)) < ε.

Proof: By hypothesis, for all x ∈ X, (fn(x))n is a Cauchy sequence, hence it
has a limit. Let f(x) denote this limit. We will prove that limn→∞ fn

u= f . Let
ε > 0.

By hypothesis there is an N , independent of x, such that for all n, m > N ,
d(fn(x), fm(x)) < ε/2.

Let x ∈ X be given. Since the sequence (fn(x))n converges to f(x), there is
an Nx (that may depend on x) such that for all m > Nx, d(fm(x), f(x)) < ε/2.

Let n > N be any natural number. Let x ∈ X be any. We will show
that d(fn(x), f(x)) < ε, proving that (fn)n converges to f uniformly. Let mx >
max{N,Nx} be fixed. Then d(fn(x), f(x)) ≤ d(fn(x), fmx(x))+d(fmx(x), f(x)) <
ε/2 + ε/2 = ε. ¤



106 CHAPTER 9. CONVERGENCE OF FUNCTIONS

Theorem 9.2.6 Let (fn)n be a sequence of functions defined on a subset A of
R that converges uniformly to a function f . If each fn is continuous at a point
a ∈ A, then f is continuous at a.

Proof: Let ε > 0. We want to find a δ > 0 such that for x ∈ A and |x− a| < δ
then |f(x)− f(a)| < ε. For all n and x ∈ A we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|.

We will make each term of the right hand side less than ε/3, for large enough n
and x close enough to a.

Since limn→∞ fn
=
u f , there is an N such that for n > N and x ∈ A,

|f(x)− fn(x)| < ε/3. Thus we also have |fn(a)− f(a)| < ε/3. (Here we use the
uniform continuity).

Pick such an n > N . Since fn is continuous at a, there is a δ > 0 such that
for x ∈ A and |x− a| < δ, fn(x)− fn(a)| < ε/3. ¤

Example. The function fn(x) = (1−|x|)n defined on [−1, 1] converges point-
wise (but not uniformly) and its limit is not continuous at a = 0.

This example shows also that pointwise convergence on a compact set does
not imply the uniform convergence.

Exercises.

i. Show that the functions fn(x) = x
nx+1 converge uniformly on [0, 1].

ii. Determine the pointwise or the uniform convergence of the following func-
tions:

i. fn(x) =
∑n

k=0 xk on X = (−1, 1).

ii. fn(x) =
∑n

k=0 xk on X = (−1/2, 1/2).

iii. fn(x) = xn on X = (0, 1).

iv. fn(x) = xn on X = [−α, α] where α ∈ (0, 1).

v. fn(x) = xn

1−x on X = (0, 1).

vi. fn(x) = xn

1−x on X = (0, 1− α) for any α ∈ (0, 1).

iii. Let fn(x) = 1
1+xn

a. Find the set A = {x ∈ R : (fn(x))n converges}.
For x ∈ A, let f(x) = limn→∞ fn(x).

b. What is f?

c. Is the convergence uniform? Justify your answer.

d. Discuss the uniform convergence of (fn)n in the (open or closed) inter-
vals contained in A.
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iv. Let fn : R −→ R be defined as follows:

fn(x) =
{

x2 if |x| ≤ n
n2 if |x| ≥ n

Does (fn)n converge uniformly?

v. Let fn : R −→ R be defined as follows:

fn(x) =
{

x2 if |x| ≥ n
n2 if |x| ≤ n

Does (fn)n converge uniformly?

vi. Is part iv of Theorem 9.1.1 true for uniform convergence?

vii. Let (fn)n be a sequence of functions from X into a metric space Y . Let
A, B ⊆ X. Assume that the sequence (fn)n converges uniformly on A
and also on B. Show that (fn)n converges uniformly on A ∪B.

viii. Study the convergence of fn(x) = nx
1+nx2 on intervals of R.

ix. Study the convergence of fn(x) = sin(nx)/n.

x. Study the convergence of fn(x) = x
1+xn .

xi. Assume (fn)n converges uniformly to a function f on a compact set K ⊆
R. Let g : K −→ R be a continuous function satisfying g(x) 6= 0. Show
that (fn/g)n converges uniformly to f/g on K.

xii. Give an example of functions (fn)n and (gn)n that converge uniformly,
but whose product sequence (fngn)n does not converge uniformly.

9.3 Uniform Convergence of a Series of Func-
tions

The pointwise or the uniform convergence of a series
∑

n∈N fn(x) of functions
is defined in the expected way as the pointwise or the uniform convergence of
the partial sums

∑n
i=0 fi. We define it more precisely

Let fn (n ∈ N) and f be functions defined on a subset A of R. The series
of

∑∞
i=0 fn is said to converge uniformly to f if the sequence of partial sums

(sn)n where sn = f1 + . . . + fn converges uniformly to f .

Theorem 9.3.1 Assume each fi is continuous and
∑∞

i=0 fi converges uniformly
to f on A. Then f is continuous on A.

Proof: Follows directly from Theorem 9.2.6. ¤
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Theorem 9.3.2 (Cauchy’s Criterion for Uniform Convergence of Series)
The series

∑∞
i=0 fn converges uniformly on A ⊆ R if and only if for every ε > 0

there exists an N ∈ N such that for all N < m < n, |∑n
i=m+1 fn| < ε.

Proof: Exercise. ¤
Theorem 9.3.3 (Weierstrass M-Test) Let (fi)i be a sequence of functions
from a set X into C. Suppose that |fi(x)| ≤ Mi for all x ∈ X and for all i ∈ N.
If the series

∑∞
i=0 Mi converges, then the sequence

∑∞
i=0 fi converges uniformly

on X.

Proof: We will use Theorem 9.3.2. Let ε > 0. Since the series
∑∞

i=0 Mi

converges, by Cauchy Criterion for series, there is an N ∈ N such that for all
N < m < n,

∑n
i=m+1 Mi < ε. Thus for all N < m < n and all x ∈ X,

|∑n
i=m+1 fi(x)| ≤ ∑n

i=m+1 Mi < ε. ¤
Theorem 9.3.4 If a power series

∑∞
i=0 anxn converges absolutely at a point

x0 then it converges uniformly on the closed ball B(0, |x0|).
Proof: Follows directly from Weierstrass M-Test (Theorem 9.3.3). ¤

What happens at the end points? Here is the answer:

Theorem 9.3.5 (Abel’s Theorem) Let the power series
∑∞

n=0 anxn converge
at the point R > 0 (resp. at the point −R < 0) . Then the series converges uni-
formly on the interval [0, R] (resp. on the interval [−R, 0]).

To prove this theorem, we need the following lemma:

Lemma 9.3.6 (Abel’s Lemma) Let (bn)n satisfy b1 ≥ b2 ≥ . . . ≥ 0. Let∑∞
i=0 ai be a series whose partial sums are bounded, by A say. Then for all

n ∈ N, |a1b1 + . . . anbn| ≤ Ab1.

Proof: To be proven. ¤

Proof of Abel’s Theorem. To be proven. ¤
Corollary 9.3.7 If a power series converges pointwise on the set A ⊆ R, then
it converges uniformly on any compact set K ⊆ A.

Proof: By Theorem 9.3.4 and Abel’s Theorem (9.3.5). ¤
Corollary 9.3.8 A power series is continuous at every point at which it is
convergent.

Exercises.

i. Show that if
∑∞

i=0 fi converges uniformly, then (fn)n converges uniformly
to the zero function.

ii. Show that the series
∑∞

i=1 cos(2ix)/2i converges uniformly. Therefore the
limit function is continuous.

iii. Show that
∑∞

n=1 xn/n2 is continuous on [−1, 1].
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9.4 Uniform Convergence and Metric

Let X be a set and (V, | |) a normed vector space. Consider the normed vector
space B(X,V ) of function from X into Y which are bounded. (See Exercise
iii, page 53). As any normed vector space, B(X, V ) is a metric space (Lemma
5.3.1) and so we may speak about the convergence of a sequence of B(X,V ).

Lemma 9.4.1 Let (fn)n be a sequence from B(X, V ) and f ∈ B(X, V ). If
limn→∞ fn = f in the metric of B(X, V ), then limn→∞ fn

u= f .
Conversely if (fn)n is a sequence from B(X, V ) that converges uniformly to

a function f : X −→ V , then f ∈ B(X,V ) and limn→∞ fn = f in the metric of
B(X, V ).

Proof: We first show that if (fn)n is a sequence from B(X, V ) that converges
uniformly to a function f : X −→ V , then f ∈ B(X, V )

Let ε > 0. Since limn→∞ fn = f in the metric of B(X, V ), there is an N such
that for all n > N , |fn(x)−f(x)| < ε, i.e., by the very definition of the metric on
B(X, V ), sup{|fn(x)− f(x)| : x ∈ X} < ε. This means that |fn(x)− f(x)| < ε
for all x ∈ X, proving the uniform convergence.

Let us now show the converse. TO BE COMPLETED ¤

9.5 Limits of Functions

Let (X, d) be a metric space. Let A ⊆ X be a subset. A point x ∈ X is called a
limit point of A if any open subset of X containing x contains an element of
A different from x.

Let (X, d) and (Y, d′) be two metric spaces, A a subset of X and f : A −→ Y
a function. Let a ∈ X be a limit point of A and b ∈ Y . We say that the limit
of f(x) when x goes to a is b if for all ε > 0 there is a δ > 0 such that for all
x ∈ X, if x 6= a and d(x, a) < δ, then d′(f(x), b) < ε. We then write

lim
x→a

f(x) = b.

If X = R or C and A is an unbounded subset of X, we would like to be able
to speak about the limit at infinity. The definitions in R or in C are different.

Let A be a subset of R without upper bound. Let (Y, d′) be a metric space.
Let f : A −→ Y be a function. Let b ∈ Y . We say that the limit of f(x) when
x goes to ∞ is b if for all ε > 0 there is a N > 0 such that for all x ∈ A, if
x > N then d′(f(x), b) < ε. We then write

lim
x→∞

f(x) = b.

The limit when x goes to −∞ is defined similarly.
Note that when A = N, we obtain the definition of the limit of a sequence

in the metric space Y .



110 CHAPTER 9. CONVERGENCE OF FUNCTIONS

Now let A be an unbounded subset of C. Let (Y, d′) be a metric space. Let
f : A −→ Y be a function. Let b ∈ Y . We say that the limit of f(z) when z
goes to ∞ is b if for all ε > 0 there is a N > 0 such that for all z ∈ A, if |z| > N
then d′(f(z), b) < ε. We then write

lim
z→∞

f(z) = b.

Exercises.

i. Show that limx→5(x2 − 3x + 5) = 15 by using the definition of limits.

ii. Let X = R, A = R>0, Y = R and f : A −→ Y be defined by f(x) = 1/x.
Show that limx→0 f(x) does not exist.

iii. Let X = A = Y = R with the usual metric. Let f : A −→ Y be defined
as follows:

f(x) =
{ −1 if x < 0

1 if x ≥ 0

Show that limx→0 f(x) does not exist.

iv. Let A = (0, 1), X = [0, 1], Y = R with the usual metric. Let f : A −→ Y
be defined as follows:

f(x) =
{

0 if x ∈ Q
1 if x 6∈ Q

Show that limx→1 f(x) does not exist.

Theorem 9.5.1 The limit limx→a f(x) of a function f is unique whenever it
exists.

Theorem 9.5.2 The relationship of the limits with the functional operations.

9.6 Convergence of a Family of Functions

If f(x, y) is a function that depends on two parameters, sometimes we may want
to view the parameter x as an index set. In this case we may write fx(y) instead
of f(x, y). Suppose f is such a function going from A× Y into Z where A ⊆ X
and X and Z are metric spaces. Suppose that x0 ∈ X is a limit point of A.
Let f : Y −→ Z be a function. Then we say that f is the pointwise limit
of the family (fx(y))x∈A when x approaches x0 and we write limx→x0 fx

p
= f

if for all y ∈ Y , limx→x0 fx(y) = f(y). This makes sense because for fixed
y ∈ Y , x 7→ fx(y) is map from the metric space X into the metric space Z.
More formally this means the following: For all y ∈ Y and ε > 0, there is a
δ = δε,y > 0 such that if x ∈ B(x0, δ) \ {x0} then fx(y) ∈ B(f(y), ε). We
emphasize the fact that δ depends on y. If we can choose δ independent of y,
then we say that the convergence is uniform.
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If x varies over R or C, we would like to be able to make x to ∞. This is
easy to do. Assume first A ⊆ R has no upper bound. Define limx→∞ fx

p
= f

if limx→∞ fx(y) = f(y) for all y ∈ Y , i.e. if for all y ∈ Y and ε > 0 there is
an N such that for all x ∈ A, if x > N = Nε,y then d′(fx(y), f(y)) < ε. Limit
when x goes to −∞ is defined similarly. If A ⊆ C is an unbounded subset, then
we define limx→∞ fx

p
= f if limx→∞ fx(y) = f(y) for all y ∈ Y , i.e. if for all

y ∈ Y and ε > 0 there is an N = Nε,y such that for all x ∈ A, if |x| > N then
d′(fx(y), f(y)) < ε.

The convergence is said to be uniform if N can be chosen independently of
y.

Theorem 9.6.1 The uniform limit of continuous functions is continuous.

NOTE: I should think about defining these convergence definitions
once for all, without specific cases.

9.7 Supplementary Topics

Theorem 9.7.1 (Weierstrass) Let (fi)i be a sequence of functions from an
unbounded subset X of R into C. Suppose that |fi(x)| ≤ Mi for all x ∈ X and
for all i ∈ N. Assume that the series

∑∞
i=0 Mi converges. Then the sequence∑∞

i=0 fi(x) converges uniformly on X. Assume also that limx→∞ fi(x) = `i for
all i. Then

∑∞
i=0 `i converges absolutely and limx→∞

∑∞
i=0 fi(x) =

∑∞
i=0 `i.

Proof: The first part is just Weierstrass’ M-Test. We prove the last part.
Clearly |`i| ≤ Mi, so that the absolute convergence occurs. Let ε > 0. Let n be
such that

∑∞
i=n+1 Mi < ε/4. Choose x0 such that for x > x0 and i = 0, 1, . . . , n,

|fi(x)− `i| < ε/2(n + 1). We have

|∑∞
i=0 fi(x)−∑∞

i=0 `i| = |∑∞
i=0(fi(x)− `i)| ≤

∑∞
i=0 |fi(x)− `i|

=
∑n

i=0 |fi(x)− `i|+
∑∞

i=n+1 |fi(x)− `i|
≤ ∑n

i=0 |fi(x)− `i|+ 2
∑∞

i=n+1 Mi

<
∑n

i=0 ε/2(n + 1) + 2ε/4 = ε.

This proves the theorem. ¤

Example.

i. Let n ∈ N>0 and z ∈ C. We have

(1 + z/n)n =
n∑

i=0

(
n
i

)
(z/n)i.

Set
f1(n) = 1 + z,
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and for i > 1,

fi(n) =





(
n
i

)
(z/n)i = n(n−1)...(n−i+1)

i! (z/n)i if i ≤ n

0 if i > n

Since, for i ≤ n,

fi(n) =
zi

i!

(
1− 1

n

)
. . .

(
1− i− 1

n

)
,

we have
lim

n→∞
fi(n) = zi/i! =: Mi

and |fi(n)| ≤ Mi and
∑

i Mi converges by Example i, page 90. Thus the
conditions are realized and so limn→∞(1 + z/n)n exists and is equal to∑∞

i=0 zi/i!.



Chapter 10

Topological Spaces

10.1 Definition and Examples

A set X together with a set τ of subsets of X is called a topological space if
τ satisfies the three conditions of Proposition 5.4.3:

i. ∅, X ∈ τ .
ii. If U1, . . . , Un ∈ τ then U1 ∩ . . . ∩ Un ∈ τ .
iii. If Ui ∈ τ for all i then

⋃
i Ui ∈ τ .

The elements of τ are called the open subsets of the topological space X.
Every metric space induces a topological space as stated in Proposition 5.4.3.

But the converse is false as the following example shows: Let X be any set. Let
∅ and X be the only open subsets, i.e. let τ = {∅, X}. Then X becomes a
topological space. If |X| ≥ 2 then there is no metric on X that gives this
topology. The topology on X is called the coarsest topology or the weakest
topology on X.

A topological space whose topology is induced by a metric is called a metris-
able topology.

Sometimes two different metrics on the same set give the same topologies,
i.e. the same open sets. In this case we say that the two metrics are equivalent.

Exercises.

i. Show that the following metrics on R2 are equivalent.

ii. Show that every metric d on a set X is equivalent to the metric d′ defined
by d′(x, y) = max{d(x, y), 1).

iii. Show that for equivalent metrics, Cauchy sequences, convergent sequences
and limits do not change.

Discrete Topology. In the topology induced by the discrete metric, every
subset is open. This is called the discrete or the finest topology on X.

113
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Induced Topology. Let X be a topological space and Y ⊆ X. By letting
the open subsets of Y to be the traces of open subsets of X on Y , we define a
topology on Y . Thus an open subset of Y is of the form U ∩ Y where U is an
open subset of X. This topology on Y is called the restricted or the induced
topology.

Note that the open subsets of Y and X are different. So, we must be careful
when speaking about the open subsets of Y . For this reason, we may say that
a subset of Y is X-open or Y -open.

But if Y is open in X, then subsets of Y which Y -open are exactly X-open
subsets of Y .

If the topology on X is induced by a metric and Y ⊆ X, then the restricted
topology on Y is induced by the restricted metric on Y .

Order Topology. TO BE DEFINED.

Topology Generated. Let X be a set. Let (τi)i be a family of topologies on
X, i.e. each τi is the set of open subsets of a topology on X. Then ∩iτi defines
a topology on X. An open subset of ∩iτi is a subset of X that is open in all
these topologies.

Let ℘ be a set of subsets of a set X. Consider the intersection of all the
topologies that contain ℘. By the previous item this is a topology. It is the
smallest topology that contains the subsets of ℘ as open sets. We will denote
this topology by 〈℘〉 and call it the topology generated by ℘.

We can describe the topology above more precisely. Consider the subsets
which are arbitrary unions of finite intersections of elements from ℘. These
subsets form the open subsets of a topology and this topology is obviously the
smallest topology that contains all the elements of ℘.

Examples. Let X be a set. The topology generated by ∅ consists of ∅
and X. If A ⊆ X, the topology generated by {A} is {∅, A,X}. If A, B ⊆ X,
the topology generated by {A,B} is {∅, A ∩ B, A,B, A ∪ B, X}. The topology
generated by the singleton sets is the set of all subsets of X.

Extended Real Line

Exercises.

i. Show that in a metric space a finite subset is closed.

ii. Let X be any set. Show that the cofinite subsets of X define a topology
on X. Show that this topology is not metrisable if X is infinite.

iii. Show that a pseudometric on a set defines a topology in a natural way.
(d : X ×X −→ R≥0 is a pseudometric if d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) ≤ d(x, z) + d(z, y).
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iv. The topologies defined on Rn by the metrics dp and d∞ are all equal, i.e.
any open subset with respect to any of them is also open in the other one.

v. Let X be a set and A, B, C be three subsets of X. Show that the topology
generated by {A,B,C} has at most ??? open subsets.

vi. Let X = R and ℘ the set of open and bounded intervals of R. Show that
the topology generated by ℘ is the topology induced by the usual metric.

vii. Let X = R and ℘ the set of intervals of the form [a, b) where a, b ∈ R. Is
the topology generated by ℘ metrisable?

viii. Let X = R and ℘ the set of intervals of the form [a, b) where a, b ∈ Q. Is
the topology generated by ℘ equal to the topology above?

ix. Let X be a set. Let d and d′ be two distance functions on X. Show that
the two metrics generate the same topology if and only if any sequence of
X that converges for one of the metrics, converges to the same element
for the other metric.

10.2 Closed Subsets

The complement of an open subset of a topological space is called a closed
subset. The properties of open subsets reflect upon closed subsets naturally:

Proposition 10.2.1 Let X be a topological space. Then
i. ∅ and X are closed subsets.
ii. A finite union of closed subsets is a closed subset.
iii. An arbitrary intersection of closed subsets is closed.

10.3 Interior

Let X be a topological space. Let A ⊆ X. Then the union A◦ of all the open
subsets of X which are in A is also an open subset of X which is in A. Thus
A◦ is the largest open subset of X which is in A, in other words it contains all
the open subsets (in X) of A. The set A◦ is called the interior of A.

Lemma 10.3.1 Let A, B ⊆ X. Then the following hold:
i. A is open if and only if A◦ = A. In particular A◦◦ = A◦.
ii. If A ⊆ B then A◦ ⊆ B◦.
iii. A◦ ∩B◦ = (A ∩B)◦.
iv. A◦ ∪B◦ ⊆ (A ∪B)◦.

Proof: i. Clearly, if A is open then A is the largest open subset of itself, so
A = A◦.

ii. Since A◦ ⊆ A ⊆ B, A◦ is an open subset of B. Thus A◦ ⊆ B◦.
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10.4 Closure

Let X be a topological space. Let A ⊆ X. Then the intersection A of all the
closed subsets of X that contain A is also an closed subset of X that contains
A. Thus A is the smallest closed subset of X which contains A. The set A is
called the closure of A.

Lemma 10.4.1 Let A, B ⊆ X. Then the following hold:
i. A is closed if and only if A = A. In particular A = A.
ii. If A ⊆ B then A ⊆ B.
iii. A ∩B ⊆ A ∩B.
iv. A ∪B = A ∪B.

Lemma 10.4.2 x ∈ A if and only if every open subset containing x intersects
A nontrivially.

Exercises.

i. Find an example where the inclusion of Lemma 10.3.1.iii is strict.

ii. Find an example where the inclusion of Lemma 10.4.1.iii is strict.

iii. Show that (A)c = (Ac)◦ and that (A◦)c = Ac.

iv. Find the interior and the closure of an arbitrary subset in the finest topol-
ogy.

v. Find the interior and the closure of an arbitrary subset in the coarsest
topology.

vi. Find the closure and the interior of an arbitrary interval in the usual
topology of R.

10.5 Base of a Topology

Let X be a topological space. Let B be a set of open subsets of X such that
every open subset of X is a union of open sets from B. Then B is called a base
of the topology. Obviously, the set of open subsets of X form a base of the
topological space X.

Examples.
1. Assume X is a metric space. Then the open balls of X form a base of the

topology.
2. Assume X = Rn with the Euclidean topology. Then the balls of the form

B(a, q) such that a ∈ Qn and q ∈ Q form a base of the topology. Note that this
base is countable.

3. Let ℘ be a set of subsets of a set X. The topology 〈℘〉 generated by ℘
has a base consisting of sets of the form U1 ∪ . . . ∪Un where n ∈ N and Ui ∈ ℘.
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Let X be a topological space and x ∈ X. Let Bx be a set of open subsets
of X that contain x such that every open subset of X that contains x contains
one of the of open sets from Bx. Then Bx is called a base of the topology at
the point x.

Assume X is a metric space and x ∈ X. Then the open balls of the form
B(x, q) where q ∈ Q form a base of the topology at x. Note that this base at x
is countable.

10.6 Compact Subsets

A topological space X is called compact if any open covering of X has a finite
subcovering. A subspace A of X is compact if A is compact with the induced
topology.

If X has finitely many open sets then any subset of X is compact.
A subset A of a topological space is called compact if A is compact as a

topological space, i.e. if any family of open subsets of X that covers A has a
finite subcover that covers A.

Singleton subsets of a topological set are certainly compact. Clearly the
union of finitely many compact subsets of a topological space is compact.

Lemma 10.6.1 Let K be a closed subset of a compact topological space X.
Then K is compact.

Proof: Let (Ui)i∈I be an open covering of K. Then (Ui)i∈I ∪ {Kc} is an open
covering of X. Hence a finite number of (Ui)i∈I ∪{Kc} cover X. Hence a finite
number of (Ui)i∈I cover K. ¤

Proposition 10.6.2 A compact subset of a metric space is closed and bounded.

Proof: Let K be a compact subset of the metric space (X, d). Let a ∈ X be
any subset. Then the concentric open balls (B(a, n))n∈N cover K. Therefore a
finite number of them, hence only one of them, covers K. This shows that K is
bounded.

We now show that K is closed, by showing that its complement Kc is open.
Let a ∈ Kc. The the concentric open subsets (B(a, 1/n)c)n∈N cover K. Hence
only one of them cover K. If K ⊆ B(a, 1/n)c, then B(a, 1/n) ⊆ Kc. Thus Kc

is open and K is closed. ¤

Exercises.

i. The converse of the above proposition is false. Find a counterexample.

Theorem 10.6.3 (Heine-Borel Theorem) A closed and bounded subset of
Rn (with the usual metric) is compact.
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Proof: Assume first that n = 1. Let K be a closed and bounded subset of R.
By Lemma 10.6.1, we may assume that K = [a, b] is a closed interval. Assume
[a, b] is not compact. Let (Ui)i∈I be an open covering of [a, b] without a finite
subcover. We want to choose sequences (xn)n∈N and (yn)n∈N so that for all n,

i) xn ≤ xn+1 < yn+1 ≤ yn,
ii) 0 < yn − xn < (b− a)/2n,
iii) No finite subcover of (Ui)i∈I covers [xn, yn].
Let x0 = a and y0 = b. Assume x0, x1, . . . , xn and y0, y1, . . . , yn are chosen

so that (i, ii, iii) hold, except of course (i) for n (since xn+1 is not defined
yet). We choose xn+1 and yn+1 as follows. One of the two intervals [xn, xn+yn

2 ]
and [xn+yn

2 , yn] is not covered by a finite subcover of (Ui)i∈I . If [xn, xn+yn

2 ] is
not covered by a finite subcover of (Ui)i∈I , let xn+1 = xn and yn+1 = xn+yn

2 .
Otherwise, [xn+yn

2 , yn] is not covered by a finite subcover of (Ui)i∈I and in this
case we let xn+1 = xn+yn

2 and yn+1 = yn. Clearly (i, ii, iii) hold.
By Theorem 3.1.12 (see also Exercise x, page 58), ∩n∈N[xn, yn] is a singleton

set, say {c}. Since c ∈ [a, b], there is an i ∈ I such that c ∈ Ui. Let ε > 0 be
such that [c − ε, c + ε] ⊆ Ui. By (ii) there is an n ∈ N such that yn − xn < ε.
Then [xn, yn] ⊆ [c − ε, c + ε] ⊆ Ui as one can show easily. But this contradicts
(iii), because only one of the Ui’s suffices to cover [xn, yn].

The proof for n > 1 is similar, instead of the intervals [xn, yn] be find closed
cubes (Cn)n by dividing the previous cube Cn to 2n equal parts and choosing
Cn+1 the one which is not covered by a finite subcover of (Ui)i∈I . ¤

Theorem 10.6.4 If (Kn)n∈N is a descending sequence of nonempty compact
subsets of Rn, then ∩nKn 6= ∅.

Proof: Assume otherwise. Then ∪nKc
n = R, so that (Kc

n)n∈N is an open
covering of K0. Thus a finite subsequence of (Kc

n)n∈N covers K0, hence K0 ⊆
Kc

n. Since Kn ⊆ K0, this implies that Kn = ∅, a contradiction. ¤

Exercises.

i. Let (Ki)i be a family of nonempty compact subsets of a topological space.
Show that if a finite intersection of the Ki’s is nonempty, then ∩iKi 6= ∅.

ii. X be a complete metric space. Let p be an element not in X. Show that
the metric of X cannot be extended to a metric on X ∪ {p} without p
being isolated.

Conclude that if f : R −→ R>0 is a function satisfying |f(x) − f(y)| ≤
|x − y| ≤ f(x) + f(y) for all x, y ∈ R then f is bounded away from 0,
i.e. there is an ε > 0 such that f(x) > ε for all x ∈ R. (Hint: Set
d(x, p) = f(x) for x ∈ R).

iii. Let F ⊆ Rn be a nonempty closed subset. Let A ∈ Rn. Show that there
is a B ∈ F such that d(A,B) = inf{d(A, P ) : P ∈ F}. (Proof: Let
d = inf{d(A,P ) : P ∈ F}. Let ε > 0. Then B(A, d+ ε)∩F is a closed and
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bounded subset of Rn, hence it is compact. The distance function f from
the compact subset B(A, d + ε) ∩ F into R defined by f(P ) = d(A,P ) is
continuous, so it attains its infimum d.)

10.7 Convergence and Limit Points

Exercises. For each of the topological spaces (X, τ), describe the convergent
sequences and discuss the uniqueness of their limits.

i. τ = ℘(X). (℘(X) is the set of all subsets of X, 2 pts.).

Answer: Only the eventually constant sequences converging to that con-
stant.

ii. τ = {∅, X} (2 pts.).

Answer: All sequences converge to all elements.

iii. a ∈ X is a fixed element and τ is the set of all subsets of X that do not
contain a, together with X of course. (5 pts.)

Answer: First of all, all sequences converge to a. Second: If a sequence
converges to b 6= a, then the sequence must be eventually the constant b.

iv. a ∈ X is a fixed element and τ is the set of all subsets of X that contain
a, together with ∅ of course. (5 pts.)

Answer: Only the eventually constant sequences converge to a. A se-
quence converge to b 6= a if and only if the sequence eventually takes only
the two values a and b.

v. τ is the set of all cofinite subsets of X, together with the ∅ of course. (6
pts.)

Answer: All the sequences without more than one infinitely repeating
terms converge to all elements. Eventually constant sequences converge
to the constant. There are no others.

vi. Let τ be the topology on R generated by {[a, b) : a, b ∈ R}. Compare this
topology with the Euclidean topology. (3 pts.) Is this topology generated
by a metric? (20 pts.)

Answer: Any open subset of the Euclidean topology is open in this topol-
ogy because (a, b) = ∪∞n=1[a + 1/n, b). But of course [0, 1) is not open in
the usual topology.

Assume a metric generates the topology. Note that [0,∞) is open as it
is the union of open sets of the form [0, n) for n ∈ N. Thus the sequence
(−1/n)n cannot converge to 0. In fact for any b ∈ R, no sequence can
converge to b from the left. Thus for any b ∈ R there is an εb > 0 such
that B(b, εb) ⊆ [b,∞). Let b0 be any point of R. Let ε0 > 0 be such that
B(b0, ε0) ⊆ [b0,∞). Since {b0} is not open, there is b1 ∈ B(b0, ε0) \ {b0}.
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Let 0 < ε1 < ε0/2 be such that B(b1, ε1) ⊆ [b1,∞)∩B(b0, ε0). Inductively
we can find (bn)n and (εn)n such that B(bn, εn) ⊆ [bn,∞)∩B(bn−1, εn−1)\
{bn−1} and εn < ε0/2n. Then (bn)n is a strictly increasing convergent
sequence, a contradiction.

10.8 Connected Sets

A topological space is called connected if it is not the union of two nonempty
disjoint subsets. TConclude hus a topological space X is connected if whenever
U and V are disjoint open subsets of X whose union is X, one of the open
subsets must be the emptyset. Otherwise X is called disconnected. Note that
if X = U ∪ V with U ∩ V = ∅, then U and V are also closed. Note also that a
singleton set is connected.

Lemma 10.8.1 The union of two connected subspace with a nonempty inter-
section is connected. The union of a chain of connected subsets is connected.

Lemma 10.8.2 An open and connected subset of a topological space is con-
tained in a maximal open and connected subset, which is necessarily closed.

Theorem 10.8.3 A subset X of R is connected if and only if X is an interval
(all possible kinds).

Define totaly disconnected. Show Q is totally disconnected. Show Z and
Zp are totally disconnected with the p-adic metric.



Chapter 11

Continuity

11.1 Continuity on Metric Spaces

Let (X, d) and (Y, d′) be two metric spaces, f : X −→ Y a function and a ∈ X.
We say that f is continuous at a if for any ε > 0 there is a δ > 0 such that
for all x ∈ X if d(x, a) < δ then d′(f(x), f(a)) < ε. The last condition says
that if x ∈ B(a, δ) then f(x) ∈ B(f(a), ε), i.e. that f(B(a, δ)) ⊆ B(f(a), ε), i.e.
that B(a, δ) ⊆ f−1(B(f(a), ε)). Thus f : X −→ Y is continuous at a ∈ X if
and only if a is in the interior of f−1(B(f(a), ε)) for any ε > 0. It follows that
f : X −→ Y is continuous at a ∈ X if and only if a is in the interior of f−1(V )
for any open subset V of Y containing f(a). We note this for future reference:

Lemma 11.1.1 Let (X, d) and (Y, d′) be two metric spaces, f : X −→ Y a
function and a ∈ X. Then f : X −→ Y is continuous at a ∈ X if and only if a
is in the interior of f−1(V ) for any open subset V of Y containing f(a). ¤

Note that if a ∈ X is an isolated point of X, i.e. if B(a, δ) = {a} for some
δ > 0 then f is always continuous at a. A point of X which is not an isolated
point is called a limit point of X.

Lemma 11.1.2 Let (X, d) and (Y, d′) be two metric spaces, f : X −→ Y a
function and a ∈ X a limit point of X. Then f is continuous at a if and only
if limx→a f(x) = f(a).

Proof: This is immediate. ¤

Lemma 11.1.3 Let (X, d) and (Y, d′) be two metric spaces, f : X −→ Y a
function and a ∈ X. Then f is continuous at a if and only if for any sequence
(xn)n of X converging to a, (f(xn))n is a sequence of Y converging to f(y).

Proof: Suppose f is continuous at a. Let (xn)n be a sequence of X converging
to a. Let ε > 0. Let δ > 0 be such that f(B(a, δ)) ⊆ B(f(a), ε). Let N
be such that for all n > N , d(xn, a) < δ, i.e. xn ∈ B(a, δ). Hence f(xn) ∈

121
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f(B(a, δ)) ⊆ B(f(a), ε), i.e. d′(f(xn), f(a)) < ε. This shows that the series
(f(xn))n converges to f(a).

Conversely, suppose that for any sequence (xn)n of X converging to a,
(f(xn)n is a sequence of Y converging to f(y). Assume that f is not con-
tinuous at ε. Let ε > 0 be such that for every δ > 0, there is an xδ ∈ B(a, δ)
for which f(xδ) 6∈ B(f(a), ε). Choose δ = 1/n for n ∈ N>0 and let yn = x1/n.
Then (yn)n converges to a because d(yn, a) = 1/n. But d(f(yn), f(a)) > ε and
so the sequence (f(yn))n does not converge to f(a). This is a contradiction. ¤

Let (X, d) and (Y, d′) be two metric spaces and f : X −→ Y a function. We
say that f is continuous if f is continuous at every point of X.

Lemma 11.1.4 Let (X, d) and (Y, d′) be two metric spaces and f : X −→ Y a
function. The following conditions are equivalent:

i. f is continuous
ii. The preimage of every open subset of Y is an open subset of X.
iii. The preimage of any open ball in Y is an open subset of X.
iv. The preimage of every closed subset of Y is a closed subset of X.
v. For any convergent sequence (xn)n of X, f(limn→∞ xn) = limn→∞ f(xn).

Proof: (i→ ii) Suppose f is continuous. It is enough to show that the preimage
of an open ball of Y is an open subset of X. Let b ∈ Y and r > 0. Let
a ∈ f−1(B(b, r)). Then f(a) ∈ B(b, r). Let ε = r − d(f(a), b) > 0. Then
B(f(a), ε) ⊆ B(b, r). Since f is continuous at a, there is a δ > 0 such that
B(a, δ) ⊆ f−1(B(f(a), ε)) ⊆ f−1(B(b, r)). It follows that f−1(B(b, r)) is open.

(ii → i) Suppose now that the preimage of every open subset of Y is an open
subset of X. Let a ∈ X. Let ε > 0. Since f−1(B(f(a), ε)) is open and a is in
this set, there is a δ > 0 such that B(a, δ) ⊆ f−1(B(f(a), ε)). It follows that f
is continuous at a.

The rest of the equivalences are now immediate. ¤

Note that in the lemmas 11.1.1 and 11.1.4 above the existence of a metric on
X and Y disappeared, only topological concepts are left. This will be the basis
for extending the concept of continuity of a function between metric spaces to
the concept of continuity of a function between topological spaces. We will do
this in the next subsection.

Corollary 11.1.5 Continuity of functions between metric spaces depends on
the topologies generated by the metrics rather than on the metrics themselves.
In other words continuity of functions is preserved under equivalent metrics.

Lemma 11.1.6 Let (X, d) be a metric space. Then the map d : X ×X −→ R
is continuous.

Proof: It is enough to show that the inverse image of any open bounded interval
(r, s) is open. Let us take the sup distance on X×X. Let (a, b) ∈ X×X be such
that d(a, b) ∈ (r, s). Let x ∈ B(a, s) \B(a, r) and y ∈ B(b, s) \B(b, r) Then r <
sup(d(a, x), d(b, y)) = d((a, b), (x, y)) = sup(d(a, x), d(b, y)) < s. Since B(a, s) \
B(a, r) and B(b, s) \B(b, r) are open in X, this proves that d is continuous. ¤
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Exercises.

i. Let f : [a, b] −→ [a, b] be a function with the following property: There
exists a real number c ∈ (0, 1) such that for any x, y ∈ [a, b] one has

|f(x)− f(y)| < c|x− y|.

a) Show that f is continuous, and

b) Show that there exists an x ∈ [a, b] such that f(x) = x.

ii. Assume that X is a complete metric space which is also connected. Show
that for any a ∈ X and any r ≥ 0 there is a b ∈ X such that d(a, b) =
r. Conclude that if x has more than one point, show that X must be
uncountable.

11.2 Continuity on Topological Spaces

Let X and Y be two topological spaces. A function f : X → Y is called
continuous if f−1(V ) is open for all open subsets V of Y . The function f is
said to be continuous at a if a is in the interior of f−1(V ) for any open subset V
of Y containing f(a). By lemmas 11.1.1 and 11.1.4, this generalizes continuity
in metric spaces.

Lemma 11.2.1 Let X and Y be two topological spaces. A function f : X → Y
is continuous if and only if f is continuous at a for all a ∈ X.

Proof: Left as an exercise. ¤

Examples.

i. Let X be the discrete topological space (i.e. every subset is open). Then
any function from X into any topological space is continuous.

ii. Let X be any topological space. The identity function IdX from X into
X is continuous.

iii. One should note that the identity map IdX : X −→ X from any topo-
logical space into itself is continuous if one considers the domain X and
the arrival set X with the same topologies (i.e. the same open subsets).
Otherwise this may be false. For example if X1 denotes the topological
space on the set X where only X and ∅ are open and X1 denotes the
discrete topological space on X, then the identity map IdX : X1 −→ X2

is not continuous unless |X| = 1.

iv. Let X be a set. Let X1 and X2 be two topologies on the set X. Then the
map IdX : X1 :−→ X2 is continuous if and only if any subset of X which
is open for the topological space X2 is open in the topological space X1.
In this case we say that X1 is a refinement of X2.



124 CHAPTER 11. CONTINUITY

v. Let X and Y be any two topological spaces. Then any constant map from
X into Y is continuous.

Proposition 11.2.2 i. Composition of continuous functions is continuous.
ii. A function is continuous if and only if the inverse image of a closed set

is closed.
iii. Let X and Y be topological spaces. Let B be a base of Y . Then a function

f : X −→ Y is continuous if and only if the inverse image of a set in B is open
in X.

iv. A function f : X −→ Y is continuous if and only if the inverse image of
a closed subset of Y is closed in X.

Let X be a set, Xi be topological spaces and fi : X −→ Xi be functions.
Then there is a smallest/weakest topology on X that makes all the functions fi

continuous. This topology is generated by the set

{f−1
i (U) : i ∈ I and U ⊆ Xi is open}.

Exercises.

i. By using the definition of continuity, show that the function f(x) = x
x−1

is continuous in its domain of definition.

ii. Let X be a topological space. Given two continuous numerical functions
f and g on X, show that max{f(x), g(x)} is also continuous.

iii. Show that if + : R× R −→ R and × : R× R −→ R are continuous.

iv. Show that if f, g : X −→ Rn are continuous, then so is f + g.

v. Show that if f, g : X −→ C are continuous, then so are f + g and fg.

vi. Show that any polynomial map from C into C is continuous.

vii. Show that the map x 7→ 1/x from (0, 1) into R is continuous.

viii. Show that the map x 7→ (x−1)2

x(x−2) is continuous from (0, 2) into R.

ix. Show that the map x 7→ 1
1+x2 is a homeomorphism from (0,∞) onto (0, 1).

x. Show that there is no homeomorphism from (0, 1) onto [0, 1).

xi. Show that the map that sends rational numbers to 0 and irrational num-
bers to 1 is not continuous.

xii. Let f : R −→ R be a continuous function. Let Z = {r ∈ R : f(r) = 0}.
Show that 1/f : R \ Z −→ R is continuous.

xiii. Let X be a topological space and Y ⊆ X. Show that the smallest topology
on Y that makes the inclusion i : Y ↪→ X is the induced topology.
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xiv. Let X, Y be topological spaces, f : X −→ Y a continuous function, A ⊆ X
and f(A) ⊆ B ⊆ Y . Show that f|A : A −→ B is continuous.

xv. Let X, Y be topological spaces, f : X −→ Y a function and f(X) ⊆ B ⊆
Y . Show that f : X −→ Y is continuous if and only if f : X −→ B is
continuous.

xvi. Consider the spaces Rn and Rm with their usual topology. Let X ⊆ Rn

and Y ⊆ Rm. Let f : X −→ Y be a function. Show that f is continuous
if and only if each fi = πi ◦ f : X −→ R is continuous.

xvii. Let f : X −→ Y be continuous and B ⊆ Y . Show that f−1(B◦) =
f−1(B)◦ and f−1(B) = f−1(B).

xviii. II. Subgroup Topology on Z. Let τ = {nZ + m : n, m ∈ Z, n 6=
0} ∪ {∅}. We know that (Z, τ) is a topological space.

a. Let a ∈ Z. Is Z \ {a} open in τ?

Answer: Yes. ∪n6=0,±1nZ ∪ (3Z + 2) = Z \ {1}.Translating this set by
a− 1, we see that Z \ {a} is open.

b. Find an infinite non open subset of Z.

Answer: The set of primes is not an open subset. Because otherwise, for
some a 6= 0 and b ∈ Z, the elements of aZ + b would all be primes. So b,
ab + b and 2ab + b would be primes, a contradiction.

c. Let a, b ∈ Z. Is the map fa,b : Z −→ Z defined by fa,b(z) = az + b
continuous? (Prove or disprove).

Answer: Translation by b is easily shown to be continuous. Let us con-
sider the map f(z) = az. If a = 0, 1,−1 then clearly f is continuous.
Assume a 6= 0,±1 and that f is continuous. We may assume that a > 1
(why?) Choose a b which is not divisible by a. Then f−1(bZ) is open,
hence contains a subset of the form cZ + d. Therefore a(cZ + d) ⊆ bZ.
Therefore ac = ±b and so a divides b, a contradiction. Hence f is not
continuous unless a = 0,±1.

d. Is the map fa,b : Z −→ Z defined by f(z) = z2 continuous? (Prove or
disprove).

e. Is the topological space (Z, τ) compact? (Prove or disprove).

Answer: First Proof: Note first the complement of open subsets of
the form aZ + b are also open as they are unions of the form aZ + c
for c = 0, 1, . . . , a − 1 and c 6≡ bmod a. Now consider sets of the form
Up = pZ + (p − 1)/2 for p an odd prime. Then ∩pUp = ∅ because if
a ∈ ∩pUp then for some x ∈ Z \ {−1}, 2a + 1 = px + p, so that a is
divisible by all primes p and a = 0. But if a = 0 then (p−1)/2 is divisible
by p, a contradiction. On the other hand no finite intersection of the Up’s
can be emptyset as (aZ + b) ∩ (cZ + b) 6= ∅ if a and b are prime to each
other (why?) Hence (U c

p)p is an open cover of Z that does not have a finite
cover. Therefore Z is not compact.
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First Proof: Let p be a prime and a = a0 + a1p + a2p
2 + . . . be a p-adic

integer which is not in Z. Let

bn = a0 + a1p + a2p
2 + . . . + an−1p

n−1.

Then ∩npnZ+ bn = ∅ but no finite intersection is empty. We conclude as
above.

xix. Let f : R −→ R be the squaring map. Suppose that the arrival set is
endowed with the usual Euclidean topology. Find the smallest topology
on the domain that makes f continuous. (5 pts.)

Answer: The smallest such topology is the set

{U ∩ −U : U open in the usual topology of R}.

xx. Let (V, | |) be a normed real metric space. Show that the maps V×V −→ V
and R×V −→ V defined by (v, w) 7→ v +w and (r, v) −→ rv respectively
are continuous.

xxi. Show that an isometry between metric spaces is a homeomorphism be-
tween the topological spaces that they induce.

We end this subsection with easy but important results.

Theorem 11.2.3 i. The image of a compact set under a continuous map is
compact.

ii. The image of a connected set under a continuous map is compact.

Proof: Let f : X −→ Y be a continuous map.
i. Let K ⊆ X be a compact subset of X. Let (Vi)i∈I be an open covering

of f(K). Then (f−1(Vi))i∈I is an open covering of f−1(f(K)). Since K ⊆
f−1(f(K)), (f−1(Vi))i∈I is also an open covering of K. Hence K is covered by
f−1(Vi1), . . . , f

−1(Vik
) for some i1, . . . , ik ∈ I, i.e. K ⊆ f−1(Vi1)∪. . .∪f−1(Vik

).
By applying f to both sides, we get f(K) ⊆ f(f−1(Vi1) ∪ . . . ∪ f−1(Vik

)) =
f(f−1(Vi1)) ∪ . . . ∪ f(f−1(Vik

)) ⊆ Vi1 ∪ . . . ∪ Vik
. This shows that f(K) is

compact. ¤
ii. Let f(X) ⊆ U ∩ V where U and V are open in Y and U ∩ V ∩ f(X) = ∅.

Then X = f−1(f(X)) ⊆ f−1(U) ∩ f−1(V ) and ∅ = f−1(U ∩ V ∩ f(X)) =
f−1(U)∩ f−1(V )∩ f−1(f(X)) = f−1(U)∩ f−1(V )∩X = f−1(U)∩ f−1(V ), so
either f−1(U) = ∅ of f−1(V ) = ∅, i.e. either U ∩ f(X) = ∅ or V ∩ f(X) = ∅. ¤

Corollary 11.2.4 If K is a compact set and f : K −→ Y a continuous bijection
into a topological space Y then f is a homeomorphism from K onto f(K).

Proof: Let F ⊆ K be closed. Then F is compact. So f(F ) is compact in the
compact subset f(K). So f(F ) is closed in f(K). Thus f−1 is continuous. ¤
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11.3 Continuous Functions and R
Continuous functions assume their extreme values on compact subsets:

Theorem 11.3.1 Let X be a compact topological space and f : X −→ R be
continuous. Then there are a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for all
x ∈ X.

Proof: By Theorem 11.2.3, f(X) is a compact subset of R. By Proposition
10.6.2, f(X) is closed and bounded. Clearly, a closed and bounded subset of
R contains its upper bound. Thus f(X) has a maximal element, say f(b).
Similarly for the existence of a. ¤

A continuous real valued function which is positive once, remains positive
for a while, i.e. if a continuous function is positive at a point then it is positive
in a neighborhood of this point:

Lemma 11.3.2 Let f : (a, b) −→ R and c ∈ (a, b). Assume that f is continuous
at c. If f(c) > 0 then f > 0 in an open neighborhood of c. If f(c) < 0 then
f < 0 in an open neighborhood of c.

Proof: Let ε = f(c). Since f is continuous at c, there is a δ > 0 such that if
x ∈ (c− δ, c + δ) then f(x) ∈ (f(c)− ε, f(c) + ε) = (0, 2ε). ¤

A continuous real valued function which assumes two values assumes all the
values between them:

Theorem 11.3.3 (Intermediate Value Theorem) If f : [a, b] −→ R is con-
tinuous and d is between f(a) and f(b), then d = f(c) for some c ∈ [a, b].

Proof: Replacing f by f −d, we may assume that d = 0. Replacing f by −f if
necessary, we may assume that f(a) ≤ 0 ≤ f(b). We may further assume that
f(a) < 0 < f(b). Consider the set A := {x ∈ [a, b] : f(x) < 0}. Since a ∈ A,
A 6= ∅. Let c = sup(A) ∈ [a, b]. By Lemma 11.3.2 a < c < b. We will show that
f(c) = 0.

If f(c) < 0 then we get a contradiction by Lemma 11.3.2.
If f(c) > 0 then we again get a contradiction by Lemma 11.3.2.
Thus f(c) = 0. ¤
The image of a compact and connected subset under a continuous real valued

function is a closed interval. Prove this under this generality.

Corollary 11.3.4 If f : [a, b] −→ R is continuous, then f([a, b]) = [m,M ]
where m = inf(f([a, b])) and M = sup(f([a, b])). ¤

Theorem 11.3.5 Let f : [a, b] −→ [m,M ] be one to one, onto and continuous.
Then f−1 : [m,M ] −→ [a, b] is continuous also.
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Exercises.

i. [Cauchy] Show that for all real numbers r1, . . . , rn, (
∑

i ri)2 ≤ n
∑

i r2
i .

(Solution: Replacing ri by |ri|, we may assume that all ri ≥ 0. If
∑

i ri =
0, the result is obvious. Replacing ri by ri/

∑
i ri, we may assume that∑

i ri = 1. So we have to show that if
∑

i ri = 1, then
∑

i r2
i ≤ 1/n. Let

A = {(r1, . . . , rn) ∈ R≥0 :
∑

i ri = 1} and let f : A −→ R be defined
by f(r1, . . . , rn) =

∑
i r2

i . Then A is a compact subset of Rn because
A is a closed subset of the compact set [0, 1]n (Heine-Borel Theorem,
Theorem 10.6.3), being the inverse image of 1 under the continuous map
(r1, . . . , rn) 7→ ∑

i ri. Thus f assumes its minimal value. We will show
that f(r1, . . . , rn) ≥ f(1/n, . . . , 1/n) = 1/n. Let R = (r1, . . . , rn) be the
point where the minimal value is assumed. Assume ri 6= rj for some i and
j. Assume ri < rj . Let 0 < ε < rj − ri. Now look at the point S where all
the coordinates are the same as the coordinates of R except that the i-th
coordinate is ri + ε and the j-th coordinate is rj − ε. Then S ∈ A and an
easy calculation shows that f(S) < f(R), a contradiction. Thus ri = rj

for all i, j. Since
∑

i ri = 1, this implies that ri = 1/n for all n.)

ii. Let f : [a, b] −→ [a, b] be a continuous function. Show that f has a fixed
point.

iii. Show that if f is one to one and continuous on [a, b], then f is strictly
monotone on [a, b].

iv. Let f be a continuous numerical function on the closed interval [a, b]. Let
x1, . . . , xn be arbitrary points in [a, b]. Show that f(x0) = (f(x1) + ... +
f(xn)) for some x0 ∈ [a, b].

v. Show that there does not exist any continuous function f : R −→ R which
assumes every x ∈ R twice.

vi. Does there exist a continuous function f : R −→ R which assumes every
real number three times? (Yes!)

vii. Assume f, g : [0, 1] −→ [0, 1] be continuous functions and assume that
f(0) ≥ g(0) and f(1) ≤ g(1). Show that there exists an x ∈ [0, 1] such
that f(x) = g(x).

viii. Assume that f is a continuous real-valued function on [0, 1] and that
f(0) = f(1). If n ∈ N is positive show that there is a point x in [0, 1]
such that f(x) = f(x + 1

n ).

11.4 Uniform Continuity

Exercises.

i. Assume (fn)n converges uniformly to f on a subset A of R and that each
fn is uniformly continuous on A. Show that f is uniformly continuous on
A.
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11.5 Uniform Convergence and Continuity

Theorem 11.5.1 Uniform limit of a family of continuous functions is contin-
uous.

11.6 Supplementary Topics

11.6.1 A Continuous Curve Covering [0, 1]2

Proposition 11.6.1 [0, 1] and [0, 1]2 are not homeomorphic.

Proof: Take away one point from [0, 1]. ¤

Corollary 11.6.2 There is no continuous bijection from [0, 1] onto [0, 1]2.

Proof: From Corollary 11.2.4 and Proposition 11.6.1. ¤

Theorem 11.6.3 (Peano, 1890) There is a continuous map (curve) from [0, 1]
onto [0, 1]2.

Proof: Let I = [0, 1]. Subdivide I into four closed intervals of equal length
[0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1]. Subdivide I2 into four smaller squares
of length 1/2 × 1/2: [0, 1/2] × [0, 1/2], [0, 1/2] × [1/2, 1], [1/2, 1] × [1/2, 1] and
[1/2, 1] × [0, 1/2]. Make a correspondence between the four smaller intervals
and the four smaller squares in the order they appear above. Call this “stage
1”. At “stage 2”, subdivide each segment and each square into four equal parts
again. Make the correspondence in such a way that the intersecting intervals
correspond to neighboring squares. Continue in this fashion. Now for any point
x of [0, 1], consider the set of intervals that x belongs to. The point x will belong
to either one or two of the four intervals of stage n, of total length ≤ 1/2n−1.
To these intervals correspond closed squares of stage n, one inside the other and
of total area ≤ /22n−1. Because of the size of the squares, these corresponding
squares intersect at a unique point, say f(x). The map f so constructed is a
map from I onto I2, but is not a bijection.

This map is continuous, because for x, y ∈ I close to each other, the images
f(x) and f(y) are also close to each other, as can be easily checked. In fact if
|x− y| < 1/4n then d(f(x), f(y)) ≤ 2

√
2/2n. ¤

Note that I and I2 are not homeomorphic, because taking one point away
from I disconnects I, a phenomenon that does not occur in I2. Indeed the
map f−1 defined above is not continuous, as the images under f−1/2 of two
points close to the center of I2 which belong to the centers of opposite squares
[0, 1/2]× [0, 1/2] and [1/2, 1]× [1/2, 1] are never at a distance < 1/4.

Question. Is there a continuous bijection from I onto I2?
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Exercises.

i. Show that a subgroup of R is either discrete, in which case it is one-
generated, or is dense.

ii. Let A ∈ R. Show that Z+ αZ is discrete if and only if α ∈ Q.



Chapter 12

Differentiable Functions

12.1 Definition and Examples

DO ALSO DIFFERENTIATION IN C, Rn and in normed vector
spaces more generally, all at once

Let X ⊆ R, f : X −→ R a function and a ∈ X◦. We say that f is
differentiable at a if

lim
h→0

f(a + h)− f(a)
h

exists. We then write

f ′(a) = lim
h→0

f(a + h)− f(a)
h

.

If X is open, the function f is called differentiable on X if f is differentiable
at all the points of X. Such a function defines a function f ′ : X −→ R called
the derivative of f .

Examples.

i. Let n ∈ N and f : R −→ R be defined by f(x) = xn. Then

limh→0
f(x+h)−f(x)

h = limh→0
(x+h)n−xn

h

= limh→0

Pn
i=0

 
n
i

!
xihn−i−xn

h

= limh→0

Pn−1
i=0

 
n
i

!
xihn−i

h

= limh→0

∑n−1
i=0

(
n
i

)
xihn−i−1

= limh→0

(
n

n− 1

)
xn−1h0 = nxn−1.
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ii. Let fn : [0, 1] −→ [0, 1] be defined by fn(x) = xn. Then the sequence of
differentiable functions (fn)n converges to the function f defined by

f(x) =
{

0 for 0 ≤ x < 1
1 for x = 1

and f is not differentiable.

Lemma 12.1.1 If f is differentiable at a then f is continuous at a. Thus a
differentiable function is continuous.

Exercises.

i. Let f : R −→ R be the squaring function f(x) = x2. Show that f is
differentiable and f ′(x) = 2x.

ii. Let n ∈ N \ {0} and fn : [−1, 1] −→ R be defined by fn(x) = |x|1+1/n.
Show that fn is differentiable on [−1, 1].

iii. Show that the function

f(x) =
{

x2sin(1/x) if x 6= 0
0 if x = 0

is differentiable but f ′ is not continuous.

12.2 Differentiation of Complex Functions

12.3 Basic Properties of Differentiable Functions

From now on we let f and a be as above.

Lemma 12.3.1 If f is differentiable at a and if f(a) is maximal then f ′(a) = 0.

Exercises.

i. Let f : U −→ R (or C) be differentiable at a ∈ U , where U is open.
Assume that there is a sequence (xn)n of U converging to a such that
f(xn) = f(xm) all n, m. Then f(a) = f(xn) and f ′(a) = 0. (Hint:
Follows almost directly from the definition of derivatives).

ii. Let f : [a, b] −→ R be differentiable. Assume that f ′(x) 6= 0 for x ∈ [a, b].
Then f has finitely many zeroes in [a, b]. (Hint: See Exercise i, page 132).
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12.4 Rules of Differentiation

12.5 Relationship Between a Function and Its
Derivative

Letf : X −→ R be a function from a topological space into R. We say that a
point x◦ is a local maximum (resp. local minimum) of f if there is an open
subset U of X containing x◦ such that for all x ∈ U , f(x) ≤ f(x◦) (resp.
f(x) ≥ f(x◦)). An absolute maximum (resp. absolute minimum) of f is a
point x◦ such that x ∈ U , f(x) ≤ f(x◦) (resp. f(x) ≥ f(x◦)). An extremum
(local or absolute) point is a maximum or a minimum point.

Theorem 12.5.1 Let x◦ ∈ X ⊆ R and f : X −→ R be a function differentiable
at x◦. If x◦ is a local extremum then f ′(x◦) = 0.

Proof: Suppose x◦ is a local maximum. Then there is a δ > 0 such that
(x◦ − δ, x◦ + δ) ⊆ X and

f(x) ≤ f(x◦) if x ∈ (x◦ − δ, x◦)
f(x) ≥ f(x◦) if x ∈ (x◦, x◦ + δ).

Now
f(x◦+h)−f(x◦)

h ≤ 0 for h ∈ (0, δ)
f(x◦+h)−f(x◦)

h ≥ 0 for h ∈ (−δ, 0).

Thus f ′(x◦) = limn→∞ = f(x◦+h)−f(x◦)
h ≥ 0. If x◦ is a local minimum the proof

is similar. ¤

Theorem 12.5.2 (Rolle’s Theorem) For a < b, let f : [a, b] −→ R be differ-
entiable on (a, b). If f(a) = f(b) then f ′(c) = 0 for some c ∈ (a, b).

Proof: If f is constant then f ′ = 0 and there is nothing to prove. Assume
f is not a constant. By Theorem 11.3.1, f has an absolute maximum and an
absolute minimum. Since f is not constant, these are two distinct points. Since
f(a) = f(b), one of these points, say c, must be in the open interval (a, b). By
Theorem 12.5.1, f ′(c) = 0. ¤

The next theorem is one of the most important result in this series. We will
have several opportunities to use it.

Theorem 12.5.3 (Mean Value Theorem of Differential Calculus) For a <
b, let f : [a, b] −→ R be differentiable on (a, b). Then

f(a)− f(b)
a− b

= f ′(c)

for some c ∈ (a, b).
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Proof: For t ∈ [0, 1], let g(t) = f(ta + (1 − t)b) − tf(a) + (1 − t)f(b). Then
g(0) = g(1) = 0. By Rolle’s Theorem (12.5.2), g′(t◦) = 0 for some t◦ ∈ (0, 1).
But g′(t) = (a − b)f ′(ta + (1 − t)b) − f(a) + f(b). Thus 0 = g′(t◦) = (a −
b)f ′(t◦a + (1− t◦)b)− f(a) + f(b). If c = t◦a + (1− t◦)b, then f ′(c) = f(a)−f(b)

a−b .
¤

Theorem 12.5.4 If f is differentiable on (a, b) and f ′(x) ≥ 0 for every x ∈
(a, b) then f is monotone decreasing on (a, b).

Proof: Let a < x1 < x2 < b. By the Mean Value Theorem of Differential
Calculus (12.5.3), there is an x◦ ∈ (x1, x2) such that f ′(x◦) = f(x2)−f(x1)

x2−x1
.

Since f ′(x◦) ≥ 0 and x2 − x1 > 0, f(x2)− f(x1) ≥ 0. ¤

The fact that f ′(c) > 0 at some c does not imply that f is increasing around
c. It is easy to find a counterexample, find one.

12.6 Uniform Convergence and Differentiation

The fact that a sequence of differentiable function (fn)n converges uniformly to
a function f , does not imply that f is differentiable.

Example. Let fn : [−1, 1] −→ R be defined by fn(x) = |x|1+ 1
2n+1 . Then

each fn is differentiable on [0, 1] (see Exercise ii, page 132). Also limn→∞ fn(x) u=
|x|. (See Exercise iii, page 132). But the function f(x) = |x| is not differentiable
at x = 0.

Question. Suppose (fn)n is a sequence of differentiable functions that con-
verge uniformly to a differentiable function f . Is it true that f ′

p
= limn→∞ f ′n?

Theorem 12.6.1 Let the sequence of differentiable functions (fn)n converge
pointwise to f on the closed interval [a, b]. Assume that the sequence (f ′n)n

converges uniformly. Then f is differentiable and f ′ = limn→∞ f ′n.

Proof: Let limn→∞ f ′n
u= g. Let c ∈ [a, b]. We want to show that

lim
x→c

f(x)− f(c)
x− c

= g(c).

Thus given an ε > 0, we want to find a δ > 0 such that
∣∣∣∣
f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ε

for all x ∈ [a, b] that satisfies 0 < |x − c| < δ. Let ε > 0 be given. By the
triangular inequality, for any n, we have,

∣∣∣ f(x)−f(c)
x−c − g(c)

∣∣∣ ≤
∣∣∣ f(x)−f(c)

x−c − fn(x)−fn(c)
x−c

∣∣∣ +
∣∣∣ fn(x)−fn(c)

x−c − f ′n(c)
∣∣∣

+|f ′n(c)− g(c)|.
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We will make each term of the right hand side less than ε/3. It is easy to make
the second term small by choosing δ small enough. It is also easy to make the
last term small by choosing n large enough. The main problem is with the first
term, that we deal first.

Assume c < x. The proof is the same if x < c. Let n and m be any natural
numbers. Applying the Mean Value Theorem to the function fn − fm on the
interval [c, x] we can find an α = αm,n ∈ (c, x) such that

f ′m(α)− f ′n(α) =
fm(x)− fn(x)

x− c
− fm(c)− fn(c)

x− c
.

On the other hand, by the Cauchy Criterion for Uniform Convergence (Theorem
9.2.5), there exists an N1 such that for all n, m > N1 and x ∈ [a, b],

|f ′m(x)− f ′n(x)| < ε/3.

In particular,
|f ′m(α)− f ′n(α)| < ε/3.

(It is worth while to notice that, since α depends on n and m, we really need
the uniform convergence of (f ′n)n for this part of the argument). Thus

∣∣∣∣
fm(x)− fn(x)

x− c
− fm(c)− fn(c)

x− c

∣∣∣∣ < ε/3

for all n, m > N1 and all x ∈ [a, b]. Now let m go to infinity, to get

(1)
∣∣∣∣
f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣ < ε/3

for all n > N1 and any x ∈ [a, b].
Since limn→∞ f ′n = g, there is an N2 large enough so that,

(2) |f ′n(c)− g(c)| < ε/3

for all n > N2.
Let n = max{N1, N2} + 1. Note that (1) and (2) hold for this n. Choose

δ > 0 such that if x ∈ [a, b] and |x− c| < δ, then

(3)
∣∣∣∣
fn(x)− fn(c)

x− c
− f ′n(c)

∣∣∣∣ < ε/3.

Now (1), (2) and (3) give us the result. ¤

In the theorem above we do not really need the pointwise convergence of
(fn)n on [a, b], it is enough to know that (fn(x0))n converges for some n to get
the pointwise, in fact the uniform convergence on [a, b].

Theorem 12.6.2 Let (fn)n be a sequence of differentiable functions defined
and assume that the sequence (f ′n)n converges uniformly on [a, b]. If there exists
a point x0 ∈ [a, b] such that (fn(x0))n is convergent. Then (fn)n converges uni-
formly on [a, b] and limn→∞ fn is differentiable and (limn→∞ fn)′ = limn→∞ f ′n.



136 CHAPTER 12. DIFFERENTIABLE FUNCTIONS

Proof: In view of the previous theorem, it is enough to prove the uniform
convergence of (fn)n on [a, b].

COMPLETE THE PROOF.

Exercises.

12.7 Second and Further Derivatives



Chapter 13

Analytic Functions

13.1 Power Series

We collect the main results and a few more about power series. This will show
that the power series – whenever and wherever they converge – behave like
polynomials, as much as they can.

Theorem 13.1.1 Let
∑∞

i=0 aiz
i be a power series with R = lim{1/|ai|1/i} ∈

R≥0 ∪ {∞} its “radius of convergence”. Let 0 < r < R. Then the following
hold.

i. If |z| < R, then
∑∞

i=0 aiz
i converges absolutely. If |z| > R, then

∑∞
i=0 aiz

i

diverges.
ii.

∑∞
i=0 aiz

i converges uniformly on B(0, r).
iii. The radius of convergence of

∑∞
i=1 iaiz

i−1 converges uniformly on B(0, r).
iv.

∑∞
i=0 aiz

i is infinitely differentiable in B(0, R) and

(
∞∑

i=0

aiz
i)′ =

∞∑

i=1

iaiz
i−1.

v. If f(z) =
∑∞

i=0 aiz
i in B(0, R), then f is infinitely differentiable in

B(0, R) and ai = f (i)(0)/i!. In other words, the coefficients of a power series
are unique and if the function f(z) is a power series, then

f(z) =
∞∑

i=0

f (i)i!
z

i

.

Proof: Part (i) is Corollary 7.5.6.
Part (ii) is by Proposition 6.8.3 and part (i).
iii. Since

∑∞
i=0 aiz

i converges absolutely for |z| = r, the series
∑∞

i=0 air
i

converges. By Weierstrass M-Test (Theorem 9.3.3), the series f =
∑∞

i=0 aiz
i

converges uniformly on B(0, r).

137
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iv. By parts (i, iii), the series
∑∞

i=1 iaiz
i−1 converges uniformly on B(0, r).

Let fn =
∑n

i=0 aiz
i. By Theorem 12.6.1, f =

∑∞
i=0 aiz

i is differentiable and
f ′ = limn→∞ f ′n = limn→∞

∑n
i=1 iaiz

i−1 =
∑∞

i=1 iaiz
i−1 for z ∈ B(0, r), so also

for all z ∈ B(0, R).
v. Direct application of the previous facts. ¤

Corollary 13.1.2 Consider the infinite series
∑∞

i=0 ai(z − a)i with 0 < R =
lim{1/|ai|1/i} ∈ R≥0 ∪ {∞} its “radius of convergence”. Let 0 < r < R.
Then the following hold.

i. If z ∈ B(a,R), then
∑∞

i=0 ai(z − a)i converges absolutely. If z 6∈ B(a,R),
then

∑∞
i=0 ai(z − a)i diverges.

ii. The radius of convergence of
∑∞

i=0 ai(z − a)i is also R.
iii.

∑∞
i=0 ai(z − a)i converges uniformly on B(a, r).

iv.
∑∞

i=0 ai(z − a)i is infinitely differentiable in B(a,R) and

(
∞∑

i=0

ai(z − a)i)′ =
∞∑

i=1

iai(z − a)i−1,

the convergence being uniform in B(a, r).
v. If f(z) =

∑∞
i=0 ai(z−a)i for z ∈ B(a,R), then f is infinitely differentiable

in B(a,R) and ai = f (i)(a)/i!.

Exercises.

i. Let
∑∞

i=1 ai/ni be convergent for all n > 1. Show that limn→∞
∑∞

i=0 ai/ni =
a0. (Solution: Consider the power series f(x) :=

∑∞
i=1 aix

i which is con-
vergent at x = 1/2, thus its radius of convergence is at least 1/2. Thus f(x)
is continuous at 0. It follows that for all ε > 0 there is a δ > 0 such that if
|x| < δ and x 6= 0 then |f(x)− f(0)| < ε. Let 1/δ − 1 < N = [1/δ] ≤ 1/δ.
Then for n > N , 1/n ≤ 1/(N + 1) < δ and so |f(1/n) − f(0)| < ε, i.e.
|∑∞

i=1 ai/ni − a0| < ε. Thus limn→∞
∑∞

i=0 ai/ni = a0.)

13.2 Taylor Series

As seen above, the power series
∑∞

i=0 aiz
i and their cousin

∑∞
i=0 ai(z − a)i are

easy to handle, they behave almost like polynomials. According to these results,
it would be helpful if every function could be expressed as such an infinite series
around any a. But since such a series is infinitely differentiable if it converges
around a, a function which is not infinitely differentiable around a cannot be
expressed as such a series. As it happens, even this condition is not sufficient
for a function to be expressed as such a series. We will see an example of such
a function later.

A function f defined on an open subset U (of R or of C) is said to be analytic
at a point a ∈ U if there is a sequence (ai)i such that f(z) =

∑∞
i=0 ai(z − a)i

for z ∈ B(a, R) for some R > 0. The coefficients ai are unique and equal to
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φ(i)(a)/i! as Theorem 13.1.1 shows. Also we can find a maximal R where the
equality f(z) =

∑∞
i=0 ai(z − a)i holds.

If f is a complex function, then the fact that f is differentiable on U once
is enough to insure that for any a ∈ U , f =

∑∞
i=0 ai(z − a)i for z ∈ B(a,R) for

some R > 0. This result is part of a subject called complex analysis and will
be seen somewhere else. The situation in R is much more mysterious and is the
subject of this section.

Lemma 13.2.1 Let U be an open subset of R and f : U −→ R an (n+1)-times
differentiable function. Let [a, b] ⊆ U . Then

f(b) = f(a)+
f ′(a)

1!
(b−a)+

f ′′(a)

2!
(b−a)2 + . . .+

f (n)(a)

n!
(b−a)n +

f (n+1)(c)

(n + 1)!
(b−a)n+1

for some c ∈ (a, b).

Proof: Let

g(x) = f(b)−f(x)−(b−x)f ′(x)− (b− x)2f ′(x)

2!
− . . .− (b− x)nf (n)(x)

n!
− (b− x)n+1γ

(n + 1)!

where γ is chosen so that g(a) = 0. Since g(b) = 0 also, by Rolle’s Theorem
(12.5.2), there is a c ∈ (a, b) such that g′(c) = 0. Note that, after simplification,

g′(x) = [f(b)−∑n
i=0

(b−x)if(i)(x)
i! − (b−x)n+1γ

(n+1)! ]′

=
∑n

i=1
(b−x)i−1f(i)(x)

(i−1)! −∑n
i=0

(b−x)if(i+1)(x)
i! + (b−x)nγ

n!

= − (b−x)nf(n+1)(x)
n! + (b−x)nγ

n! .

Thus γ = f (n+1)(c). Now the equation g(a) = 0 gives the desired result. ¤

Corollary 13.2.2 Let U be an open subset of R and f : U −→ R an (n + 1)-
times differentiable function. Let [a, b] ⊆ U . Then for all x ∈ [a, b) there is a
ξ ∈ (x, b) (that depends on a and x) such that

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+. . .+

f (n)(a)

n!
(x−a)n+

f (n+1)(ξ)

(n + 1)!
(x−a)n+1.

It follows that the infinitely differentiable real function f is equal to its
Taylor series

∞∑

i=0

f (i)

i!
(z − a)i

around a (so is analytic) if and only if | f(n+1)(ξ)
(n+1)! (z − a)n+1| converges to 0 as

n goes to infinity. The term (n + 1)! is helpful to make the quantity small. If
z is close to a, (z − a)n+1 can also be made small. Only the term f (n+1)(ξ) is
bothersome. Note that here ξ depends on n, a and x.
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13.2.1 Calculating Taylor Polynomials

Theorem 13.2.3 Suppose that on an open subset we have

f(x) =
n∑

i=0

aix
i + xnε(x)

where limx→∞ ε(x) = 0 and f is (n + 1)-times differentiable. Then Tfn(x) =∑n
i=0 aix

i. ????

Taylor Polynomials of 1/ cosx

We start noting that since 1/ cosx is an even function, its derivatives of odd
degree must be 0 at x = 0.

First Method. Let f(x) = 1/ cosx and start computing its derived series.
This may take a long time and is not advised.

Second Method. Let us compute the first 6 (or 7) terms of the Taylor
series of 1/ cosx around 0. For this we take the inverse of the Taylor series for
cos x around 0.

1
cos x = 1

1−x2/2!+x4/4!−x6/6!+x7f(x)

= 1
1−(x2/2!−x4/4!+x6/6!−x7f(x))

= 1 + (x2/2!− x4/4! + x6/6!− x7f(x))+
+(x2/2!− x4/4! + x6/6!− x7f(x))2+
+(x2/2!− x4/4! + x6/6!− x7f(x))3

= 1 + (x2/2!− x4/4! + x6/6!) + (x4/4− x6/4!) + x6/8 + x7g(x)
= 1 + x2/2− x4(1/4!− 1/4) + x6(1/6!− 1/4! + 1/8) + x7g(x)
= 1 + x2/2 + 5x4/24 + 61x6/720 + x7g(x),

where f and g are functions that converge to 0 when x goes to 0.

Taylor Polynomial of tanx

Note first that since tan x is an odd function, its derivatives of even degree must
be 0.

First Method. Let f(x) = tanx and start computing its derived series.
This is long and tiring and is not advised.

Second Method. We use the Taylor polynomial of 1/ cos x that has been
computed above:

tan x = sin x× 1
cos x

=
(
x− x3

3! + x5

5! + x6f(x)
)(

1 + x2

2 + 5x4

24 + 61x6

720 + x6g(x)
)

= x +
(−1

3! + 1
2

)
x3 +

(
1
5! − 1

12 + 5
24

)
x5 + x6h(x)

= x + 1
3x3 + 2

15x5,

where f , g and h are functions that converge to 0 when x goes to 0.
Third Method for those who know how to integrate. Since tan′ x =

1/ cos2 x, if we know the Taylor polynomial of 1/ cos2 x, we can integrate to
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find the Taylor polynomial of tan x, except may be the first term. But since
tan 0 = 0, the first term must be 0.

Fourth Method. Since tan x is (− ln(cos x))′ = tanx, if we know the
Taylor polynomial of − ln(cos x), then by differentiating, we can find the Taylor
polynomial of tan x:

ln(cos x) = ln
(
1− x2

2! + x4

4! − x6

6! − x7f(x)
)

= ln
(
1−

(
x2

2! − x4

4! + x6

6! + x7f(x)
))

= −
(

x2

2! − x4

4! + x6

6! + x7f(x)
)
− 1

2

(
x2

2! − x4

4! + x6

6! + x7f(x)
)2

− 1
3

(
x2

2! − x4

4! + x6

6! + x7f(x)
)3

= − 1
2x2 − 1

12x4 − 2
90x6 + x7g(x)

Hence

tan x = (− ln(cos x))′ =
(

1
2
x2 +

1
12

x4 +
2
90

x6 + x7g(x)
)′

= x+
1
3
x3+

2
15

x5+x6h(x)

where the limits of g and h when x goes to 0 are 0.

Taylor Polynomial of sin3 x

We compute up to ninth degree:

sin3(x) =
(

x
1! − x3

3! + x5

5! − x7

7! + x8f(x)
)3

= x3
(

1
1! − x2

3! + x4

5! − x6

7! + x7f(x)
)3

= x3
[
1 + 3 · 1·1·(−1)

1!1!3! x2 +
(
3 · 1·1·1

1!1!5! + 3 · 1·(−1)·(−1)
1!3!3!

)
x4+

+
(

(−1)·(−1)·(−1)
3!3!3! + 3! · 1·(−1)·1

1!3!5! + 3 · 1·1·(−1)
1!1!7!

)
x6 + x7ε′(x)

]

= x3
(
1− 1

2x2 + 13
120x4 − 41

3024x6 + x7ε′(x)
)

= x3 − 1
2x5 + 13

120x7 − 41
3024x9 + x10ε′(x)

where the limits of f , ε and ε′ when x goes to 0 are 0.

Exercises.

i. Show that the derivatives of even (resp. odd) degree of an analytic function
which is odd (resp. even) must be 0.

ii. Let f : R>0 −→ R be twice differentiable. Assume that f > 0 and f ′ < 0
then f ′′ cannot be always negative.

Proof: Assume f ′′(x) < 0 for all x. Let a ∈ R>0 be fixed. Then for all
x > a, f(x) = f(a) + (x − a)f ′(a) + (b − x)2f ′(c)/2! for some c. We can
choose x large enough so that f(a) + (x− a)f ′(a) < 0. Then f(x) < 0. ¤

iii. If f(x) = 1
1+x and U = (−1,∞), solve the first two questions.



142 CHAPTER 13. ANALYTIC FUNCTIONS

iv. a. Estimate the error made in replacing the function exp on the interval
[0, 1] by its Taylor polynomial of degree 10.

b. On what interval [0, h] does the function exp differ from its Taylor
polynomial of degree 10 by no more than 10−7?

c. For what value of n does the function exp differ from its Taylor poly-
nomial of degree n by no more than 10−7 on the interval [0, 1]?

13.3 Analytic Functions

If f is infinitely differentiable and a, x ∈ U , we set

(Tf)(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n.

Note that (Tf)(x) may or may not be convergent for a given x. But if Tf is
convergent, then Tf and f have the same nth-derivatives at 0 for all n. Does
this condition implies that Tf = f . Thus we have two questions:

1. For what values of x is (Tf)(x) convergent? Is Tf convergent for all
x ∈ U .

2. In case (Tf)(x) is convergent on U , do we have (Tf)(x) = f(x) for all x?
The answer to both questions is negative as the next examples show.

Examples.

i. Let f be the real function f(x) = 1
1+x2 . Then Tf(x) =

∑∞
i=0(−1)ix2i.

It can be easily checked that Tf converges for x ∈ (−1, 1) and diverges
elsewhere, although f is defined everywhere. Thus the answer to the first
question is negative.

ii. Let

f(x) =
{

e−1/x2
if x 6= 0

0 if x = 0

Then f is infinitely differentiable and f (n)(0) = 0 for all n ∈ N. Therefore
Tf = 0 and Tf(x) = f(x) if and only if x = 0. Thus the answer to the
second question is also negative.

A function f defined on an open subset U (of R or of C) is said to be analytic
at a point a ∈ U if there is a sequence (ai)i such that f(z) =

∑∞
i=0 ai(z − a)i

for z ∈ B(a, R) for some R > 0. The coefficients ai are unique and equal to
φ(i)(a)/i! as Theorem 13.1.1 shows. Also we can find a maximal R where the
equality f(z) =

∑∞
i=0 ai(z − a)i holds.

Proposition 13.3.1 If f : B(0, R) −→ C is analytic and f = 0 on R∩B(0,R)
then f = 0.

Proof: . By Exercise i, page 132, f ′ = 0 on R. Thus f (n)(0) = 0 for all n and
so f = Tf = 0. ¤
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13.4 Transcendental Functions

We define
exp(z) =

∑∞
n=0 zn/n!

sin(z) =
∑∞

n=0(−1)nz2n+1/(2n + 1)!
cos(z) =

∑∞
n=0(−1)nz2n/(2n)!

cosh(z) =
∑∞

n=0 z2n+1/(2n + 1)!
sinh(z) =

∑∞
n=0 z2n/(2n)!

Each of these functions are analytic on C as it can be checked by using
Theorem 13.1.1. Also they all take real values at real numbers, i.e. they can
also be considered as real functions.

Exercises.

i. Show that limn→∞(1 + z/n)n = exp(z). (See Example i, page 111).

ii. Show that sin z = exp(iz)−exp(−iz)
2i .

13.4.1 Exponentiation and Trigonometric Functions

We have exp(0) = 1, cos(0) = 1, sin(0) = 0. By Theorem 7.5.7, exp′ = exp,
sin′ = cos, cos′ = − sin, cosh′ = sinh, sinh′ = cosh′, cos2(x) + sin2(x) = 1.

Theorem 13.4.1 exp(x + y) = exp(x) exp(y).

Proof: Since exp(z) =
∑∞

n=0 zn/n!, we have to prove that the limit of

(
n∑

i=0

xi/i!)(
n∑

i=0

yi/i!)−
n∑

i=0

(x + y)i/i!

is 0 as n →∞. We first compute the left hand side:

(
n∑

i=0

xi/i!)(
n∑

i=0

yi/i!) =
n∑

i=0

n∑

j=0

xiyj

i!j!
.

Now we compute the left hand side:

n∑

i=0

(x + y)i/i! =
n∑

i=0

i∑

j=0

(
i
j

)
xjyi−j/i! =

n∑

i=0

i∑

j=0

xjyi−j

(i− j)!j!
=

n∑

i=0

i∑

k=0

xjyk

k!j!
.

¤

Another proof of Theorem 13.4.1: Let a ∈ R. Let f(x) = exp(x + a)
and g(x) = exp(x) exp(a). Then f(0) = g(0) and f = f ′ and g = g′. Thus
f (n)(0) = g(n)(0) all n. So f = g by Theorem 13.1.1. ¤

Theorem 13.4.2 exp(iz) = cos z + i sin z for all z ∈ C.
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Proof: Easy. ¤

Corollary 13.4.3 sin(x + y) = sin(x) cos(y) + cos(x) sin(y) and cos(x + y) =
cos(x) cos(y)− sin(x) sin(y) for all x, y ∈ C.

Proof: If x, y ∈ R, this follows from Theorems 13.4.2 and 13.4.1. Now ap-
ply Proposition 13.3.1 to the analytic functions sin(x + a) − sin(x) cos(a) +
cos(x) sin(a) and cos(x + a)− cos(x) cos(a)− sin(x) sin(a). ¤

Theorem 13.4.4 The functions sin and cos restricted to R have a common
period.

Proof: Assume cos(x) > 0 for all x. Then sin is increasing. Since sin(0) = 0,
sin(x) > 0 for all x > 0. Thus cos′ = − sin < 0 on R>0. Also, cos′′(x) =
− cos(x) < 0 and this contradicts Exercise ii, page 141. Thus cos(x) = 0 for
some x > 0. Then sin(x) = ±1. So cos(2x) = cos2(x) − sin2(x) = 1 and
sin(2x) = 0. Thus A := {α ∈ R>0 : sin(α) = 0} is nonempty. By the formulas
sin(x + y) = sin x cos y + sin y cos x and sin(−x) = − sin x, we see that the set
A of zeroes of sin x = 0 is an additive subgroup of R. Since sin is continuous,
this subgroup is closed. If it had an accumulation point, the accumulation point
itself would be in A, but then 0 would be an accumulation point. Let (a, b) be
an open interval. Assume 0 < a < b. Let α ∈ A be such that 0 < α < b − a.
Then nα ∈ (a, b)∩A for some n ∈ N. So A is dense in R. Since A is also closed,
this implies that A = R and sin = 0, a contradiction. Hence A is discrete. Let
π > 0 be the least positive element of A. It is easy to show that the period of
sin is 2π.

Also follows from Lemma i.
DETAILS ¤

It follows from the above proof that a subgroup of R is either dense in R or
is generated by one element.

Find an upper bound for π.

The number e. We let e = exp(1) =
∑∞

i=0 1/i!.

Proposition 13.4.5 e is irrational.

Proof: Assume e = m/n for m and n > 0 integers. Then the number

N := n!

(
e−

n∑

i=0

1/i!

)
=

∞∑

i=n+1

n!/i! > 0

is a positive natural number and we have

N =
∑∞

i=n+1 n!/i! =
∑∞

i=1 1/(n + 1) . . . (n + i)
<

∑∞
i=1 1/(n + 1)i = 1

n+1

∑∞
i=0 1/(n + 1)i

= 1
n+1

1
1− 1

n+1
= 1/n,
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implying N = 0, a contradiction. ¤

See [AZ, page 28] for the fact that eq is irrational for all q ∈ Q \ {0}.
The proposition above is a consequence of a more general result:

Theorem 13.4.6 If (ai)i is a sequence of zeroes and ones which is not even-
tually zero, then

∑∞
i=0 ai/i! is irrational.

Proof: The same as above. Take this proof to its appropriate place. ¤

Exercises.

i. Find cos(15◦).

ii. Express sin(4x) and cos(4x) in terms of sin x and cosx. (Prove your
formula).

iii. Let f(x) = x3 − 3x + 5. Show that f(ln a) = 6 for some a > 1.

iv. Show that exp(2iz)−1
exp(2iz)+1 = i tan z for all z ∈ C.

v. Describe the set α ∈ R such that the subgroup 〈1, α〉 = Z+αZ is discrete.
(Solution: If α = p/q ∈ Q, then it is easy to show that 〈1, α〉 = 〈1/q〉
is discrete. Otherwise, the elements of the sequence (nα − [nα])n∈N are
distinct and are all in [0, 1)∩〈1, α〉. Thus 〈1, α〉 has an accumulation point
in [0, 1). Thus 0 is an accumulation point of 〈1, α〉. Now for 0 ≤ β < γ
in R, choose αn ∈ 〈1, α〉 ∩ (0, γ − β). For some k ∈ N, β < kαn ≤ γ and
kαn ∈ (β, γ)).

vi. Assuming π is irrational, show that sin(Z) is dense in [−1, 1]. (Solution:
Let y ∈ [−1, 1]. Let x ∈ R be such that sin x = y. Since Z+ 2πZ is dense
in R, there is a sequence an+2πbn with an, bn ∈ Z such that limn→∞(an+
2πbn) = x. Since sin is continuous, y = sin x = sin(limn→∞ an + 2πbn) =
limn→∞ sin(an + 2πbn) = limn→∞ sin an.)

vii. Show that
∑∞

n=1
sin n

n is convergent. (Solution: We will apply Abel’s
Theorem (Theorem 7.5.8). We only need to show that the partial sums of
|∑m

j=n sin n| are bounded. Since sin n = Im(εin), it is enough to show that
the partial sums |∑m

j=n eij | are bounded. We will prove that the sums
|∑m

j=0 eij | are bounded. This will prove the result since |∑m
j=n eij | =

|∑m
j=0 eij − ∑n−1

j=0 eij | ≤ |∑m
j=0 eij | + |∑n−1

j=0 eij |. Now we compute:

|∑m
j=0 eij | = | ei(m+1)−1

ei−1 | ≤ 2
|ei−1| .)

viii. Find the radius of convergence of
∑∞

n=1
sin n

n zn. (Solution: Since
∣∣ sin n

n zn
∣∣ ≤

|z|n, the radius of convergence ≥ 1. If the radius of convergence is > 1,
then the radius of convergence of the derived series

∑∞
n=0 sin n zn−1 is

also > 1. But by Exercise vi, page 145, the general term sin n zn does not
converge to 0 if |z| 6< 1).
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ix. Show that limn→∞(1 + 1/n)n = e.

x. Find the following limits:

limx→∞(1 + 1/x)x

limx→∞(1− 1/x)x

limn→∞(1− 1/n)n

limn→∞(1− 1/n2)n2

limn→∞(1− 1/n2)n

limn→∞(1− 1/n)n2

limx→∞(1 + c/x)x

13.4.2 Inverse Trigonometric Functions

13.4.3 Logarithm

13.4.4 Hyperbolic Functions

13.5 Supplement

13.5.1 Trigonometric Functions

By Example i, page 111, limn→∞(1 + z/n)n = exp(z). Thus

sin z =
exp(iz)− exp(−iz)

2i
= lim

n→∞
1
2i

[(1 + iz/n)n − (1− iz/n)n].

On the other hand, we note that (1 + iz/n)n − (1 − iz/n)n = 0 if and only if(
1+iz/n
1−iz/n

)n

= 1 if and only if
(

n+iz
n−iz

)n

= 1 if and only if n+iz
n−iz = exp(2ikπ/n)

for some k = 0, 1, . . . , n − 1 if and only if (as an easy calculation shows) z =
n
i

exp(2πik/n)−1
exp(2πik/n)+1 = n tan kπn by Exercise iv, page 145.
ppppp DEVAM EDECEK, VALIRON, SAYFA 41

13.5.2 Series

Proposition 13.5.1 For x 6= 2kπ (k ∈ Z) and (εn)n a decreasing sequence
whose limit is 0, the series

∑∞
n=0 εneinx is convergent.

Proof: We will apply Theorem 7.5.8. Let x 6= 2kπ for any k ∈ Z and vn =
vn(x) = einx. For m < n, vm + . . . + vn = eimx + . . . + einx = eimx(1 + eix +
. . . + ei(n−m)x = eimx 1−ei(n−m+1)x

1−eix , so that |vm + . . . + vn| ≤ 2
|1−eix| . Hence the

conditions of Theorem 7.5.8 are met. ¤

Corollary 13.5.2 For x 6= 2kπ (k ∈ Z) and (εn)n a decreasing sequence whose
limit is 0, the series

∑∞
n=0 εn sin(nx) and

∑∞
i=0 εn cos(nx) are convergent.
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Exercises.

i. Show that
∑∞

k=1 sin(kx)/k2 is uniformly convergent on (−∞,∞).

ii. Show that
∑∞

k=0(xe−x)k converges uniformly on [0, 2].

iii. Show the following:

sin2(z) + cos2(z) = 1
exp(iz) = cos(z) + i sin(z)
cos is even, sin is odd
sinh2(z)− cosh2(z) = 1
exp(z) = cosh(z) + i sinh(z).

iv. Let X be a set with n elements. Let 0 ≤ p := p(n) ≤ 1. We select a
random subset A := A(p) of Xin such a way that the probability that an
element x ∈ X is in A is p.

i. Calculate the probability that A has any element at all.

ii. What is the expected number of elements of A?

iii. Let p(n) = 1/n. What is the probability that A(p) 6= ∅ when n tends
to infinity?

iv. Assume that p = p(n) À 1/n. Show that the probability that A(p) = ∅
when n tends to infinity is 1.

v. Assume that p = p(n) À 1/n. Show that the probability that A(p) = ∅
when n tends to infinity is 0.

13.6 Notes

Analytic functions are not the only functions whose sequence (f (n)(x0))n of
derivatives determine the function in a neighborhood of x0. The functions de-
fined and infinitely differentiable on [a, b] such that if Mn = max{|f (n)(x)| :
x ∈ [a, b]}, then

∑
n 1/M

1/n
n is divergent (Denjoy 1921 and Carleman). Such

functions are called quasi analytic.
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Chapter 14

Graph Drawing

14.1 Drawing in Cartesian Coordinates

14.1.1 Asymptotes

Exercises.

i. Draw with as much care as possible the graph of f(x) = x2

(x−1)(x+2) .

ii. Let f(x) = x + 2x2 sin(1/x) if x = 0 and f(0) = 0.

i. Show that f ′(0) = 1.

ii. Show that any interval containing 0 also contains points where f ′(x) <
0, so that f cannot be increasing on any interval around 0 although f ′(0) >
0.

14.2 Parametric Equations

14.3 Polar Coordinates

14.4 Geometric Loci

Exercise. [BR] Let A = (1, 0). Find the set of points M of the plane R2 such
that, if P and Q design the projections of M onto the axes x and y respectively,
the point S of intersection of AQ and PM is at distance 1 from A.
First Solution. Let M = (x0, y0). Then P = (x0, 0) and Q = (0, y0). The line
AQ has equation y = 0−y0

1−0 x+y0. Thus the point S has coordinates (x0,−y0x0+
y0). The square of its distance from A(1, 0) is (x0 − 1)2 + (−y0x0 + y0)2, which
we want to be 1. Thus the equation of the curve in Cartesian coordinates is
(x − 1)2 + (−yx + y)2 = 1, or (x − 1)2(1 + y2) = 1, or y2 = 1

(x−1)2 − 1, i.e.

y = ±
(

1
(x−1)2 − 1

)1/2

. Note that x 6= 1 and 1
(x−1)2 − 1 ≥ 0, i.e. x ∈ [0, 2] \ {1}.

149
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Note also that the curve is symmetric with respect to the x axis. The line x = 1
is an asymptote and the curve is also symmetrical with respect to the line x = 1.
It is possible to draw this curve, even if some painful work is necessary.
Second Solution. Let θ be the angle PAQ. Then one can see immediately
that

x(θ) = 1− cos θ
y(θ) = tan(θ)

where θ ∈ [0, 2π]\{π/2, 3π/2}. It is enough to draw the curve when θ ∈ [0, π/2)
because of the obvious symmetries.

It is easy to see that
i) x(0) = y(0) = 0.
ii) x and y both increase when θ increases from 0 to π/2.
iii) When θ goes to π/2, x goes to 1 and y goes to ∞. Thus there is an

asymptote at θ = π/2, which is the line x = 1.
Differentiating with respect to θ, we find

dx/dθ = sin θ
dy/dθ = 1/ cos2 θ.

Thus
dy/dx = (dy/dθ)/(dx/dθ) = 1/ cos2 θ sin θ.

It follows that when θ ∈ [0, π/2), y is an increasing function of x. It also follows
that the y axis is tangent to the curve (case θ = 0).

Now we find d2y/dx2:

d2y/dx2 = d(dy/dx)/dx = (d(dy/dx)/dθ)/(dx/dθ) = (1/ cos2 θ sin θ)′/ sin θ

=
2 sin2 θ − cos2 θ

cos3 θ sin3 θ
.

There is an inflection point when 2 sin2 θ − cos2 θ = 0, i.e. when y = tan(θ) =
1/
√

2. We can compute the first coordinate x of the inflection point: 1/ cos′ 2θ−
1 = tan2 θ = 1/2, cos θ =

√
2/3 and x = 1 − cos θ = 1 −

√
2/3. The graph is

concave down before (1−
√

2/3, 1/
√

2) and concave up afterwards.

Exercise. [BR] To a point M = (X,Y ), Y 6= 0, we associate a point m as
follows: The line OM intersects the line y = a in H. The lines passing from M
and H and parallel to the x and y axes intersect at m. Given m, we can also
find M .

1. Calculate the coordinates of m in terms of the coordinates of M .
2. Find the curve that the point m traces when M moves on the circle

X2 + Y 2 − 2RX = 0.
3. Find the curve that the point M traces when m moves on the circle

x2 + y2 − 2Ry = 0.
Solution.
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14.5 Supplement

Theorem 14.5.1 (Cauchy’s Mean-Value Theorem) If f and g are both
continuous on [a, b] and differentiable on (a, b), then there exists a c ∈ (a, b)
such that

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Proof: Let F : [a, b] −→ R be defined by

F (x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Then F is continuous on [a, b] and differentiable on (a, b). It is easy to check
that F (a) = F (b). By Rolle’s Theorem (Theorem 12.5.2), there is c ∈ (a, b)
such that F ′(c) = 0. ¤

Note that Theorem 12.5.3 follows from the above one by taking g(x) = x.

Lemma 14.5.2 If f is differentiable then f ′ satisfies the Mean Value Theorem,
i.e. if a, b ∈ U , f ′(a) < γ < f ′(b), then f ′(c) = γ for some c ∈ (a, b).

Proof: Since f ′(a) < γ < f ′(b), there is an h > 0 such that

f(a + h)− f(a)
h

< γ <
f(b + h)− f(b)

h
.

Fix such an h > 0. The function x 7→ f(x+h)−f(x)
h is continuous on (a, b). By

the Intermediate Value Theorem (Theorem 11.3.3) there is an x = x(h) such
that f(x+h)−f(x)

h = γ. Also, by Lemma 12.5.3, there is a c ∈ (x, x+h) such that
f(x+h)−f(x)

h = f ′(c). Thus γ = f ′(c). ¤

Theorem 14.5.3 If f ′ exists and is bounded on some interval I, then f is
uniformly continuous on I.

14.5.1 Lipschitz Condition

14.5.2 A Metric On Rn

Lemma 14.5.4 i. For i = 1, . . . , n, let (Xi, δi) be a metric space. Let X =
X1 × . . . × Xn. Let p > 1 be any real number. For x, y ∈ X let dp(x, y) =
(
∑n

i=1 δi(xi, yi)p)1/p. Then (X, dp) is a metric space.
ii. Let everything be as above. Set d∞(x, y) = max{δi(xi, yi) : i = 1, . . . , n}.

Then (X, d∞) is a metric space.

Proof: i. Setting ai = δi(x, y), bi = δi(x, z), ci = δi(y, z), it is enough to show
that if bi, ci ≥ 0, then

(
n∑

i=1

(bi + ci)p)1/p ≤ (
n∑

i=1

bp
i )

1/p + (
n∑

i=1

cp
i )

1/p.
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Taking p-th powers, we need to show that

n∑

i=1

(bi + ci)p ≤ ((
n∑

i=1

bp
i )

1/p + (
n∑

i=1

cp
i )

1/p)p.

We first compute the left hand side:

n∑

i=1

(bi + ci)p =
n∑

i=1

p∑

j=0

(
p
j

)
bj
i c

p−j
i =

n∑

i=1

bp
i +

n∑

i=1

cp
i +

p−1∑

j=1

(
p
j

) n∑

i=1

bj
i c

p−j
i .

We now compute the right hand side:

((
n∑

i=1

bp
i )

1/p + (
n∑

i=1

cp
i )

1/p)p =
p∑

j=0

(
p
j

)
(

n∑

i=1

bp
i )

j/p(
n∑

i=1

cp
i )

(p−j)/p =

=
n∑

i=1

bp
i +

n∑

i=1

cp
i +

p−1∑

j=1

(
p
j

)
(

n∑

i=1

bp
i )

j/p(
n∑

i=1

cp
i )

(p−j)/p.

Simplifying, we see that we have to show that

n∑

i=1

bj
i c

p−j
i ≤ (

n∑

i=1

bp
i )

j/p(
n∑

i=1

cp
i )

(p−j)/p

for all j = 1, . . . , p − 1. Setting r = bp
i , s = cp

i , α = j/p and β = (p − j)/p, we
see that it is enough to show that

n∑

i=1

rα
i sβ

i ≤ (
n∑

i=1

r)α(
n∑

i=1

s)β

if 0 ≤ ri, 0 ≤ si, 0 < α, β < 1 and α + β = 1.
We may assume that some ri 6= 0 and some sj 6= 0, thus

∑n
i=1 ri and

∑n
i=1 ri

are nonzero. Dividing both sides by (
∑n

i=1 ri)α(
∑n

i=1 ri)β , we see that we have
to show that

n∑

i=1

(
ri∑n
i=1 ri

)α(
si∑n
i=1 si

)β ≤ 1.

By setting
ui =

ri∑n
i=1 ri

and vi =
ri∑n

i=1 si
,

we see that we have to prove that

n∑

i=1

uα
i vβ

i = 1

if 0 ≤ ui, 0 ≤ vi,
∑n

i=1 ui =
∑n

i=1 vi = 1, 0 < α, β < 1 and α + β = 1.
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Set f(α) =
∑n

i=1 uα
i vβ

i = 1. Note that f(0) = f(1) = 1. Then an easy
calculation shows that

f ′(α) =
∑

i = 1n(ln(ui)uα
i v1−β

i −ln(vi)uα
i v1−β

i ) =
∑

i = 1nuα
i v1−β

i (ln(ui)−ln(vi)),

and that

f ′′(α) =
n∑

i=1

(ln(ui)− ln(vi))2uα
i v1−β

i ).

Thus f ′′ is concave up, hence f(α) ≤ f(0) = f(1) = 1 for all α ∈ (0, 1). ¤
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Chapter 15

Riemann Integral

15.1 Definition and Examples

15.2 Fundamental Theorem of Calculus

15.3 How To Integrate?

15.3.1 Power Series

How to integrate polynomials and power series...

15.3.2 Trigonometric Functions

Exercises.

i. Let In =
∫ π/2

0
sinn x dx. Show that

I2n =
1 · 3 · 5 . . . (2n− 1)

2 · 4 · 6 . . . (2n)
π

2

and that

I2n+1 =
2 · 4 · 6 . . . (2n)

1 · 3 · 5 . . . (2n + 1)
.

ii. [Wallis’ Formula] Let In be as above. Show that (In)n is a decreasing se-
quence. (Hint: (sinn x)n is a decreasing sequence of functions). Conclude
that

(2 · 4 · 6 . . . (2n))2

(3 · 5 . . . (2n− 1))2(2n + 1)
<

π

2
<

(2 · 4 · 6 . . . (2n− 2))2(2n)
(3 · 5 . . . (2n− 1))2

.

Conclude that
π

2
= lim

n→∞
(2 · 4 · 6 . . . (2n))2

(3 · 5 . . . (2n− 1))22n

155
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and that

π = lim
n→∞

(2 · 4 · 6 . . . (2n))4

n((2n)!)2
= lim

n→∞
24n(n!)4

n((2n)!)2
.

The last equality is known as Wallis’ formula.

15.4 Integration of Complex Function

Define
∫ b

a
f(t, z)dt.

15.4.1 Functions Defined by Integration

Theorem 15.4.1 . Let f(z, t) be a function where z ∈ A ⊆ C and t ∈ I, an
interval of R. Suppose

∫
I
f(z, t)dt exists for all z ∈ A. Then z 7→ ∫

I
f(z, t)dt is

a continuous function from A into C.

15.5 Applications

15.5.1 Application to Series

Theorem 15.5.1 (Integral Test, Cauchy) Let f be a nonincreasing positive
real valued function which is defined for x ≥ 1. Then the series

∑∞
n=1 f(n)

converges if and only if
∫∞
1

f(x)dx exists. Also,

∫ ∞

1

f(x)dx ≤
∞∑

n=1

f(n) ≤ f(1) +
∫ n

1

f(x)dx

and ∞∑
n=1

f(n) =
n∑

i=1

f(i) + Rn

where
∫∞

n+1
f(x)dx ≤ Rn ≤

∫∞
n

f(x)dx.

Proof: For n < m we have,

∫ m

n

f(x)dx ≤ f(n) + f(n + 1) + . . . + f(m− 1) ≤
∫ m−1

n−1

f(x)dx.

This proves the first part. The second part follows by taking n = 1 and 2 and
sending m to infinity in the above inequalities. The third part is easy as well.
¤

Assume now the series diverges but that f(x) converges to 0 when x goes to
infinity. Let m = m(n) ≥ n be any integer valued function. Then

0 ≤ f(n)+f(n+1)+ . . .+f(m−1)−
∫ m

n

f(x)dx ≤
∫ n

n−1

f(x)dx−
∫ m

m−1

f(x)dx,
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so that when n tends to infinity, we get,

lim
n→∞

(
f(n) + f(n + 1) + . . . + f(m− 1)−

∫ m

n

f(x)dx

)
= 0.

For example if we take m = 2n and f(x) = 1/x,

lim
n→∞

(
1
n

+
1

1 + n
+ . . . +

1
2n− 1

−
∫ 2n

n

dx/x

)
= 0.

Since
∫ 2n

n
dx/x = ln(2n)− ln(n) = ln(2), we have,

lim
n→∞

(
1
n

+
1

1 + n
+ . . . +

1
2n

)
= ln(2).

More generally, let

σn = f(1) + f(2) + . . . + f(n)−
∫ n

1

f(x)dx.

For m > n we have

σn − σm =
∫ m

n

f(x)dx− (f(n + 1) + . . . + f(m)).

By the theorem this number is nonnegative (replace n and m by n+1 and m+1
respectively) and

|σn − σm| = σn − σm =
∫ m

n

f(x)dx− (f(n) + . . . + f(m− 1)) + f(n) ≤ f(n).

Since limn→∞ f(n) = 0, the double sequence (σm − σn)m,n converges to 0.
Therefore the sequence (σn)n has a limit, say cf . Thus

lim
n→∞

(
n∑

i=1

f(i)−
∫ n

1

f(x)dx

)
= cf .

In particular if f(x) = 1/x, we see that

lim
n→∞

(
1 +

1
2

+ . . . + . . . +
1
n
− ln(n)

)

exists. This constant is called Euler’s constant or Euler-Mascheroni con-
stant. Since the sequence is increasing, the Euler constant is a positive number.

We can now state the following result:

Theorem 15.5.2 Let f(x) be a positive real valued nonincreasing function de-
fined for x ≥ 1 and which converges to 0 as x goes to infinity. Then

lim
n→∞

(
n∑

i=1

f(i)−
∫ n

1

f(x)dx

)
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exists. In particular

lim
n→∞

(
1 +

1
2

+ . . . + . . . +
1
n
− ln(n)

)
= 0.57721 . . .

exists.

Corollary 15.5.3 The series
∑∞

n=1
1

n1+ε converges if ε > 0 and diverges if
ε ≤ 0.

Proof: Follows from Theorem 15.5.1. ¤
Corollary 15.5.4 If limn→∞

(
1 + ln |un|

ln n

)
< 0 then the series

∑
n un converges

absolutely. If limn→∞
(
1 + ln |un|

ln n

)
< 0 then the series

∑
n un converges abso-

lutely.

Proof: Follows from Corollary 15.5.3. ¤

Theorem 15.5.5 (Raabe and Duhamel) If limn
(∣∣∣ un

un+1

∣∣∣− 1
)

> 1, then the

series
∑

n un converges absolutely. If un > 0 and limn
(∣∣∣ un

un+1

∣∣∣− 1
)

< 1 then
the series

∑
n un diverges.

Proof: In the first case, there is an ε > 0 such that n
(∣∣∣ un

un+1

∣∣∣− 1
)

> 1 + ε

eventually. Thus
∣∣∣ un

un+1

∣∣∣ > 1 + 1+ε
n eventually. Let 0 < δ < ε. Then 1 + 1+ε

n >

(1 + 1/n)δ+1 eventually. Thus
∣∣∣∣
un+1

un

∣∣∣∣ <

(
n

n + 1

)δ+1

=
1/(n + 1)δ+1

1/nδ+1

eventually. Since
∑

n 1/n1+δ converges, the result follows from Corollary 7.2.6.

Assume now we are in the second case. Then n
(∣∣∣ vn

vn−1

∣∣∣− 1
)

< 1 eventually.

Thus vn−1
vn

> 1/(n+1)
1/n eventually. Since

∑
n 1/n diverges, the second part follows

from Theorem 7.2.6 as well. ¤

Example. Consider the series

1 + αz +
α(α− 1)

2!
z2 + . . .

α(α− 1) . . . (α− n + 1)
n!

zn + . . .

where α ∈ C. The series converges for |z| < 1 according to d’Alembert (Corol-
lary 7.5.2). Suppose now |z| = 1. If un is the term of zn, then

∣∣∣∣
un

un+1

∣∣∣∣ =
∣∣∣∣
n + 1
α− n

∣∣∣∣ .

Thus when |z| = 1, by Raabe and Duhamel’s Convergence Rule, the series
converges absolutely for <(α) > 0, because a simple computation shows that
n

(∣∣∣ un

un−1

∣∣∣− 1
)

converges to 1 + <(α).

If α ∈ R<0 and x = −1 the series diverges as it can be checked as above.
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Exercises.

i. Show that the Euler constant is < 1.

15.5.2 Stirling Formula

We will try to find an approximation for n!.
Our first try:

Lemma 15.5.6 limn→∞
ln(n!)

n ln n−n = limn→∞
ln(n!)
n ln n

e
= 1.

Proof: Note that ln(n!) =
∑n

i=1 ln i. By the integration method, we have

n ln n− n < n ln n− n + 1 =
∫ n

1
ln x dx

≤ ∑n
i=1 ln i ≤ ∫ n+1

1
ln x dx = (n + 1) ln(n + 1)− n;

furthermore the quotient of the first term to the last term converges to 1:

n ln n−n
(n+1] ln(n+1)−n = ln n−1

(1+1/n) ln(n+1)−1 ∼ ln n−1
ln(n+1)−1

= 1−1 ln n
ln(n+1)/ ln n−1/ ln n ∼ ln n

ln(n+1) ∼ 1/n
1/n+1 ∼ 1.

This gives the result. ¤

Theorem 15.5.7 limn→∞ n!
(n/e)n

√
2πn

= 1.

We can obtain a better approximation:

Theorem 15.5.8 n! = (n/e)n
√

2πn(1+1/12n+f(n)/n2) where f is a function
that is bounded.

The proof will show that we can extend the approximation. But this will be
done by another method in the next subsection.

Question: Does limn→∞ f(n) exist?

Proof: Consider the sequence

sn = ln(n!)− n(lnn− 1) = ln(n!)− n ln
n

e
.

For n > 1, we have,

un := sn − sn−1 = 1 + (n− 1) ln(1− 1/n)
= 1− (n− 1)(1/n + 1/2n2 + 1/3n3 + . . .)
=

∑∞
i=1

1
i(i+1)ni = 1/2n + 1/6n2 + g(n)/n3

where g(n) =
∑∞

i=3 1/i(i+1)ni−3 is a positive valued function whose limit when
n goes to infinity is finite (see Exercise i, page 138).

We now introduce

(1) Sn := sn − 1
2

ln n = ln(n!)− n(ln n− 1)− 1
2

ln n
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(See Exercise i, page 161). Then

vn := Sn − Sn−1 = un + 1
2 ln n−1

n
= 1/2n + 1/6n2 + g(n)/n3 + 1

2 ln(1− 1/n)
= 1/2n + 1/6n2 + g(n)/n3 − 1

2 (1/n + 1/2n2 + 1/3n3 + . . .)
= (1/6n2 − 1/4n2) + g(n)−(1/3+1/4n+1/5n2+...)/2

n3

= −1/12n2 + h(n)/n3

where limn→∞ h(n) is a constant. Setting v1 = 1, we have

Sn =
n∑

i=1

vi = − 1
12

n∑

i=1

1/i2 +
n∑

i=2

h(i)
i3

.

Thus the sequence (Sn)n, i.e. the series
∑∞

i=1 vi has a limit say S. Then Sn =
S −Rn where

Rn =
∞∑

i=n+1

vi = − 1
12

∞∑

i=n+1

1
i2

+
∞∑

i=n+1

h(i)
i3

.

Now we have two remarks: First we show that n2
∑∞

i=n+1
h(i)
i3 converges to a

finite number when n goes to infinity. Since (h(i))i is bounded, we may suppose
h(i) = 1. By the integral test, we have,

n2
∞∑

i=n+1

1
i3

= n2
∞∑

i=1

1
(n + i)3

< n2

∫ ∞

2

1
(n + x)3

dx =
n2

2(n + 2)2
,

which shows what we want. Thus we may replace
∑∞

i=n+1
h(i)
i3 in the formula

above by t(n)/n2 where t(n) is a function with a finite limit:

(2) Rn =
∞∑

i=n+1

vi = − 1
12

∞∑

i=n+1

1
i2

+
t(n)
n2

.

Here is our second remark:

1
i
− 1

i + 1
=

1
i(i + 1)

<
1
i2

<
1

i(i− 1)
=

1
i− 1

− 1
i
,

so that

(3)
1

n + 1
=

∞∑

i=n+1

(
1
i
− 1

i + 1

)
<

∞∑

i=n+1

1
i2

<

∞∑

i=n+1

(
1

i− 1
− 1

i

)
=

1
n

.

Let

k(n) =
n2

12

(
1
n
−

∞∑

i=n+1

1
i2

)
.
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By (3), 0 < k(n) < n2

12 ( 1
n − 1

n+1 ) = 1
12(1+1/n) < 1. Thus k(n) remains bounded.

(Question: Does it have a limit?) Note that

(4)
∞∑

i=n+1

1
i2

=
1
n
− 12k(n)

n2
.

Now by (1), (2) and (4),

ln(n!)
(1)
= Sn + n ln

(
n
e

)
+ 1

2 ln n = S −Rn + n ln
(

n
e

)
+ 1

2 ln n
(2)
= S + 1

12

∑∞
i=n+1 1/i2 − t(n)

n2 + n ln
(

n
e

)
+ 1

2 ln n
(4)
= S + 1

12n − k(n)
n2 − t(n)

n2 + n ln
(

n
e

)
+ 1

2 ln n.

By exponentiating and using ex = 1 + x + x2/2! + . . ., we get,

n! = eS
(n

e

)n√
n

(
1 +

1
12n

+
f(n)
n2

)

for some f(n) that remains bounded when n goes to infinity. It remains to
evaluate A := eS and we use Wallis formula for this. We replace n! by the
formula found above in Wallis formula, which we recall from page 155:

π = lim
n→∞

24n(n!)4

n((2n)!)2
.

We easily find A =
√

2π. Thus

n! =
√

2πn
(n

e

)n
(

1 +
1

12n
+

f(n)
n2

)
.

Exercises.

i. Show that sn− 1
2 ln n can be made as close to a constant. (Solution: We

continue with the notation of the proof of the theorem above. Note that
sn−1 = sn−s1 =

∑n
i=2 ui =

∑n
i=2(1/2i+1/6i2+g(i)/i3) = 1

2

∑n
i=2 1/i+

1
6

∑n
i=2 1/i2 +

∑n
i=2 g(i)/i3. Since g(i) is bounded and since

∑∞
i=2 1/i2

and
∑∞

i=2 1/i3 converge, for n large enough 1
6

∑n
i=2 1/i2 +

∑n
i=2 g(i)/i3

can be made as close to a constant as we wish to. On the other hand∑n
i=2 1/i =

∑n
i=1 1/i − 1, can be made as close to ln n − 1 as we wish

to (Theorem 15.5.2). Thus sn can be made close to A + 1
2 ln n for some

constant A.)

15.5.3 Euler’s Γ Function

Consider the integral

Γ(z) =
∫ ∞

0

e−ttz−1dt
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where z ∈ C (but the reader may opt to take z ∈ R) and, for 0 < a < b, the
function

F (z) = Fa,b(z) =
∫ b

a

e−ttz−1dt,

which is a continuous function of z by Theorem 15.4.1.
Fixing a > 0 and regarding this as a family of functions parametrized by

b > a, we claim that for z varying over a set whose real part is bounded above,
F (z) converges uniformly when b →∞. We have to show that for all ε > 0 there
is b0 such that for all b, b′ > b0 and all z in the right domain,

∣∣∣
∫ b′

b
e−ttz−1dt

∣∣∣ < ε.
Indeed, let ε > 0 and A be the upper bound for the real part of z. Let b0 be
such that tA−1 < et/2 for t > b0 and e−b0/2 < ε/4. Then we have

|e−ttz−1| = e−ttx−1|tiy| = e−ttx−1|eiy ln t| = e−ttx−1 ≤ e−ttA−1 < e−t/2,

so that for b, b′ > b0,
∣∣∣
∫ b′

b
e−ttz−1dt

∣∣∣ ≤ ∫ b′

b

∣∣e−ttz−1
∣∣ dt <

∫ b′

b
e−t/2dt

= −2e−b′/2 + 2e−b/2 < 4e−b0/2 < ε.

It follows that ∫ ∞

a

e−ttz−1dt

is a continuous function of z for a > 0.
Now we fix b and view F (z) as a family of functions parametrized by 0 <

a < b. We claim that the family F (z) converges uniformly when a → 0 on any
set in which the real part of z is bounded below. For this we have to show that
for any ε > 0 there is a δ > 0 such that for all 0 < a < a′ < δ and for all z ∈ C
in the right domain (the real part above some fixed A > 0),

∣∣∣
∫ a′

a
e−ttz−1dt

∣∣∣ < ε.
Indeed let ε > 0. Let A be the lower bound for the real part of z. For t ∈ [0, 1),
we have

|e−ttz−1| = e−ttx−1 < tx−1 ≤ tA−1.

Let δ < 1 be such that δA < εA/2. Then for all 0 < a < a′ < δ < 1,
∣∣∣
∫ a′

a
e−ttz−1dt

∣∣∣ ≤ ∫ a′

a

∣∣e−ttz−1
∣∣ dt ≤ ∫ a′

a
tA−1dt

= a′A/A− aA/A < 2a′A/A < 2δA/A < ε.

Thus ∫ b

0

e−ttz−1dt

is a continuous function of z for a > 0.
It follows from above that Γ(z) is well-defined and is a continuous function

of z on the domain {z ∈ C : <(z) > 0}.
By integrating by parts, we have (du = e−tdt, v = tz),

Γ(z + 1) =
∫∞
0

e−ttzdt = [−e−t]∞0 − ∫∞
0

(−e−t)ztz−1dt
= [−1 + 1] + z

∫∞
0

ettz−1dt = zΓ(z).
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We deduce that for n ∈ N \ {0},

Γ(z + n) = (z + n− 1)(z + n− 2) · · · zΓ(z).

On the other hand Γ(1) =
∫∞
0

e−tdt = [−e−t]∞0 = 1. Thus, setting z = 1 above
we get,

Γ(n + 1) = n!

We proved the following:

Theorem 15.5.9 The function

Γ(z) =
∫ ∞

0

e−ttz−1dt

where z ∈ C is well-defined and continuous for <(z) > 0. Furthermore

Γ(z + n) = (z + n− 1)(z + n− 2) · · · zΓ(z)

and Γ(n + 1) = n!

The function Γ is called Euler’s Gamma function. We will soon extend
its domain of definition from <(z) ∈ R>0 to <(z) ∈ R \ (−N). For this purpose
we write

Γ(z) =
∫ 1

0

e−ttz−1dt +
∫ ∞

1

e−ttz−1dt.

As we have seen above the second part is a continuous function of z for all
z ∈ C. We deal with the first one. Let us replace e−t by its Taylor series∑∞

n=0(−1)ntn/n!. This series converges uniformly for t ∈ [0, 1], thus also when
we multiply it with tz−1, hence we can integrate it term per term to get:
∫ 1

0
e−ttz−1dt =

∫ 1

0
(
∑∞

n=0(−1)ntn+z−1/n!)dt =
∑∞

n=0[
∫ 1

0
(−1)ntn+z−1/n!]dt

=
∑∞

n=0[(−1)ntn+z/n!(n + z)]10
=

∑∞
n=0(−1)n/n!(n + z)

Such a series converges uniformly on every compact subset (≡ closed bounded
subset) not containing the nonpositive integers according to Weierstrass M-test
(Theorem 9.3.3), because then |n + z| > δ > 0 for some δ and so |(−1)n/n!(n +
z)| = 1/n!|n + z| < 1/δn! and

∑∞
n=0 1/δn! converges. Thus

Γ(z) =
∞∑

n=0

(−1)n/n!(n + z) +
∫ ∞

1

e−ttz−1dt.

But this new expression is well-defined and continuous for all z ∈ C \ (−N). We
still call it Γ(z).

Now we check that the functional equality

Γ(z + n) = (z + n− 1)(z + n− 2) · · · zΓ(z)
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holds for the new definition for all z ∈ C \ (−N). It is enough to show it for
n = 1. Indeed,

Γ(z + 1) =
∑∞

n=0
(−1)n

n!(n+z+1) +
∫∞
1

e−ttzdt

=
∑∞

n=0
(−1)n((n+z+1)−z)

(n+1)!(n+z+1) +
∫∞
1

e−ttzdt

=
∑∞

n=0
(−1)n((n+z+1)−z)

(n+1)!(n+z+1) + [−e−ttz]∞1 + z
∫∞
1

e−ttz−1dt

=
∑∞

n=0
(−1)n

(n+1)! + z
∑∞

n=1
(−1)n

n!(n+z) + e−1 + z
∫∞
1

e−ttz−1dt

= z
∑∞

n=1
(−1)n

n!(n+z) + z
∫∞
1

e−ttz−1dt = zΓ(z).



Chapter 16

Supplements

16.1 Stone-Weierstrass Theorem

Theorem 16.1.1 Let K be a compact metric space. Let A ≤ C(K) be a subal-
gebra. Suppose

1) A separates points.
2) A contains the constant functions.
Then A is dense in C(K) with respect to the uniform norm.

Ex: Find maximal ideals of C([a, b]). Answer: Only the expected ones.
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Chapter 17

Fourier Series

17.1 Hilbert Spaces

Let H be a real or complex vector space with a scalar product ( , ). Then
|x| =

√
(x, x) defines a normed vector space. Suppose H is separable (has

a countable dense subset) and complete. H is called a separable Hilbert
space. Choose a countable dense subset, then a countable maximal linearly
independent subset, then orthogonalize this subset by Gram-Schmidt.

Theorem 17.1.1 Let H be a Hilbert space and M ≤ H be a closed subspace.
Then there is a unique y ∈ M such that |x− y| = d(x,M).

Theorem 17.1.2 Any Hilbert space is isomorphic to `2.

17.2 Fourier Series

Theorem 17.2.1 The function

d2(f, g) = |f − g|2 =

√
1
2π

∫ π

−π

|f(x)− g(x)|2dx

defines a pseudometric on the set of integrable functions on the interval [−π, π].

Theorem 17.2.2 Let f be an integrable function on [−π, π]. Let φn(x) =
exp(inx) and

cn =
1
2π

∫ π

−π

f(x) exp(−inx)dx = 〈f, φn〉.

Let sn(f ; x) =
∑N
−N cnφn(x). Then

lim
N→∞

(
π∑
−π

|f(x)− sN (f ; x)|2dx

)
= 0.
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Furthermore
〈φm, φn〉 = δn,m

for all n, m ∈ Z

The L2-norm: |f |2 =
∫ π

−π
|f(x)|2dx.

Lemma 17.2.3 f bounded integrable. ε > 0. Then there is a polygonal function
p on [−π, π] such |f − p|2 < ε.

Proof: Trivial. ¤

Theorem 17.2.4 Let f and g be two integrable functions on [−π, pi]. Let
f(x) ∼ ∑∞

−∞ cnφn and g ∼ ∑∞
−∞ dnφn be its Fourier series. Then

〈f, g〉 =
∞∑

n=infty

cndn

and

|f |2 =
∞∑

n=infty

|cn|2.

Lemma 17.2.5 If f is a bounded function on [−π, π] which is integrable then
for all ε > 0 there is an h ∈ C([−π, π]) such that |f − h|2 < ε.

R = Integrable functions.
C([−π, π]) = Continuous functions.
F = Finite linear combinations of φn = 〈φn : n ∈ Z〉.
sN (f ;x) ∈ FN = 〈φn : −N ≤ n ≤ N〉.
L2 = {f :

∫ π

−π
|f |2dx < ∞}.

It tN ∈ FN then |f − sN | ≤ |f − tN |.



Chapter 18

Topological Spaces
(continued)

18.1 Product Topology

For each i in an index set I, let Xi be a topological space. Let X =
∏

i∈I Xi.
Consider the smallest topology on X that makes all the projection maps πi :
X −→ Xi continuous. This is called the product topology.

Exercises.

i. The open sets

{x ∈
∏

i∈I

Xi : xi1 ∈ Ui1 , . . . , xin ∈ Uin}

(n ∈ N and Uij ⊆ Xij open) form a base of the topology.

ii. If the topological spaces Xi are discrete, then the open sets

{x ∈
∏

i∈I

Xi : xi1 = ai1 , . . . , xin = ain}

(n ∈ N and aij ∈ Xij ) form a base of the product topology.

iii. If I = N and the topological spaces Xi are discrete, then the open sets

{x ∈
∏

i∈I

Xi : x1 = a1, . . . , xn = an}

(n ∈ N and ai ∈ Xi) form a base of the product topology.

iv. If Xi = R (with the usual topology), then the open sets

{x ∈
∏

i∈I

Xi : xi1 ∈ (ai1 , bi1), . . . , xin ∈ (ain , bi1)}
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(n ∈ N and aij
, bij

∈ Xij
) form a base of the product topology.

v. Assume I is finite and each Xi is a metric space. Show that the product
topology on

∏
I Xi is given by any of the product metrics.

vi. Suppose I = ω = N and Xi = N has the discrete topology. Then, viewing∏
ω Xi as the set of function from N into N, we have:

a.
∏

ω Xi is metrisable by the following metric d(x, y) = 1/(n + 1) if n is
the smallest integer for which xn 6= yn.

b. The set of injective functions from ω into ω is a closed subset of
∏

ω Xi.

c. Neither the set of surjective functions nor Sym(ω) is a closed subset of∏
ω Xi.

Problem 18.1.1 What is the closure of Sym(ω) in
∏

ω ω?

Problem 18.1.2 Let Symf (ω) be the set of permutations of Sym(ω) that move
only finitely many elements of ω. Clearly Symf (ω) is a subgroup of Sym(ω).
What is its closure in Sym(ω)?

Hausdorff Spaces. Let X be a topological space. If for any two distinct
points x and y of X there are disjoint open sets Ux and Uy containing x and y,
then we say that X is Hausdorff.

The coarsest topology on a set with at least two points is not Hausdorff.

Proposition 18.1.3 A metric space is Hausdorff.

Exercises.

i. Assume that each Xi is a Hausdorff space. Show that the product topology∏
i∈I Xi is Hausdorff.

18.2 Homeomorphisms

The notion of isomorphism between topological spaces is defined as follows: Two
topological spaces X and Y are called homeomorphic (i.e. isomorphic) if there
is continuous bijection f : X −→ Y whose inverse is also continuous. Such a
map is called a homeomorphism.

18.3 Sequences in Topological Spaces

Let X be a set, (xn)n a sequence in X and x ∈ X. We say that x is a limit
of the sequence (xn)n if for any open subset U containing x, there is a natural
number N such that xn ∈ U whenever n > N .

Lemma 18.3.1 Let A ⊆ X be closed, (an)n a sequence from A and x a limit
of (an)n. Then x ∈ A.
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Examples. 1. If the sequence is eventually constant, i.e. if there is an x
and a natural number N such that xn = x for n > N , then x is a limit of the
sequence (xn)n.

2. Let X have the coarsest topology. Then any point of X is a limit of any
sequence of X.

3. Let X have the discrete topology. Then a sequence has a limit if and only
if the sequence is eventually constant, i.e. if there is an x and a natural number
N such that xn = x for n > N .

Proposition 18.3.2 In a Hausdorff topological space a sequence has at most
one limit.

In this case we say that (xn)n is a converging sequence and we write limn→∞ xn =
x.

Proposition 18.3.3 Let X and Y be two topological spaces. Let f : X −→ Y .
Show that f is continuous if and only if for any convergent sequence (xn)n of
X, (f(xn))n is convergent and f(limn→∞ xn) = f(limn→∞ f(xn)).

18.4 Sequential Compactness

Theorem 18.4.1 A metric space is compact if and only if it is sequentially
compact.

The converse fails:

Example.

18.5 Supplements

18.5.1 T0-Identification

A topological space X is called T0 if for any distinct x, y ∈ X there is an open
subset that contains only one of the two points.

Lemma 18.5.1 A topological space X id T0 if and only if for any two distinct
x and y in X, {x} 6= {x}.
Proof: Left as an exercise. ¤

In a topological space define x ∼ y if and only if {x} = {x}. This is
an equivalence relation. On X/ ∼ put the largest topology that makes the
projection map X −→ X/ ∼ continuous.

Proposition 18.5.2 X/ ∼ is a T0-topological space.

Proof: HW. ¤

Problem 1. Find the universal property of X/ ∼ that characterizes it.
Problem 2. Try to do the same with T1-spaces.
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Chapter 19

Exams

19.1 Midterm Math 121 (November 2002)

i. Which of the following are not vector spaces over R (with the componen-
twise addition and scalar multiplication) and why?

V1 = {(x, y, z) ∈ R3 : xy ≥ 0}
V2 = {(x, y, z) ∈ R3 : 3x− 2y + z = 0}
V3 = {(x, y, z) ∈ R3 : xyz ∈ Q}
V4 = {(x, y) ∈ R3 : x + y ≥ 0}
V5 = {(x, y) ∈ R2 : x2 + y2 = 0}
V6 = {(x, y) ∈ C2 : x2 + y2 = 0}

(2+2+2+2+2+5 pts.)

Answers. V1 is not a vector space because e.g. (−1, 0, 0) ∈ V1, (0,−1, 0) ∈
V2 but their sum (−1,−1, 0) 6∈ V1.

V2 is a vector space.

V3 is not a vector space because e.g. (1, 1, 1) ∈ V3, but
√

2(1, 1, 1) 6∈ V3.

V4 is not a vector space because e.g. (1, 2, 1) ∈ V4, but −(1, 2, 1) 6∈ V4.

V5 is a vector space because V5 = {(0, 0, 0)}.
V6 is not a vector space because e.g. (1, i) ∈ V6, (1,−i) ∈ V6, but their
sum (1, 0) 6∈ V6.

ii. On the set X = {2, 3 . . . , 100} define the relation x ≺ y by “x 6= y and x
divides y”.

a) Show that this defines a partial order on X. (3 pts.)

b) Is this a linear order? (2 pts.)

c) Find all the maximal and minimal elements of this poset. (5 pts.)

Answers. a) Yes, this is a partial order: Clearly x 6≺ x for any x. Since
division is transitive, ≺ is transitive as well. (The details are left).
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b) No, because 2 and 3 are not comparable.

c) The prime numbers are minimal elements. The maximal elements are
the numbers which are greater than 50. For example 53 is both minimal
and maximal.

iii. On R × R define the relation ≺ as follows (x, y) ≺ (x1, y1) by “either
y < y1, or y = y1 and x < x1”.

a) Show that this is a linear order. (5 pts.)

b) Does every subset of this linear order which has an upper bound has a
least upper bound? (5 pts.)

Answers. a) Yes!

b) No. For example the set R×{0} is bounded above by (0, 1) but it does
not have a least upper bound.

iv. For each n ∈ N, let an and bn be two real numbers. Assume that for each
n, an ≤ an+1 ≤ bn+1 ≤ bn. Show that ∩n∈N[an, bn] = [a, b] for some real
numbers a and b. (10 pts.)

Proof: Since the set {an : n ∈ N} is bounded above by b0, it has a least
upper bound, say a. Similarly the set {bn : n ∈ N} has a greatest lower
bound, say b. I claim that ∩n∈N[an, bn] = [a, b].

If x ≥ a, then x ≥ an for all n. Likewise, if x ≤ b, then x ≤ bn for all n.
Hence, if x ∈ [a, b], the x ∈ [an, bn] for all n.

Conversely, let x ∈ ∩n∈N[an, bn]. Then an ≤ x ≤ bn for all n. Thus x is
an upper bound for {an : n ∈ N} and a lower bound for {bn : n ∈ N}.
Hence a ≤ x ≤ b.

v. Show that for any natural number n and for any real number x ∈ [0, 1),

(1− x)n ≤ 1− nx +
n(n− 1)

2
x2.

(10 pts.)

Proof: We proceed by induction on n.

If n = 0, then both sides are equal to 1.

Suppose we know the result for n, i.e. suppose we know that for any real
number x ∈ [0, 1),

(1− x)n ≤ 1− nx +
n(n− 1)

2
x2.

We will prove that for any real number x ∈ [0, 1),

(1− x)n+1 ≤ 1− (n + 1)x +
(n + 1)n

2
x2.
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Let x ∈ [0, 1). Since (1 − x)n ≤ 1 − nx + n(n−1)
2 x2 and since 1 − x > 0,

multiplying by 1 − x both sides we get (1 − x)n+1 = (1 − x)n(1 − x) ≤
(1 − nx + n(n−1)

2 x2)(1− x) = 1− (n + 1)x + (n+1)n
2 x2 − n(n−1)

2 x3. Thus
(1−x)n+1 ≤ 1−(n+1)x+ (n+1)n

2 x2− n(n−1)
2 x3. Since x ≥ 0, (1−x)n+1 ≤

1− (n + 1)x + (n+1)n
2 x2 − n(n−1)

2 x3 ≤ 1− (n + 1)x + (n+1)n
2 x2.

vi. a) Show that for any complex number α there is a polynomial of the form
p(X) = X2 + aX + b ∈ R[X] such that p(α) = 0. (Note: a and b should
be real numbers). (10 pts.)

b) What can you say about a and b if α = u + iv for some u, v ∈ Z? (5
pts.)

Proof: a) Let α be a complex number. Then p(x) := (x − α)(x − α) =
x2 − (α + α)x + αα ∈ R[x] and it is easy to check that p(α) = 0.

b) It is clear that if α = u + iv for some u, v ∈ Z, then p(x) ∈ Z[x].

Second Proof of part a. Write α = u + iv where u and v are real
numbers. Then α2 = u2− v2 + 2uvi. Thus α2− 2uα = (u2− v2 + 2uvi)−
2u(u + iv) = −u2 − v2, so that α2 − 2uα + (u2 + b2) = 0. Hence α is a
root of the polynomial p(x) = x2 − 2ux + (u2 + b2) ∈ R[x].

Part b follows from this immediately.

vii. a) Show that for any α ∈ C there is a β ∈ C such that β2 = α. (15 pts.)

b) Show that for any α, β ∈ C there is an x ∈ C such that x2+αx+β = 0.
(10 pts.)

Proof: a. Let α = a + bi. We try to find β ∈ C such that β2 = α, i.e.
we try to find two real numbers x and y such that (x + iy)2 = a + bi. We
may assume that α 6= 0 (otherwise take β = 0). Thus a and b cannot be
both 0. After multiplying out, we see that this equation is equivalent to
the system

x2 − y2 = a
2xy = b

Since x = 0 implies a = 0 = y = b, x must be nonzero. Thus we have
y = b/2x and so the above system is equivalent to the following:

x2 − (b/2x)2 = a
y = b/2x

Equalizing the denominators in the first one, we get the following equiva-
lent system:

4x4 − 4ax2 − b2 = 0
y = b/2x

So now the problem is about the solvability of the first equation 4x4 −
4ax2 − b2 = 0. (Once we find x, which is necessarily nonzero, we set
y = b/2x). Setting z = x2, we see that the solvability of 4x4−4ax2−b2 = 0
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is equivalent to the question of whether 4z2−4az−b2 = 0 has a nonnegative
solution. Since the last one is a quadratic equation over R, it is easy to
answer this question. There are two possible solutions: z = a±√a2 + b2

and one of them z = a +
√

a2 + b2 is nonnegative (even if a is negative).
Thus we can take

x =
√

a +
√

a2 + b2

and
y = b/2x.

b. We first compute as follows: 0 = x2 + αx + β = x2 + αx + α2/4 + (β−
α2/4) = (x+α/2)2 +(β−α2/4). Thus if z ∈ C is such that z2 = α2/4−β
(by part a there is such a z), then x := z − α/2 is a root of x2 + αx + β.

viii. Suppose X and Y are two subsets of R that have least upper bounds.
Show that the set X + Y := {x + y : x ∈ X, y ∈ Y } has a least upper
bound and that sup(X + Y ) = sup(X) + sup(Y ). (15 pts.)

Proof: Let a and b be the least upper bounds of X and Y respectively.
Thus x ≤ a for all x ∈ X and y ≤ b for all y ∈ Y . It follows that
x + y ≤ a + b for all x ∈ X and y ∈ Y , meaning exactly that a + b is an
upper bound of X + Y . Now we show that a + b is the least upper bound
of X + Y . Let ε > 0 be any. We need to show that a + b − ε < x + y
for some x ∈ X and y ∈ Y . Since a is the least upper bound of X, there
is an x ∈ X such that a − ε/2 < x. Similarly there is a y ∈ Y such that
b− ε/2 < y. Summing these two, we get a + b− ε < x + y.

ix. We consider the subset X = {1/2n : n ∈ N} ∪ {0} of R together with the
usual metric, i.e. for x, y ∈ X, d(x, y) is defined to be |x− y|. Show that
the open subsets of X are the cofinite subsets1 of X and the ones that do
not contain 0. (20 pts.)

Proof: We first show that the singleton set {1/2n} is an open subset of X.
This is clear because B(1/2n, 1/2n+1) = {1/2n}. It follows that any subset
of X that does not contain 0 is open. Now let U be any cofinite subset of
X. We proceed to show that U is open. If 0 6∈ U , then we are done by the
preceding. Assume 0 ∈ U . Since U is cofinite, there is a natural number
n◦ such that for all n ≥ n◦, 1/2n ∈ U , i.e. B(0, 1/2n◦) ⊆ U . Now U is
the union of B(0, 1/2n◦) and of a finite subset not containing 0. Thus U
is open.

For the converse, we first show that a nonempty open ball is of the form
described in the statement of the question. If the center of the ball is 0,
then the ball is cofinite by the Archimedean property. If the center of the
ball is not 0, then either the ball does not contain 0 or else it does contain
0, in which case the ball must be cofinite.

To finish the proof, we must show that an arbitrary union of open balls
each of which does not contain 0 cannot contain 0. But this is clear!

1A subset Y of X is called cofinite if X \ Y is finite.
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19.2 Final Math 121 (January 2003)

Justify all your answers. A nonjustified answer will not receive any grade what-
soever, even if the answer is correct. DO NOT use symbols such as ∀, ∃, ⇒.
Make full sentences with correct punctuation. You may write in Turkish or in
English.

i. Let (an)n be a convergent sequence of real numbers.

a. Does the sequence (a2n)n converge necessarily? (2 pts.)

Since (a2n)n is a subsequence of the converging sequence (an)n, both se-
quences converge to the same limit.

Remarks. We have seen in class that a subsequence of a converging
sequence converges.

Contrary to what some of you think, a2n 6= 2an!

b. Assume an 6= 0 for all n. Does the sequence (an/an+1)n converge
necessarily? (2 pts.)

No, the sequence (an/an+1)n may not converge if limn→∞ an = 0. For
example, choose

an =
{

1/n if n is even
1/n2 if n is odd

Clearly limn→∞ an = 0, but

an

an+1
=





(n+1)2

n if n is even

n+1
n2 if n is odd

And the subsequence (n+1)2

n diverges to ∞, although the subsequence n+1
n2

converges to 0.

On the other hand, if the limit of the sequence (an)n is nonzero, say `,
then the sequence (an/an+1)n converges to 1 because limn→∞ an/an+1 =
limn→∞ an/ limn→∞ an+1 = `/` = 1. Note that the last part uses the fact
that ` is nonzero.

ii. Find the following limits and prove your result using only the definition.
(30 pts.)

a. limn→∞ 2n−5
5n+2 .

We claim that the limit is 2/5. Let ε > 0. Since R is Archimedean, there
is an N such that 2 < εN . Now for n > N , | 2n−5

5n+2 − 2
5 | = 29

5(5n+2) < 29
25n <

2/n < 2/N < ε.

b. limn→∞ 2n2−5
−5n+2 .

We claim that the limit is −∞. For this it is enough to prove that
limn→∞ 2n2−5

5n−2 = ∞. Let A be any real number. Let N = max(5A, 2).
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For n > N we have 2n2−5
5n−2 > 2n2−5

5n > 2n2−n2

5n = n2

5n = n
5 > N

5 ≥ A. This

proves that limn→∞ 2n2−5
5n−2 = ∞.

c. limn→∞ 2n2−5
n3+2 .

We claim that the limit is 0. Let ε > 0. Let N1 be such that 2 > εN1

(Archimedean property of R). Let N = max(1, N). Then for all n > N ,
∣∣∣∣
2n2 − 5
n3 + 2

∣∣∣∣ =
2n2 − 5
n3 + 2

<
2n2

n3 + 2
≤ 2n2

n3
=

2
n

<
2
N

< ε.

Note that the first equality is valid because n3 − 5 ≥ 0, the second in-
equality is valid because n3 + 2 > 0.

iii. Find (16 pts. Justify your answers).

a. limn→∞(1/2 + 1/n)n.

Note that for n ≥ 3, 0 < 1/2+1/n ≤ 1/2+1/3 = 5/6. Thus the sequence
((1/2+1/n)n)n is eventually squeezed between the zero constant sequence
and the sequence ((5/6)n)n. Since limn→∞(5/6)n = 0 (because 5/6 < 1),
limn→∞(1/2 + 1/n)n = 0.

b. limn→∞(3/2− 7/n)n.

Since 3/2 > 1 and limn→∞ 7/n = 0, there is an N such that 7/N <
1/2 = 3/2− 1. In fact, it is enough to take N = 15. Then for all n ≥ N ,
3/2−7/n ≥ 3/2−7/N > 1 and so (3/2−7/n)n ≥ (3/2−7/N)n. Therefore
the sequence ((3/2−7/n)n)n is greater than the sequence ((3/2−7/N)n)n.
Since 3/2− 7/N > 1, the sequence ((3/2− 7/N)n)n diverge to ∞. Hence
limn→∞(3/2− 7/n)n = ∞.

iv. Find limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

. (10 pts. Justify your answer).

Assume n > 5. Then we have, n3−n−5 > n3−2n > n3−n3/2 = n3/2 > 0.
Therefore,

∣∣∣∣
n2 − 1

n3 − n− 5

∣∣∣∣ =
n2 − 1

n3 − n− 5
<

n2

n3 − n− 5
<

n2

n3/2
= 2/n.

Also n2−1
2n−3 > n2−1

2n > n2−n
2n = n−1

2 > 2. Hence

(
n2 − 1

n3 − n− 5

)n2−1
2n−3

< (2/n)2.

It follows that limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

= 0.

v. Show that the series
∑∞

n=1 (1/n)n converges. Find an upper bound for the
sum. (10 pts.)

Since for n ≥ 2, 1/n ≤ 1/2, we have
∑∞

n=1(1/n)n ≤ 1 +
∑∞

n=2(1/n)n ≤
1 +

∑∞
n=1(1/2)n = 1 + 1

2

∑∞
n=0(1/2)n = 1 + 1/2 = 3/2.



19.3. RESIT OF MATH 121, FEBRUARY 2003 179

vi. Let (an)n be a sequence of nonnegative real numbers. Suppose that the
sequence (a2

n)n converges to a. Show that the sequence (an)n converges to√
a. (15 pts.)

Note first that, since an ≥ 0, a ≥ 0 as well.

Let ε > 0.

Case 1: a > 0. Since limn→∞ a2
n = a, there is an N2 such that for all

n > N , |a2
n−a| < εa. Now for all n > N , |an−

√
a| = |a2

n−a|
an+a ≤ |a2

n−a|
a < ε.

Case 2. a = 0.

Since the sequence (a2
n)n converges to 0, there is an N such that for all

n > N , a2
n < ε2. So (ε + an)(ε − an) = ε2 − a2

n > 0. Since ε > 0 and
an ≥ 0, we can divide both sides by ε + an to get ε− an > 0, i.e. an < ε.
Since an ≥ 0, this implies |an| < ε.

vii. We have seen in class that the sequence given by an = ((1 + 1/n)n)n

converges to a real number > 1. Let e be this limit. Do the following
sequences converge? If so find their limit. (15 pts. Justify your answers).

a) limn→∞
(
1 + 1

n+1

)n

.

limn→∞
(
1 + 1

n+1

)n

= limn→∞
(1+ 1

n+1 )
n+1

1+ 1
n+1

=
limn→∞(1+ 1

n+1 )
n+1

limn→∞ 1+ 1
n+1

= e
1 =

e. The first equality is algebraic. The second equality holds because the
limits of the numerator and the denominator exist and they are nonzero.

The third equality holds because
((

1 + 1
n+1

)n+1
)

n

is a subsequence of
((

1 + 1
n

)n)
n
.

b) limn→∞
(
1 + 1

2n

)3n.

limn→∞
(
1 + 1

2n

)3n = limn→∞
((

1 + 1
2n

)2n
)3/2

= e3/2 by Question vi.

c) limn→∞
(
1 + 1

n

)n2

.

Since limn→∞
(
1 + 1

n

)n = e > 1, there is an N1 such that for all n > N1,
| (1 + 1

n

)n − e| < e−1
2 , so 1 < r := e

2 + 1
2 = e − e−1

2 <
(
1 + 1

n

)n. Thus,

rn <
((

1 + 1
n

)n)n
=

(
1 + 1

n

)n2

. Thus ∞ = limr−→∞ rn ≤ (
1 + 1

n

)n2

(because r > 1). It follows that
(
1 + 1

n

)n2

= ∞.

19.3 Resit of Math 121, February 2003

i. Find a sequence neither decreasing nor increasing that converges to 1. (2
pts.)

ii. Let (an)n be a convergent sequence of real numbers. Suppose that an ∈ Z
for all n. Is it true that limn→∞ an ∈ Z? (4 pts.)
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iii. Let (an)n be a convergent sequence of real numbers. Suppose that an ∈ Q
for all n. Is it true that limn→∞ an ∈ Q? (3 pts.)

iv. Let (an)n be a convergent sequence of real numbers. Suppose that 5an/2 ∈
N for all n. What can you say about limn→∞ an? (2 pts.)

v. Let (an)n be a sequence of real numbers such that the subsequence (a2n)n

converges. Does the sequence (an)n converge necessarily? (2 pts.)

vi. Let (an)n be a sequence of real numbers such that the sequence (a2
n)n

converges to 1. Does the sequence (an)n converge necessarily? (2 pts.)

vii. Let (an)n be a sequence of real numbers such that the subsequences (a2n)n

and (a2n+1)n both converge. Does the sequence (an)n converge necessar-
ily? (2 pts.)

viii. Let (an)n be a sequence of real numbers such that the sequence (a2
n)n

converges to 0. Does the sequence (an)n converge necessarily? (8 pts.)

ix. Let (an)n be a sequence of real numbers such that limn→∞ an = ∞. Is it
true that limn→ a2n = ∞? (3 pts.)

x. Assume limn→∞ an exists and an 6= 0 for all n. Does the sequence
(a2n/a2n+1)n converge necessarily? (5 pts.)

xi. Find the following limits and prove your result using only the definition.
(30 pts.)

a. limn→∞ 3n+105
5n−79

b. limn→∞ n2−5n+3
−100n+2

c. limn→∞ n−8
2n3−89

xii. Find (16 pts. Justify your answers).

a. limn→∞
(

2
3 + 6n

n2+1

)3n

b. limn→∞
(

5
4 − 7

n5

)nn

xiii. Find limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

. (10 pts. Justify your answer).

xiv. Show that the series
∑∞

n=1

(
n

n2+1

)n/3

converges. Find an upper bound
for the sum. (10 pts.)

xv. Let (an)n be a sequence of real numbers. Assume that there is an r > 1
such that |an+1| ≥ r|an| for all n. What can you say about the convergence
or the divergence of (an)n? (6 pts.)
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19.4 Correction of the Resit of Math 121, Febru-
ary 2003

i. Find a sequence neither decreasing nor increasing that converges to 1. (2
pts.)

Answer: Let an = 1 + (−1)n

n . It is clear that limn→∞ an = 1. Since
the subsequence (a2n)n is decreasing and converges to 1 and the subse-
quence (a2n)n is increasing and converges to 1, the sequence (an) is neither
increasing nor decreasing.

ii. Let (an)n be a convergent sequence of real numbers. Suppose that an ∈ Z
for all n. Is it true that limn→∞ an ∈ Z? (4 pts.)

Answer: Yes, it is true. In fact this is true even for Cauchy sequences:
A Cauchy sequence (an)n whose terms are in Z is eventually constant, i.e.
there is an N such that an = aN for all n ≥ N , and this implies of course
that limn→∞ an = aN ∈ Z. So, let us show that the Cauchy sequence
(an)n is eventually constant.

In the definition of Cauchy sequences, take ε = 1/2. Thus, there is an M
such that for all n, m > M , |an − am| < 1/2. But since an and am are in
Z, this means that for all n, m > M , |an − am| = 0, i.e. that an = am.
Now take N = M + 1.

iii. Let (qn)n be a convergent sequence of real numbers. Suppose that qn ∈ Q
for all n. Is it true that limn→∞ qn ∈ Q? (3 pts.)

Answer: Of course not! In fact every real number is the limit of a rational
sequence. Indeed, let r ∈ R. Let n ∈ N \ {0}. Since Q is dense in R, there
is a rational number qn ∈ (r − 1/n, r). Since r − 1/n < qn < r, by the
Sandwich Lemma, limn→∞ qn = r.

iv. Let (an)n be a convergent sequence of real numbers. Suppose that 5an/2 ∈
N for all n. What can you say about limn→∞ an? (4 pts.)

Answer: Let limn→∞ an = r. Then limn→∞ 5an/2 = 5r/2. By hypothe-
sis and by part ii, 5r/2 ∈ Z. Thus r = 2n/5 for some n ∈ N.

v. Let (an)n be a sequence of real numbers such that the subsequence (a2n)n

converges. Does the sequence (an)n converge necessarily? (2 pts.)

Answer: Of course not! We can have a2n = 1/n and a2n+1 = n.

vi. Let (an)n be a sequence of real numbers such that the sequence (a2
n)n

converges to 1. Does the sequence (an)n converge necessarily? (2 pts.)

Answer: Of course not! We can have an = (−1)n. Then (an)n is a
sequence of alternating ones and minus ones, so that it diverges. And
since a2

n = 1, the sequence (a2
n)n converges to 1.



182 CHAPTER 19. EXAMS

vii. Let (an)n be a sequence of real numbers such that the subsequences (a2n)n

and (a2n+1)n both converge. Does the sequence (an)n converge necessar-
ily? (2 pts.)

Answer: Of course not! We can have an = (−1)n. Then (an)n is a
sequence of alternating ones and minus ones, so that it diverges. And
since a2n = 1 and a2n+1 = −1, the sequence (a2n)n converges to 1 and
the sequence (a2n+1)n converges to −1.

viii. Let (an)n be a sequence of real numbers such that the sequence (a2
n)n

converges to 0. Does the sequence (an)n converge necessarily? (8 pts.)

Answer: Yes! Let ε > 0. Let ν =
√

ε. Since the sequence (a2
n)n converges

to 0, there is an N such that for all n > N , |a2
n| < ν, i.e. |an|2 < ε2. Since

|an| and ν are positive, this implies that |an| < ε. Thus there is an N such
that for all n > N , |an| < ε; i.e. the sequence (an)n converges to 0.

ix. Let (an)n be a sequence of real numbers such that limn→∞ an = ∞. Is it
true that limn→ a2n = ∞? (3 pts.)

Answer: Yes! Let A be any real number. limn→∞ an = ∞, there is an
N such that for all n > N , an > A. Then for 2n > N , a2n > A.

x. Assume limn→∞ an exists and an 6= 0 for all n. Does the sequence
(a2n/a2n+1)n converge necessarily? (5 pts.)

Answer: No, the sequence (a2n/a2n+1)n may not converge if limn→∞ an =
0. For example, choose

an =
{

1/n if n is even
1/n2 if n is odd

Clearly limn→∞ an = 0, but

an

an+1
=





(n+1)2

n if n is even

n+1
n2 if n is odd

And the subsequence (n+1)2

n diverges to ∞, although the subsequence n+1
n2

converges to 0.

On the other hand, if the limit of the sequence (an)n is nonzero, say `, then
the sequence (a2n/a2n+1)n converges to 1 because limn→∞ a2n/a2n+1 =
limn→∞ a2n/ limn→∞ a2n+1 = `/` = 1. Note that the last part uses the
fact that ` is nonzero.

xi. Find the following limits and prove your result using only the definition.
(30 pts.)

a. limn→∞ 3n+105
5n−79

Answer: limn→∞ 3n+105
5n−79 = 3

5 .
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Proof: Let ε > 0. Let N1 be such that 32 < εN1. Let N = max(N1, 395).
Now for n > N , we have,

∣∣∣∣
3n + 105
5n− 79

− 3
5

∣∣∣∣ =
∣∣∣∣

762
25n− 395

∣∣∣∣ =
762

25n− 395
≤ 762

24n
<

32
n

<
32
N1

< ε.

The first equality is simple computation. The second equality follows from
the fact n > N ≥ 395 > 16 (so that 25n− 395 > 0). The third inequality
follows from the fact that n > N ≥ 395, so that 25n − 395 ≥ 25n − n =
24n.The fourth inequality is also a simple computation.

b. limn→∞ n2−5n+3
−100n+2

Answer: limn→∞ n2−5n+3
−100n+2 = −∞.

Proof: It is enough to show that limn→∞ n2−5n+3
100n−2 = ∞.

We first note that the two roots of n2 − 5n + 3 are 5±√25−12
2 = 5±√13

2 , so
that if n ≥ 5 > 9

2 = 5+
√

16
2 > 5+

√
13

2 , then n2 − 5n + 3 > 0.

Now let A ∈ R be any real number. Let N = max(100A + 5, 5). Now, for
all n > N ,

n2 − 5n + 3
100n− 2

>
n2 − 5n + 3

100n
>

n2 − 5n

100n
=

n− 5
100

>
N − 5
100

= A.

Here, the first inequality follows from the fact that n > N ≥ 5, so that
n2 − 5n + 3 > 0.

c. limn→∞ n−8
2n3−89 .

Answer: limn→∞ n−8
2n3−89 = 0.

Proof: Let ε > 0. Let N = max(1/ε, 89). Now for n > N ,
∣∣∣ n−8
2n3−89

∣∣∣ =
n−8

2n3−89 < n
2n3−n = 1

2n2−1 < 1
n2 < 1

n < ε.

xii. Find (16 pts. Justify your answers).

a. limn→∞
(

2
3 + 6n

n2+1

)3n

.

Answer: limn→∞
(

2
3 + 6n

n2+1

)3n

= 0.

Proof: We use the fact that 2/3 < 1. Since limn→∞ 6n
n2+1 = 0, there is

an N such that for all n > N , 6n
n2+1 < 1/6. Then 0 ≤

(
2
3 + 6n

n2+1

)3n

=

(2/3+1/6)3n = (5/6)3n. By Sandwich Lemma limn→∞
(

2
3 + 6n

n2+1

)3n

= 0.

b. limn→∞
(

5
4 − 7

n5

)nn

.

Answer: limn→∞
(

5
4 − 7

n5

)nn

= ∞.
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Proof: We use the fact that 5/4 > 1. Since limn→∞ 7
n5 = 0, there is an N

such that for all n > N , 7
n5 < 1/8. Then

(
5
4 − 7

n5

)nn

> (5/4 − 1/8)nn

=
(9/8)nn ≥ (9/8)n. Since (9/8) > 1, limn→∞(9/8)n = ∞. The result
follows.

xiii. Find limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

. (10 pts.).

Answer: limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

= 0.

Proof: Since limn→∞
(

n2−1
n3−n−5

)
= 0, there is an N1 such that for all

n > N1, n2−1
n3−n−5 < 1/2. On the other hand, for n > 3, n2−1

2n−3 < n2−1
n < n.

Let N = max(3, N1). Now for n > N ,
(

n2−1
n3−n−5

)n2−1
2n−3

< (1/2)
n2−1
2n−3 <

(1/2)n. Since the right hand side converges to 0, by Sandwich Lemma,

0 ≤ limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

= 0. (For the first inequality, one needs the

fact that n3 − n − 5 > 0 for n ≥ 2. This follows from the facts that
23 − 2− 5 = 1 > 0 and n3 − n− 5 < (n + 1)3 − (n + 1)− 5. And this last
inequality is easy to show).

xiv. Show that the series
∑∞

n=1

(
n

n2+1

)n/3

converges. Find an upper bound
for the sum. (10 pts.)

Answer:
∑∞

n=1

(
n

n2+1

)n/3

=
∑∞

n=1(1/n)n/3 <
∑∞

n=1 1/2n/3 =
∑∞

n=1 1/23n/3 +
∑∞

n=0 1/2
3n+1

3 +
∑∞

n=0 1/2
3n+2

3

=
∑∞

n=1 1/2n + 1
21/3

∑∞
n=0 1/2n + 1

21/3

∑∞
n=0 1/2n = 1/2+2−1/3 +2−2/3 <

5.

xv. Let (an)n be a sequence of real numbers. Assume that there is an r > 1
such that |an+1| ≥ r|an| for all n. What can you say about the convergence
or the divergence of (an)n? (6 pts.)

Answer: The sequence diverges. Furthermore the sequence diverges to
∞ if it is eventually positive and to −∞ if it is eventually negative.

Proof: One can show by induction on n that |an| > rn|a0|. Thus
limn→ |an| = ∞ (because r > 1). It should now be clear that the an-
swer is valid.

19.5 Second Resit of Math 121, March 2003

i. Let (an)n be a converging sequence of nonzero real numbers. Do the
sequences

(
an

an+1

)
n
,
(

1−an

1−an+1

)
n

and
(

an

1+a2
n+1

)
n

converge? (6 pts.)
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ii. Let (an)n be a convergent sequence of natural numbers. Is it true that
limn→∞ an ∈ N? (4 pts.)

iii. Let x > 1. Discuss the convergence of (xn/n!)n (4 pts.)

iv. Let x ∈ R. Discuss the convergence of (xn!/n!)n (8 pts.)

v. Let (an)n be a convergent sequence of real numbers. Suppose that limn→∞ an ∈
Q. Is it true that an ∈ Q for infinitely many n? (3 pts.)

vi. Let (an)n be a sequence of real numbers such that the subsequences (a2n)n,
(a2n+1)n and (a7n+1)n all converge. Does the sequence (an)n converge
necessarily? (5 pts.)

vii. Let (an)n be a sequence of real numbers such that the sequence (a2
n)n

converges. Discuss the convergence of the sequence (an)n. (5 pts.)

viii. Let (an)n be a sequence of real numbers such that limn→∞ an = ∞. Is it
true that limn→∞ a2n = ∞? (2 pts.)

ix. Let (an)n be a sequence of real numbers such that limn→∞ an = ∞.
Discuss the convergence of limn→∞ 1/a2n = 0. (10 pts.)

x. Find the following limits and prove your result using only the definition.
(18 pts.)

a. limn→∞ 3n2−5
5n2+3n .

b. limn→∞ n2−5n+3
−4n+2

c. limn→∞ 5n2−4
2n3+2

xi. Find limn→∞
(

n2−1
n3−n−5

)n2−1
2n−3

. (10 pts. Justify your answer).

xii. Show that the series
∑∞

n=0(−1)nz2n+1/(2n + 1)! converges for all z ∈ R.
(4 pts.)

xiii. Show that the series
∑∞

n=1

(
n

n2+1

)n/3

converges. Find an upper bound
for the sum. (10 pts.)

xiv. Let (an)n be a sequence of real numbers. Assume that there is an r > 1
such that |an+1| ≥ r|an| for all n. What can you say about the convergence
or the divergence of (an)n? (6 pts.)
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19.6 Midterm of Math 152, April 2004

i. Decide the convergence of the series
∑

n

1√
|n2 − 2| .

ii. Decide the convergence of the series
∑

n

1√
n2 + 1

.

iii. Decide the convergence of the series
∑

n

1√
|n4 − 6| .

iv. Suppose that the series
∑

n an is convergent. Show that limn→∞ an = 0.

v. Suppose that (an)n is a positive and decreasing sequence and that the
series

∑
n an is convergent. Show that limn→∞ nan = 0.

vi. Find a positive sequence (an)n such that the series
∑

n an is convergent
but that limn→∞ nan 6= 0.

vii. Suppose that series
∑

n an is absolutely convergent and that the sequence
(bn)n is Cauchy. Show that the series

∑
n anbn is absolutely convergent.

viii. Let (an)n be a sequence. Suppose that
∑∞

n=1 |an− an+1| converges. Such
a sequence is called of bounded variation. Show that a sequence of
bounded variation converges.

19.7 Final of Math 152, June 2004

I. Convergent Sequences. For each of the topological spaces (X, τ), describe
the convergent sequences and discuss the uniqueness of their limits.

i. τ = ℘(X). (℘(X) is the set of all subsets of X, 2 pts.).

Answer: Only the eventually constant sequences converging to that con-
stant.

ii. τ = {∅, X} (2 pts.).

Answer: All sequences converge to all elements.

iii. a ∈ X is a fixed element and τ is the set of all subsets of X that do not
contain a, together with X of course. (5 pts.)

Answer: First of all, all sequences converge to a. Second: If a sequence
converges to b 6= a, then the sequence must be eventually the constant b.
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iv. a ∈ X is a fixed element and τ is the set of all subsets of X that contain
a, together with ∅ of course. (5 pts.)

Answer: Only the eventually constant sequences converge to a. A se-
quence converge to b 6= a if and only if the sequence eventually takes only
the two values a and b.

v. τ is the set of all cofinite subsets of X, together with the ∅ of course. (6
pts.)

Answer: All the sequences without infinitely repeating terms converge
to all elements. Eventually constant sequences converge to the constant.
There are no others.

II. Subgroup Topology on Z. Let τ = {nZ+m : n, m ∈ Z, n 6= 0}∪{∅}.
We know that (Z, τ) is a topological space.

i. Let a ∈ Z. Is Z \ {a} open in τ? (5 pts.)

Answer: Yes. ∪n6=0,±1nZ ∪ (3Z + 2) = Z \ {1}.Translating this set by
a− 1, we see that Z \ {a} is open.

ii. Find an infinite non open subset of Z. (5 pts.)

Answer: The set of primes is not an open subset. Because otherwise, for
some a 6= 0 and b ∈ Z, the elements of aZ + b would all be primes. So b,
ab + b and 2ab + b would be primes, a contradiction.

iii. Let a, b ∈ Z. Is the map fa,b : Z −→ Z defined by fa,b(z) = az + b
continuous? (Prove or disprove). (10 pts.)

Answer: Translation by b is easily shown to be continuous. Let us con-
sider the map f(z) = az. If a = 0, 1,−1 then clearly f is continuous.
Assume a 6= 0,±1 and that f is continuous. We may assume that a > 1
(why?) Choose a b which is not divisible by a. Then f−1(bZ) is open,
hence contains a subset of the form cZ + d. Therefore a(cZ + d) ⊆ bZ.
Therefore ac = ±b and so a divides b, a contradiction. Hence f is not
continuous unless a = 0,±1.

iv. Is the map fa,b : Z −→ Z defined by f(z) = z2 continuous? (Prove or
disprove). (5 pts.)

Answer: No! Left as an exercise.

v. Is the topological space (Z, τ) compact? (Prove or disprove).(15 pts.)

Answer: First Proof: Note first the complement of open subsets of
the form aZ + b are also open as they are unions of the form aZ + c
for c = 0, 1, . . . , a − 1 and c 6≡ bmod a. Now consider sets of the form
Up = pZ + (p − 1)/2 for p an odd prime. Then ∩pUp = ∅ because if
a ∈ ∩pUp then for some x ∈ Z \ {−1}, 2a + 1 = px + p, so that a is
divisible by all primes p and a = 0. But if a = 0 then (p−1)/2 is divisible
by p, a contradiction. On the other hand no finite intersection of the Up’s
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can be emptyset as (aZ + b) ∩ (cZ + b) 6= ∅ if a and b are prime to each
other (why?) Hence (U c

p)p is an open cover of Z that does not have a finite
cover. Therefore Z is not compact.

First Proof: Let p be a prime and a = a0 + a1p + a2p
2 + . . . be a p-adic

integer which is not in Z. Let

bn = a0 + a1p + a2p
2 + . . . + an−1p

n−1.

Then ∩npnZ+ bn = ∅ but no finite intersection is empty. We conclude as
above.

III. Miscellaneous.

i. Let f : R −→ R be the squaring map. Suppose that the arrival set is
endowed with the usual Euclidean topology. Find the smallest topology
on the domain that makes f continuous. (5 pts.)

Answer: The smallest such topology is the set

{U ∩ −U : U open in the usual topology of R}.

ii. Let τ be the topology on R generated by {[a, b) : a, b ∈ R}. Compare this
topology with the Euclidean topology. (3 pts.) Is this topology generated
by a metric? (20 pts.)

Answer: Any open subset of the Euclidean topology is open in this topol-
ogy because (a, b) = ∪∞n=1[a + 1/n, b). But of course [0, 1) is not open in
the usual topology.

Assume a metric generates the topology. Note that [0,∞) is open as it
is the union of open sets of the form [0, n) for n ∈ N. Thus the sequence
(−1/n)n cannot converge to 0. In fact for any b ∈ R, no sequence can
converge to b from the left. Thus for any b ∈ R there is an εb > 0 such
that B(b, εb) ⊆ [b,∞). Let b0 be any point of R. Let ε0 > 0 be such that
B(b0, ε0) ⊆ [b0,∞). Since {b0} is not open, there is b1 ∈ B(b0, ε0) \ {b0}.
Let 0 < ε1 < ε0/2 be such that B(b1, ε1) ⊆ [b1,∞)∩B(b0, ε0). Inductively
we can find (bn)n and (εn)n such that B(bn, εn) ⊆ [bn,∞)∩B(bn−1, εn−1)\
{bn−1} and εn < ε0/2n. Then (bn)n is a strictly increasing convergent
sequence, a contradiction.

iii. Show that the series
∑n

i=0 xn/n! converges for any x ∈ R (10 pts.) Show
that the map exp : R −→ R defined by exp(x) =

∑n
i=0 xn/n! is continuous.

(10 pts.)

Answer: For the first part show that the sequence of partial sums is
Cauchy. The second part is easy as well, just write down.
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Abel’s Lemma, 120
Abel’s Theorem, 120
abelian group, 16
absolute convergence, 87
absolute extremum, 144
absolute maximum, 144
absolute minimum, 144
absolute value of a real number, 21
addition, 14–16
addition of real numbers, 13
algebraic numbers, 95
alternating series, 88
analytic functions, 150, 154
Archimedean Property, 29
associative binary operation, 9
associativity of series, 85
associativity of the addition, 14
associativity of the multiplication,

16

Banach algebra, 53
Banach Space, 53
base of a topology, 128

binary operation, 9
Binary Relations, 10–11
Bolzano-Weierstrass Theorem, 71, 73
bounded away from a, 64
bounded sequence, 59
bounded set, 59

C, 39
cartesian product, 43
Cauchy Condensation Test., 87
Cauchy sequence, 68
Cauchy’s Mean-Value Theorem, 163
center of a ball, 54
chain, 21
circle, 54
closed subset, 127
closure, 128
coefficients of a polynomial, 65
commutative binary operation, 9
commutative group, 16
commutativity, 17
compact, 129
Comparison Test, 86
complete metric space, 79
completeness, 23
complex numbers, 39–42
conditional convergence, 92
conjugate of a complex number, 41
connected topological space, 131
constant sequence, 57
continuous at a point, 133
continuous function, 134, 135
contractive sequence, 75
convergence, 57
convergence of series, 83
convergent sequence, 57
cosine, 90
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decimal expansion, 92
decreasing sequence, 33
degree, 65
dense, 34
derivative, 143
differentiable at a point, 143
disconnected, 131
discrete metric, 51
discrete topology, 125
distributivity, 17–18
divergence of series, 83
divergence to infinity, 76
divergent sequence, 57
division, 36
division of integers, 29

e, 74, 156
equivalence relation, 11
Euclidean metric space, 51
Euler’s constant, 169
Euler’s Gamma function, 175
Euler-Mascheroni constant, 169
eventually constant sequence, 57
exponentiation, 30, 90
extended real line, 126
extremum, 144

factorial, 31
Fibonacci sequence, 82
field, 18
finest topology, 125

Gamma function, 175
geometric series, 85
glb(A), 22
group, 14

harmonic series, 85
Hausdorff space, 182
Heine-Borel Theorem, 129
Hilbert space, 179
homeomorphism, 182

i, 40
IdA, 10
identity element, 14, 16

identity element of a binary opera-
tion, 9

increasing sequence, 33
induced topology, 126
inductive, 27
inf(A), 22
integers, 34
integral part, 29, 36
Integral Test, 168
interior, 127
Intermediate Value Theorem, 138
intervals, 21
inverse, 14, 16
inverse element, 14, 16
inverse element in a binary opera-

tion, 10
inverse of a function (bijection), 10
isolated point, 133

less than, 13
lexicographique ordering, 23
lim, 78
limit, 57, 182
limit at infinity, 123
limit inferior, 78
limit of a function, 121, 122
limit point, 121, 133
limit superior, 78
lim, 78
linearly ordered set, 21
Liouville number, 96
Lipschitz condition, 163
local extremum, 144
local maximum, 144
local minimum, 144
lub(A), 22

maximal element, 22
Mean Value Theorem of Differential

Calculus, 145
metric space, 50
metrisable topology, 125
minus, 14
Monotone Convergence Theorem, 70
monotone sequence, 70
mth-root, 31
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multiplication, 16–17
multiplication of real numbers, 13

Natural Numbers, 27–30
natural numbers, 27
nested intervals property, 33
nonalgebraic numbers, 95
nondecreasing sequence, 33, 70
nonincreasing sequence, 33, 70
nonnegative, 20
normed real vector space, 52
nth power, 30

one, 13
open ball, 54
open subset, 125
open subset of a metric space, 54
order, 13, 19–21
ordered field, 19

p-adic metric, 51
partial sums, 83
Peano, 140
pointwise convergence of a family of

functions, 122
pointwise convergence of a series of

functions, 115, 119
pointwise limit, 113, 122
polynomial, 44, 65
power series, 91
product, 13
product topology, 181

R, 13
R∗, 16, 20
R<0, 20
R≤0, 20
R>0, 20
R≥0, 20
Raabe and Duhamel’s Convergence

Rule, 170
radius of a ball, 54
radius of convergence, 91, 149, 150
Ratio Test, 90
rational numbers, 34
Real Numbers, 13–24

real sequence, 33
real vector space, 44
real vector spaces, 43–47
rearranging the terms of a series, 84,

87
reflexivity, 11
Rolle’s Theorem, 145
Root Test, 90

scalar multiplication, 43
scalar product, 49
sequence, 33
sequential compactness, 183
series, 83
series of functions, 115
sine, 90
square root, 34, 73
strictly decreasing sequence, 33
strictly increasing sequence, 33
strictly negative, 20
strictly positive, 20
subsequence of a sequence, 33
subspace, 46
sum, 13
sum of vectors, 43
sup(A), 22
sup metric, 51
Sym(A), 10
symmetry, 11

T0-topological space, 183
Taylor series, 151
(Tf)(x), 154
topological space, 125
topology generated by, 126, 128
totally ordered set, 21
totaly disconnected, 131
transcendental numbers, 95
transitivity, 11
triangular inequality, 50

ultrametric, 51
uniform convergence, 115
uniform convergence of a family of

functions, 122
uniform convergence of a series of

functions, 119
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uniqueness of the real number sys-
tem, 37

usual metric, 51

vector, 43
vector space over R, 44

Wallis’ formula, 167
Weierstrass M-Test, 120

×, 13
x−1, 16
x2, 19

Z, 34
zero, 13, 14
zero sequence, 45


