QUESTIONS

AYHAN DIL AND HAYDAR GÖRAL

(1) Show that there exist arbitrarily large intervals that are free of primes, i.e., for every positive integer \(k \) there exist \(k \) consecutive positive integers none of which is a prime.

(2) Prove that \(\mu(n) \mu(n+1) \mu(n+2) \mu(n+3) = 0 \) if \(n \) is a positive integer.

(3) Find all \(n \) such that \(\phi(n) = 12 \) and \(n = 17 \phi(n) \).

(4) Find a positive integer \(n \) such that \(\mu(n) + \mu(n+1) + \mu(n+2) = 3 \).

(5) Show that \(H_n = 1 + 1/2 + ... + 1/n \) is not an integer for \(n \geq 2 \).

(6) Show that, for every positive integer \(n \geq 2 \),
\[
\sum_{1 \leq k \leq n-1 \atop (k,n)=1} k = \frac{n}{2} \phi(n)
\]

(7) Let \(f \) be a multiplicative function. We know that the Dirichlet inverse \(f^{-1} \) is then also multiplicative. Show that \(f^{-1} \) is completely multiplicative if and only if \(f(p^m) = 0 \) for all prime powers \(p^m \) with \(m \geq 2 \).

(8) If \(n \) is any even integer, prove that \(\sum_{d|n} \mu(d) \phi(d) = 0 \).

(9) Let \(f_k \) be defined as follows
\[
f_k(n) = \sum_{d|n \atop (k,d)=1} \mu(d),
\]
here \(k \) is a fixed positive integer, and the summation runs over those divisors of \(n \) that are relatively prime to \(k \). Show that \(f_k \) is the characteristic function of the set \(A_k = \{ n \in \mathbb{N} : p/n \rightarrow p/k \} \).

(10) Show that \(\exp(\log x/\log \log x) = o(x^\epsilon) \) for any \(\epsilon > 0 \).

(11) For any positive integer \(n \), prove that \(\phi(n) + \sigma(n) \geq 2n \) and the equality holds iff \(n = 1 \) or prime.

(12) Show that \(\psi(x) = \theta(x) + O(\sqrt{x}) \).

(13) Let \(\omega(n) \) be the number of distinct prime factors of \(n \). Show that \(\omega(n) \leq 2 \log n \).

(14) Let \(f \) be a multiplicative function and suppose that \(\lim_{p^m \to \infty} f(p^m) = 0 \). Show that \(\lim_{n \to \infty} f(n) = 0 \) also.

(15) Show that \(\frac{n}{\log n} << \phi(n) \) for \(n \geq 2 \).

(16) Let \(d(n) \) be the number of divisors of \(n \). Show that \(d(n) = O(n^\epsilon) \) for every \(\epsilon > 0 \).

(17) Show that \(d(n) = O(\log n) \) is not true.

(18) Show that \(\frac{n}{\phi(n)} = \sum_{d|n} \frac{\mu(n)^2}{\phi(n)} \).

(19) Show that \(\sum_{n \leq x} \frac{\mu(n)^2}{\phi(n)} \geq \log x \).

(20) Show that \(\sum_{n \leq x} \frac{n}{\phi(n)} << x \). Moreover show that for any fixed real number \(k \), \(\sum_{n \leq x} \left(\frac{n}{\phi(n)}\right)^k << x \). This means most of the time \(\phi(n) \) is very close to \(n \).

(21) Let \(P \) be a set of primes such that \(\sum_{p \in P} \frac{1}{p} \) is finite.
Define \(A_P = \{ n : p|n \rightarrow p \in P \} \), \(A_P(x) = |\{ n \leq x : n \in A_P \}| \),
\[C = \{n : (n, p) = 1 \forall p \in P\}. \] Show that \(\sum_{n \in A_P} \frac{1}{n} \) is finite, \(A_P(x) = o(x) \), and \(C(x) \) is asymptotic to \(ax \) where \(a = \prod_{p \in P} (1 - 1/p) \).

(22) Show that \(|\{n \leq x : p|n \to p = 4k + 1\}| = o(x)\).

(23) Show that \(\pi_3(x) < \frac{x}{\log^2 x} \) where \(\pi_3(x) \) is the number of primes \(p \leq x \) such that \(p + 2 \) and \(p + 6 \) are also primes.

(24) Show that \(\sum_{p \leq x} d(p - 1) = O(x) \).

(25) Show that primes of the form \(n^2 + 1 \) with \(n \leq x \) is \(< \frac{x}{\log x} \).

(26) Prove that Selberg’s asymptotic formula
\[
\psi(x) \log x + \sum_{n \leq x} A(n) \psi(\frac{x}{n}) = 2x \log x + O(x)
\]
implies Chebyshev estimates. (In fact Selberg’s formula has a key role for the elementary proof of PNT.)

(27) Using Mertens’ estimates find the asymptotic of \(\sum_{pq \leq x} \frac{1}{pq} \). Using PNT prove that \(\sum_{pq \leq x} 1 \) is asymptotic to \(\frac{x \log \log x}{\log x} \).

(28) It is known that PNT is equivalent to \(\sum_{n \leq x} \mu(n) = o(x) \). Using this show that
\[
PNT \iff \lim_{x \to \infty} x \sum_{n > x} \frac{\mu(n)}{n} = 0
\]

(29) Let \(E = \lim \inf_{n} \frac{p_{n+1} - p_{n}}{\log p_{n}} \). Using PNT show that \(E \leq 1 \).

(30) Using Brun’s sieve what can you say about a lower bound for \(\pi(x) \) and \(\pi_2(x) \)?