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Preface

Modal logic is a huge research area. Researchers from mathematics, philosophy, computer science,
linguistics, political science and economics work on variety of modal logics focusing on numerous
different topics with many amazingly different applications. Mathematicians approach it mostly
from a model theoretical point of view. For philosophers, modal logic is a powerful tool for se-
mantics. Many concepts in philosophy of language can be formalized in modal logic. Computer
scientists, on the other hand, use modal logic to represent the programs. Model checking and
temporal logic are very hot research areas in computer science which use modal logics extensively.
In semantics theory that many linguists work on, modal logic helps a lot. Political scientists and
economists try to come up with fair division algorithms and welfare theories that have game theo-
retical motivation with an underlying modal logical intuition. Moreover, game theory uses modal
models to represent the knowledge of the players and their decisions under uncertainty. All these
research areas show that modal logic is a promising field with many interdisciplinary research op-
portunities (see my webpage with many small notes discussing variety of modal logics).

These lecture notes were prepared for the Turkish Mathematical Society 2009 Summer School.
The intended purpose is to cover the basics of modal logic from a rather mathematical perspective.
Nevertheless, we will try our best not to lose our basic intuition by making occasional remarks to the
philosophical and applied considerations. The intended course is a short one, and these notes will
cover only the basics. For this reason, based on a subjective judgement, I left out several important
subject such as algebraical and category theoretical treatment of modal logics.

There will be many exercise questions spread in the text and it is highly recommended that the
reader spend enough time on them. One major difference between this lecture notes and any other
mathematics text is that I did not include most proofs. There are several reasons for that. First
is to invite the reader to attend the classes to learn the proofs with discussions. Second, once the
reader gets stuck, is to encourage him to go check the basic articles and textbooks which would be
considered as a small-scale research.

These notes were written in Summer 2009 and come with no guarantee. If you spot a typo,
or an unconvincing argument along these lines, please let me know. You can contact me by e-mail
at cbaskent@gc.cuny.edu or at www.canbaskent.net. You can also find the lecture notes at the latter
address.

Enjoy!

Can Baskent
Department of Computer Science
Graduate Center, The City University of New York



Lecture 1

Introduction

1.1 Introduction

Modal logic is the logic of modalities. There are variety of modalities one can think of. Alethic
modalities are the modalities dealing with possibility (not to be confused with “probability”) and
necessity. Epistemic modalities intend to formalize knowledge while doxastic modalities do it for
belief. Yet another well-studied modality, temporal modality discusses the time and tense. Deon-
tic modalities, on the other hand, are studied for the logic of obligations and norms. Dynamic
modalities formalize actions and programs.

Historical background of the modal logics can be traced back to Aristotle when he distinguished
the statements with “necessary” and “possible” (Goldblatt, 2006). This is what we now call an
alethic modality. Furthermore, according to the modality of the given statement, we can analyze
it from a modal logical perspective. If the sentence is uttered in the form ‘it is known to the agent
that...” or “the agent knows that...”, then it is easy to see that epistemic modalities should be used
to express it. In a similar fashion, if we intend to formalize the time adverbs such as “henceforth”,
“eventually”, “since” or “until”, we will need temporal logic etc.

Modal logics became popular when Kripke gave his famous completeness proof which intro-
duced his intuitive semantics which was named after him (Kripke, 1959). He also used the very
same notions in his philosophy of language in a very bright way. His notion of rigid designator
heavily depends on the modal notions.

1.2 Some Modal Logics

1.2.1 Temporal Logic

From a linguistics point of view, classical propositional logic is always problematic. Consider the
following statement which we will call o: “I came home and had dinner”. Now, consider another
statement which we will call 8:“I had dinner and came home”. Apparently, they do have different
meaning. The statement « says, first I came home, then I had dinner whereas 3 says, first I had
dinner, then came home. But, from a logical point of view, o and 3 have the same truth value, thus
«a = (. What should we do?
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In a similar fashion, how can we formalize the situation when ¢ will be the case, or ¢ was the
case? The notion of time and tense enter the game.

The first step would be to have temporal modalities to express the situation (van Benthem,
1988):

Fy : ¢ will be the case in the future (at least once)
Py : ¢ was the case in the past (at least once)

Notice that F' stands for “future” while P stands for “past”.
In a similar fashion, we can have some more inter-definable (we will see how) tense modalities:

Gy : p will always be the case in the future
Hy : ¢ was always the case in the past

Some examples are in order.

Example 1.1. Let us see how we can formalize simple statements by using temporal logic. Let x
denote the statement “I come home” and ¢ denote the statement “I have dinner” (notice that they
are in present tense). Recalling the discussion at the beginning of this section, let us try to formalize
« and § with their intended meaning. The statement P(x A F'§) will describe a while the statement
P(¢ N Fx) will describe 3. Obviously, when modalities are involved « and /3 are indeed different
statements, i.e. (o« « 3) is not a validity.

Exercise 1.2. Convince yourself that ¢ — GPy and ¢ — H F make sense.

We mentioned earlier that the philosophical discussion on modalities go back to Aristotle. Let
us now consider his famous sea battle argument.

Example 1.3. (van Benthem, 1988)

“If I give the order to attack (p), then, necessarily, there will be a sea battle tomorrow
(¢). If not, then, necessarily, there will not be one. Now, I give the order, or I do not.
Hence, either it is necessary that there is a sea battle tomorrow, or it is necessary that
none occurs.”

This famous logical argument for determination of the future (the admiral does not "really” have
a choice) has been revived again and again in the philosophical tradition by J. Lukasiewicz and
R. Taylor. One first analysis employs a modal notation similar to that we have done along these
lines. Let us denote the necessity by [(J. Then, we have the following two reading of the sea battle
argument.

p— g O(p — q)
—p — O—g O(=p — —q)
pV-p pV-p
UgvU-g .. UOgVU-g

The crucial point is the scope of the "necessarily” in the first premises. In the first reading (narrow
scope), the argument is valid, but the (strong) premises beg the conclusion. In the second reading
(wide scope), the premises are plausible, but the conclusion does not follow.
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1.2.2 Provability Logic

If one interprets Oy as “p is provable in Peano Arithmetic” valid principles from the metamath-
ematics of arithmetic turn into familiar modal axioms, notably O(¢y — ¢) — (dp — [O¢) and
O¢ — OO, and, most striking, Lob’s Axiom: ((Oyp — ¢) — Oy (van Benthem, 1988).

Notice that [y — ¢ is not generally provable in PA - even though this modal axiom is intuitively
true.

1.2.3 Epistemic Logic

Let us have an epistemic modality K which stands for “knowledge”. In this reading, the statement
K will read “the agent knows ¢” (Hintikka, 1962).
Let us consider several axioms of epistemic logic and their respective readings.
Kp— what the agent knows is true
Ko — KKy if the agent knows something, she knows that she knows it
-Kp — K-Ky if the agent does not know something, she knows that she does not know it

Exercise 1.4. Give the epistemic reading of K (¢ — ) — (K¢ — K).

1.3 Possible Worlds

The idea of possible worlds to describe an ontology goes back to the famous German mathematician
and philosopher Leibniz. Leibniz, while discussing the problem of evil, remarked that the god
created the world as the best out of all possible worlds. In his picture, therefore, there are variety of
possible worlds wq, wy, ws, . . ., but the god (according to some calculation) picked the best one, say
wy, and created the world according to it. In other words, we do consider the other worlds possible.
Furthermore, there is a relation between our world wq and the other worlds w1, wy etc. Following
Leibniz’s analogy, wy is the actual state we are in now as it is the best possible one.

1.4 A Note on First-Order Modal Logic

This course is intended as an absolute beginner course in modal logic. Thus, whenever we say
“modal logic”, we always mean “propositional unimodal logic”, modal logics without quantification
and with only one modality (recall that temporal logic has two modalities F' and P).

The reader familiar with model theory might immediately ask: “What about the modal logic in
a first-order language”? However, the answer is not very optimistic. The first-order modal logic
is not so much well-studied and there is not much application related to it, yet. Furthermore,
variety of philosophical and technical issues such as de re / de dicto distinction and Russellian
definite descriptions still pose some problems. Nevertheless, we invite the reader to study the
major textbook on that subject (Fitting & Mendelsohn, 1998).



Lecture 2

Basics

In this lecture we will introduce the basics of modal logic. We will define modal models, and discuss
their syntactical and semantical structures. For a much more sophisticated account of the model
theory of modal logic, we invite the reader to consult to (Goranko & Otto, 2007) and (Goldblatt,
2006). First, we will discuss the relational semantics of modal structures which were made popular
by Kripke (Kripke, 1959).

2.1 Syntax

For simplicity, we will consider modal structures with one modality. First, let us construct our logical
language £. We will need a countable set of propositional variables P = {p,q,r,...}. We will use
the signature of propositional logic together with a modal symbol (. We will call the diamond
modality ¢ the possibility modality. The inter-definable necessity modality will be denoted as [J
(reads box) . However, for our current purposes, we only need to include one of them (in this case,
Q) to our signature.

The set of well-formed formulae of the language £ of the propositional modal logic is recursively
formed in the following fashion.

pu=p|Tlop|leAe]|Op

Note that, the propositional variable p varies over P. The truth constant T is imported from the
propositional logic. The unstated Boolean connectives VV and — are inter-definable obviously.

The binding strength of the symbols will be as same as in the propositional logic. The additional
symbol ¢ will bind strongest. Thus, we will omit the parenthesis where there is no ambiguity.

Exercise 2.1. Verify that the following are well-formed formulae in the language of modal logic: (i)

O00p, (WD pAQT, (i) Og A —O-p

Now, we can define modal models with one single modality. A modal model M = (W, R,V) is
triple where W, the domain, is a non-empty set, R C W x W is a binary relation on W, and V is a
valuation function that takes every propositional variable p from P and assigns a subset V(p) C W
to it. This is what we usually call a relational model. The relation will soon be able to express our
notions of necessity and possibility. This definition can easily be extended to multi-modal cases
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when there are more than one modalities involved. For self-containment of our discussion here,
let us give the definition of multi-modal models. A multi-modal model (W, {Ry, R1,...R,},V)isa
structure where W and V are as before, and each R; is a binary relation on W for all 7 < n.

We call the structure ' = (W, R) a frame. A model, therefore, is a frame equipped with a
valuation.

Exercise 2.2. Let W be a set with the property that |W| = n. How many different frames can be
defined by taking W as the carrier set?

2.2 Semantics

Now, we have a language and a set of well-formed formulae and a model. We can now give a
meaning to these formulae. For a given model M = (W, R, V') and a point w € W, we define the
satisfaction relation |~ as follows.

M,wkEp iff weV(p)

MwET iff always

M, w = - iff not-(M,w = ¢) (notation: M, w [~ ¢)
MwEpAy iff MwEpand M,wE= vy

M, w = Op iff Jve W(wRvAM,vEp)

We define [J as the dual of 0, i.e. Oy = —=$—p. The semantics of [y then can be given similarly.
M,wlEOp iff YveW(wRv— M,vE p)
Since O is inter-definable in terms of ¢, we did not need to include it in the signature of L.
Exercise 2.3. Verify that the semantics of Uy is indeed correct.
Exercise 2.4. Give an informal semantic argument for why Oy = —0—p.

Exercise 2.5. Show that F and G modalities are duals of each other. Similarly, show that P and H
modalities are duals of each other.

Exercise 2.6. Show that ¢ — GPy and ¢ — HFy are sound in temporal logic.

We write M = ¢ if ¢ is true at all points in M. For instance, M |= T and M = Or Vv -0Or. A
formula is called satisfiable in a model M if there is a point in M at which it is true.

Exercise 2.7. Show that M = ¢ for all modal models M if ¢ is a propositional tautology.
Let us see how the semantics work with an example.

Example 2.8. Consider the model given in the following figure (Blackburn & van Benthem, 2006).
Let us call it M.
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Observe that the propositional variable p is true only at the points 1 and 2. Let us first write down
the relation R represented by the arrows. Thus, R = {(1,3), (1,4), (2,1), (4,2), (4,4)}. Observe that
M, 1 OO0p.

Exercise 2.9. Consider the model M given in Example 2.8. Verify that M,2 = O00p and M, 3
O0D.

In this course, we will not touch the validity and satisfiability problems or any other complexity
theory subjects. But for the reader who is familiar with the notions, note that the validity problem
for the basic modal logic K (that we will define in the next section) is PSPACE. Recall that the
validity problem for classic propositional logic is NP-COMPLETE.

2.3 Tableaus

In the previous section, we have defined the truth at the modal models. Now, we can give the proof
theoretical structure of modal logics.

The set of all modal validities can be axiomatized by a Hilbert-style proof system called K. The
axioms of K are the following.

1. All propositional tautologies,
2. O(p — ¥) — (Op — ).
Exercise 2.10. Prove that the axiom scheme O(¢ — ¢) — (O — Ow) is sound.

The second axiom is called Kripke axiom or normality axiom. The logics which possess the
normality axiom are surprisingly called normal modal logics.

We have two proof rules. The first one, modus ponens, is a familiar one: If F ¢ and - ¢ — ¥,
then - 1.

The second one is unique to modal models, and called the necessitation rule: If - ¢, then F Op.
A brief explanation for the necessitation rule is in order here. The assumption - ¢ means that
the formula ¢ is provable with no additional axiom required. A proof is a syntactic notion, and
independent from the valuation and semantics (at least, until we prove the completeness). In other
words, naively, one can consider proofs as a symbol manipulation. Thus, if ¢ is provable, then it
is provable at each state regardless of the valuation. Thus, wherever you go, it will be necessary,
namely it will stay provable at each accessible state. Hence, - Clip.

Let us see an incorrect application of the necessitation rule. Consider the following “proof”.
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1. ¢ Assumption
2. Oy Necessitation: 1
3. p— Oy Discharge assumption

Neither of our axioms says that ¢ — [ is valid. So, there is something wrong: we cannot use
assumptions as input to necessitation rule! The reason for that is the fact that the necessitation rule
does not preserve satisfiability. Necessitation rule enables us to generate new validities from the
old ones (Blackburn et al. , 2001).

Exercise 2.11. Show that the deduction theorem is not valid in modal models.
Exercise 2.12. Recall the definition of a proof.

Now, we can start discussing a major proof method for modal logics. Tableau systems are “one
of the common analytical proof procedures” (Fitting & Mendelsohn, 1998). The important aspect of
tableau systems is that they are refutation systems. As it was remarked, in tableau based proofs, “to
prove a formula, we begin by negating it, analyze the consequences of doing so, using a kind of tree
structure, and, if the consequences turn out to be impossible, we conclude the original formula has
been proved” (Fitting & Mendelsohn, 1998). Namely, we construct an argument based on reductio
ad absurdum. The tableau methods we will present here are due to Fitting. Most of the arguments
we will cite here are taken from the aforecited book, thus we will not mention it over and over
again to maintain the readability of this section.

Recall that in the semantics of the modal logic, we had states which are accessible from some
other states. We will simply mimic this idea in this proof procedure. We will define a prefix as a
finite sequence of positive integers such as 1.2 or 1.1.2.3. If 7 is a prefix and n is an integer, then o.n
is the prefix composed of o followed by a period and followed by the integer n. Prefixes will help
us to keep track of the states we are considering. Also note that if o is a prefix then o.n is accessible
directly from o. Namely, o.n is a possible world for ¢. This semantic argument should not be
taken as a proof method as we have not shown the completeness of modal logic yet. Nevertheless,
the tableaus reflect the same intuition and many completeness proofs are given by using tableaus
(Chagrov & Zakharyaschev, 1997).

An attempt to construct a tableau proof of a formula ¢ begins by creating a tree with 1.-¢ as
its root. This step says, the formula ¢ is false. We thus start by the negation of the formula to get a
contradiction. We will construct the tree depending on the form of the formula ¢ by following the
rules. Depending on the form, we can have multiple branches as well. If we can spot a contradiction
along a branch, this will close the branch. As our aim was to get a contradiction for each possibility,
thus our aim is to close each branch (notation ®). Once this is done, this will prove the statement.
Let us first see the rules, then the examples will clarify the matter.

Definition 2.13 (Tableau Rules for Booleans). Let o be any prefix. The rule of double negation is

as follows.
g —\—|90

gy

Conjunction rules are given as follows.

gAYy oo(pVy) Toalp—Y) gpeo

o ot ol oY=
o oY oY oY=

10
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Disjunction rules are the following.

cove  oo(eAY)  op— o (i o )
7O TV eme e 0 00 ) e—)

Definition 2.14 (Tableau Rules for Modalities). If the prefix .n is new to the branch,

oQp o -Op

omny on-p
If the prefix o.m already occurs on the branch,

o Op o =Qp

omy  om-op

Let us now see in an example how tableau proofs work.
Example 2.15. Let us prove O(p A ¢) — (O A ) with a tableau.

L =[O(p Ay) — (Op AOY)]

LO(eAY)
1. =(0p A Oy)
1. O 1. -0y
1.1. —p 1.1. —
11pAyYy 11eAY
1.1¢ 1.1¢
1.1% 1.1%
® &

Exercise 2.16. Give a tableau proof of (¢ — ¢) — (O — ).
Exercise 2.17. Give a tableau proof of (Oy A O10) — O(p A ).

Exercise 2.18. By constructing a tableau, observe that O(p V ) — (de VvV ) is not provable. Give
a counter-model out of the non-closed tableau you constructed.

Exercise 2.19. Show that if Oy has a tableau proof, so does .

Notice that the tableau proofs are significantly easier than Hilbert-style proofs. For example
consider the following example which was proved in Example 2.15 (Blackburn et al. , 2001).

Example 2.20. Consider the formula (O A Ovy) — O(p A ). This formula is provable in the basic
modal logic. Consider the following sequence of formulae.

LEeo—(@—(pA))
2. FO(p — (¥ — (¢ AY)))
3. FO(p — q) — (Op — Oq)

Tautology
Generalization: 1

K-axiom

11
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4
5
6
7
8

O = (@ = (9 AY))) — (Op — 0@ — (9 A1)

- FOp = 0@ = (g AY))

- FO(e = (pAY)) = (B — Ol AY))
. FOp— (v = O(eAY))

(@ ADyY) - O(e AY)

Uniform Substitution for 3
Modus Ponens: 2, 4
Uniform Substitution for 3
Propositional Logic: 5, 6

Propositional Logic: 7

Strictly-speaking, the given sequence of formulae is not a proof in the modal logic. It is a subse-
quence of the proof consisting of the most important items. To get the full proof, the reader should
fill in the gaps to get the last three lines.

12



Lecture 3

Bisimulations

Recall that in model theory, we have homomorphisms (Hodges, 2002).

Definition 3.1. Let M and N be two structures in a common language. By a homomorphism f from
M to N we will mean a function f from dom (M) to dom(N) with the following three properties.

1. For each constant c in the language, f(cM) = cV.

2. For each n > 0 and each n-ary relation symbol R in the language, and n-tuple @ from M, if
@€ RM, then fd € RN.

3. For each n > 0 and each n-ary function symbol F' in the language, and n-tuple @ from M,
f(FM(@) = FN(fa).
where for @ = (aq,...,an—1), by fa, we mean (fao, ..., fan—1)

Theorem 3.2. Let M and N be two models and f be a mapping from M to N. f is a homomorphism
if and only if, for every atomic formula ¢(Z), and tuple @ of M,

M |= (@) = N | ¢lfd]
Proof. Exercise, see (Hodges, 2002) |

Thus, homomorphism can help us in dealing with atomic formulae in modal models. However,
when it comes to modalities, we need some other constructions. Considering modal models as
processes or transition systems, we need a construction that will enable us to represent modal
model equivalence.

Before going into details, let us first consider several semantic mappings which preserve truth
in modal models.

3.1 Truth Preserving Operations

3.1.1 Disjoint Unions

Let us assume we have two separate modal models M and N with different domains. What would
happen if we consider these two separate models as one single structure put together. Disjoint

13
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unions address this construction. Let us now give a general definition. Note that we will call two
models disjoint if their domains are disjoint.

Definition 3.3 (Disjoint Unions). Let M; = (W;, R;, V;) be a family of disjoint models. Their disjoint
union is the structure [, M; = (W, R, V) where W = {J, W;, R =J, R; and V (p) = |, Vi(p).

Disjoint union operation preserve the truth.

Theorem 3.4. Let M; = (W;, R;,V;) be a family of disjoint models. Then for each modal formula ¢,
and for each i, and each w € M;, we have the following.
Miuw ): Solfandonlylf L-HM“/LU |: P

Proof. In class. This theorem shows that modal satisfaction is invariant under disjoint unions. MW

3.1.2 Generated Submodels

The idea of accessibility is crucial for modal logic. There are points which are accessible from
the current state, and similarly there are points which are not accessible from the current state.
Therefore, we can throw away the points which are inaccessible from the current state. Since, the
modality will not be able to access them, it is safe to get rid off them.

Let us first start with defining submodels. Let M = (W, R, V) and M’ = (W', R, V') be two
models. We say M’ is a submodel of M if W/ C W, R = RN (W' x W) and V'(p) =V(p) "N W".

Thus, to obtain a submodel, we take a subset of the carrier set, and restrict the relation and
valuation to that set. Now, we can define generated submodels.

Definition 3.5 (Generated Submodels). Let M = (W, R, V) and M’ = (W', R’, V') be two models.
We say M’ is a generated submodel of M if the following closure condition holds:

If we M’ and wRv, thenv € M’

We have an invariance result.

Theorem 3.6. Let M’ be a generated submodel of M. Then, for each formula ¢ in the language of
basic modal logic, and for each point w € M’, we have the following.

M,w [ ¢ifand only if M',w = ¢

Proof. In class. This theorem shows that modal satisfaction is invariant under generated submodels.
|

3.1.3 Bounded Morphism

We already remarked that homomorphisms are weak to establish modal satisfiability invariance as
they do not cover modal cases. Now, our task is to generalize this concept to modalities.

Let us first learn what bounded morphisms are. Let M = (W, R, V) and M’ = (W', R',V"’) be
two models, and f : M — M’ be a mapping with the following conditions.

1. w and f(w) satisfy the same propositional variables.

14
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2. If wRv then f(w)R'f(v).
3. If f(w)R'Y', then there exists v such that wRv and f(v) = v'.
The expected theorem follows.

Theorem 3.7. Let M and M’ be two models, and f : M — M’ a bounded morphism. Then, for each
point in M and for each formula ¢ in the language of basic modal logic, we have the following.

M,w k= o if and only if M, f(w) = ¢

Proof. In class. This theorem shows that modal satisfaction is invariant under bounded morphisms.
|

3.2 Bisimulations

As it was put in (Blackburn et al. , 2001), “a bisimulation is a relation between two models in which
related states have identical atomic information and matching transition possibilities”.

Definition 3.8 (Bisimulation). Let M = (W, R,V) and M’ = (W', R, V') be two models. A non-
empty binary relation I' C W x W is called a bisimulation if the following conditions are satisfied.

1. If wl'w’, then w and w’ satisfy the same propositional variables.
2. If wI'w' and wRwv, then there exists v' € W’ such that vI'v’ and w’'R/'v’.
3. If wI'w’ and w’ R'v’, then there exists v € W such that vI'v’ and wRwv.

Let us now introduce a piece of notation. If there is a bisimulation between two states w and
w’, we denote it as w ~ w’. If two states w and w’ satisfy the same formulae, i.e. w |= ¢ if and only
if w’' | ¢, then we denote it as w ~ w’. Notice that these two notions are not identical.

The expected theorem is as follows.

Theorem 3.9. Let M and M’ be two models. Then, for every w € dom(M) and w' € dom(M'), we
have w ~ w' implies w ~ w'.

Proof. In class. This theorem shows that modal satisfaction is invariant under bisimulations. |

What about the converse then? When does w ~ w’ imply w ~ w'?
We call a model image-finite, if for each state w, the set of accessible states from w is finite.

Theorem 3.10. Let M and M’ be two image-finite models. Then, for every w € dom(M) and w' €
dom(M'"), we have w ~ w' if and only if w ~ w'.

Proof. In class! n
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Lecture 4

Alternative Semantics

The semantics we have presented so far is by far the most common semantics that is being used.
However, there some other semantics that are worth discussing.

4.1 Topological Semantics

Topological semantics of modal logic is historically the first one and can be traced back to the 1930s
(Goldblatt, 2006). The most influential series of works on the topological interpretation of modal
logic was initiated by J. C. C. McKinsey whom was later joined by A. Tarski (McKinsey & Tarski,
1944). Let us now start by reviewing the basics.

Definition 4.1 (Topological Space). A topological space S = (S, o) is a structure with a set S and
a collection o of subsets of S satisfying the following axioms:

1. The empty set and S are in o.
2. The union of any collection of sets in o is also in o.
3. The intersection of a finite collection of sets in o is also in o.

The collection ¢ is said to be a topology on S. The elements of S are called points and the
elements of o are called opens. The complements of open sets are called closed sets.

A topological model M is a triple (S, o, V') where (S, o) is a topological space, and V is a valu-
ation function. When we are in topological models, we will use the notation I for [J after the term
interior. Likewise, we will put C for ¢ after the term closure.

In topological models, the T operator is interpreted as the topological interior operator Int.
Recall that the interior of a set X, Int(X), is the largest open subset of X. We then define the
valuation of I modality as follows

V(Ip) = Int(V(#))

Recall now that the topological interior operator Int satisfies the following properties for each
X, YCS: @) Int(X)CX, ) Int(XNY) =Int(X)NInt(Y), (iil) Int(Int(X)) = Int(X).

Exercise 4.2. Recall the properties of the closure operator Clo.

16



4.2. GAME THEORETICAL SEMANTICS LECTURE 4. ALTERNATIVE SEMANTICS

Consequently, we define the semantics as follows.

Definition 4.3 (Topological Semantics). Truth of modal formulae in topological semantics is de-
fined inductively at a point s for a topological model M = (S, 0, V):

M,sEp ifand onlyif se V(p)forpe P

M,s = —p ifand only if M, s~

M,sE oAy ifandonlyif M,skE=pand M,s =

M,sETp ifandonlyif IV o (scUA M eU), Mt} )

There is a very well known connection between the topological spaces and the Kripke models.
Namely, every reflexive and transitive Kripke frame (S, R) gives rise to a topological space (S, o),
where o is the set of all upward closed subsets of the given frame. It is easy to see that the empty
set and S are in o, and furthermore arbitrary unions and finite intersections of upward closed sets
are still upward closed. Hence, o is a topology.

The topology or we obtained out of the Kripke frame (S, R) is a special one and is called an
Alexandroff topology. Alexandroff topologies are those in which each point has a least neighbor-
hood. It is evident that, in Kripke frames the least neighborhood of a point is the set of points
which are accessible in one step. In other words, the least neighborhood of a point s is the set
{t e W : sRt}.

However, Alexandroff topologies can be characterized in several ways. Another equivalent defi-
nition states that Alexandroff spaces are those topological spaces in which intersection of any family
of opens is again an open. It is then a nice exercise to see the equivalence of these two definitions.

Exercise 4.4. Verify that the two given definitions of Alexandroff topologies are indeed equivalent.

We just briefly explained how to obtain a topology out of a Kripke frame. We can also get a
Kripke frame from a topological space. The reason for that is the fact that each topological space
(S,0) induces a partial order R, defined as sR,t for s € Clo(t). It is now straight forward to see
that R, is reflexive and transitive. We then have R = R,,, if and only if the topological space is
Alexandroff (van Benthem & Bezhanishvili, 2007).

4.2 Game Theoretical Semantics

We will here consider two kinds of games. Modal Evaluation Games will evaluate whether a given
formula ¢ holds at a given state w in a given model M. The Modal Bisimulation Games, on the other
hand, will evaluate whether two states are bisimular or not.

The players of both games will be Eloise (denoted by 3) and Abelard (denoted by V) by following
the common terminology.

We will calculate whether a given formula ¢ holds at a given state w in the model M by playing
modal evaluation games. The positions in the game will be of the form (¢, w) where ¢ is a well
formed formula in the language of basic modal logic and w is a state. We will work with formulae
in the positive normal form. Recall that a formula ¢ is in positive normal form if ¢ has no negation
symbol, or ¢ = —) where 1) has no negation symbol. Observe that, — symbol changes the roles of
v and 4.

Exercise 4.5. What is a subformula? What are the subformulae of O(p A (Og V —r))?
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4.2. GAME THEORETICAL SEMANTICS LECTURE 4. ALTERNATIVE SEMANTICS

Hence the modal evaluation game &(¢, w) for modal model M is a board game with players 3
and V moving a token around the positions of the form (¢, v) where ¢ is a subformula of ¢ and v is
a state in M. The game starts at the state w which is the designated state at which we evaluate the
formulae ¢. As the game evolves, we move to the different accessible states and unravel ¢. Once a
player gets stuck, the game ends. Let us now consider the rules of the game.

The rules of the game is given below.

Position Player | Admissible Moves
(L, w) 3 0

(T,w) v [

(p,w) withw € V(p) | V [}

(p,w) withw ¢ V(p) | 3 [}

(Y1 Atha, w) v { (1, w), (2, w)}
(Y1 V g, w) 3 { (1, w), (Yo, w)}
(01, w) 3 {(¥,v) : wRv}
(O, w) v {(llf, v) : wRv}

Negations change the roles of ¥V and 3 in the game. Observe that, since the language of modal
logic is an extension of propositional logic, the game will be finite and terminate.

Winning conditions can be formulated as follows: 3 wins if V gets stuck, and dually, V wins if 3
gets stuck. As a matter of notation, we will denote the winning positions for 3 by Wing(£(p, w)).

What is the intuition behind introducing the game semantics? One can feel the basic intuition
behind the evaluation games by considering the winning positions. Note that if a position x is a
winning position for the player P in a game X, then P has a winning strategy starting from z in X.
We will observe in the next theorem that, if a position (¢, w) is a winning position for 3, then it is
equivalent to say w = ¢

Theorem 4.6. (¢, w) € Wing(E(p,w)) if and only if w |= .
Proof. In class. n

Modal bisimulation games, on the other hand, will provide an alternative semantics to approach
to bisimulations. In this game, V and 3 will compare the states across the respective models. 3 will
win if the given two neighborhood situations are bisimular, V will win otherwise.

Assume we are given w and w’ in the models M and M’ respectively. V starts. He picks an
accessible point to either v or v’. For simplicity, let us assume that V picked v such that wRv. Now,
3 has to pick a point v’ with w’ Rv’ such that v and v’ are bisimular as well. She loses immediately,
if she cannot find a corresponding point v in M.

A modal bisimulation game of length n, then can be defined as a game which can distinguish
formulas of depth at most n. It is then easy to observe that, 3 has a winning strategy in the
bisimulation game of length n for w and v if and only if these two states are actually bisimular for
formulas of depth at most n.

Theorem 4.7. w =, v if and only if 3 has a winning strategy in the modal bisimulation game of
length n.

Proof. Exercise! |

Exercise 4.8. Hintikka defined Ehrenfeucht - Fraissé games first (Hintikka, 1962). Learn them.
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Lecture 5

Defining Formulae

In this section, we have two aims. First, we will establish the connection between first-order pred-
icate logic and modal logic. Second, we will discuss the characteristic formula for some special
frames.

5.1 Standard Translation

We will immediately start with the standard translation from basic modal language to the first-order

language.
Let z be a first-order variable. Standard translation ©,, is defined as follows.

0,(p) = Pz
0.(T) = z==x

O:(mp) = —O4(p)

Ou(pAY) = Ou(p) AO()
0:(0p) = Fy(xRy A Oy(y)
0:(0p) = Vy(zRy — Oy(p)

where y is a fresh variable.
Exercise 5.1. Compute O, (Op — p), ©,(0p — p) and ©,(00p — p).
Exercise 5.2. Verify the following. ©,(0(0Op — ¢)) = 3y1(xRy1 A Vy2(y1Ry2 — Py2) — Qu1))-

Note that for any modal formula ¢, O, (¢) will have exactly one free variable, x. The role of this
free variable is to mark the current state (Blackburn et al. , 2001). Let us now introduce a piece
of notation. We will write M |= ©,(p)[w] to mean that the first-order formula ©,(y) is satisfied
in the model M when w is assigned to the free variable x. The following theorem establishes the
invariance result.

Theorem 5.3. For all models M, and all states w of M and any modal formulae o, we have:
M,w E g if and only if M = Y20, (i) w]

Proof. In class! |
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5.2. DEFINING FORMULAE LECTURE 5. DEFINING FORMULAE

Exercise 5.4. Show that for all models M, and all modal formulae ¢,
M = g ifand only if M = V2O, (p)

The famous van Benthem characterization theorem establishes the connection between modal
and first-order languages.

Theorem 5.5 (van Benthem). Let ¢(z) be a first-order formula in the language of first-order logic
with one variable. Then, p(x) is invariant for bisimulations if and only if it is equivalent to the standard
translation of a modal formula.

Proof. Skipped. |

5.2 Defining Formulae

Recall that the frames are structure with no valuation attached. Yet, we can utilize modal formulae
to characterize them.

Exercise 5.6. Recall the definitions of reflexive, symmetric, transitive and serial relations.

In modal frames, we have only two components: a set and a relation defined on this set. There-
fore, most of our job will be to characterize the properties of the relation by using modal formulae.
For instance, we can ask which the modal formula characterize the frames with reflexive relations
or symmetric relations. In our section, we will discuss this.

Proposition 5.7. The formula Op — p characterizes the reflexive frames.

Proof. In class. n
Exercise 5.8. Similarly, the formula p — Op characterizes the reflexive frames.

Proposition 5.9. The formula Op — OOp characterizes the transitive frames.

Proof. In class. n
Exercise 5.10. Similarly, the formula OOp — Op characterizes the transitive frames.

Exercise 5.11. The formula p — OOp characterizes the symmetric frames.

Exercise 5.12. The formula (T characterizes the serial frames.

Let us now introduce the terminology. The basic modal logic is K describes the class of all
frames. The logic K4 characterizes the transitive frames and is axiomatized by the axioms of basic
modal logic and (Jp — OOp. The logic T characterizes the reflexive frames and is axiomatized by
the axioms of basic modal logic and Clp — p. The logic S4 characterizes the transitive and transitive
frames and is axiomatized by the axioms of basic modal logic and (p — p with Op — OOp. Finally,
the logic S5 characterizes the frames whose relation is an equivalence relation and is axiomatized
by the axioms of basic modal logic and (p — p together with Op — OOp and p — OOp.

There are many other intermediate logics that define some other class of frames and are axiom-
atized with some other additional axioms, too. However, for our current concerns here, these logics
are sufficient.
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Lecture 6

Completeness

The completeness proof of modal logic uses a very common method. Given a logic, we show that
every consistent set of formulae has a model. Then the question is “how can we construct such a
model”? This question invites a constructive method. Therefore, given a set of formulae, we will
build the model step by step.

6.1 Maximal Consistency

The first notion we need is maximal consistency. A set S of formulae is maximal consistent if (i)
S is consistent, and (ii) any set of formulae properly containing S is inconsistent. In other words,
maximal consistency breaks down if you add one formula to a maximal consistent set. It is maximal
in the sense that it cannot admit further formulae.

Exercise 6.1. The theory at the state w in a model M is a maximal consistent set. Note that the theory
at the state w in a model M is defined as {¢ : M,w = ¢}.

Let us now see some important properties of maximal consistent sets.
Theorem 6.2. Let S be a maximal consistent set. Then,
1. S'is closed under modus ponens. In other words, if v, o — 1) € S, then ¢ € S.
2. For all formulae ¢, either ¢ € S xor —p € S.
Proof. Exercise! n

Then, one can ask: “How can we construct maximal consistent sets?” The following famous
lemma gives a precise algorithm for this task.

Lemma 6.3 (Lindenbaum’s Lemma). Let S be a consistent set of formulae. Then there is a maximal
consistent set of formulae ST such that S C S*. Here, ST is called the maximal consistent extension

of S.
Proof. In class! |
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6.2. CANONICAL MODELS LECTURE 6. COMPLETENESS

6.2 Canonical Models

Once we obtained maximal consistent sets, we can construct canonical models by lifting the relation
and the valuation to the level of maximal consistent sets. Here is the definition.

Definition 6.4 (Canonical Models). Canonical model M~ for a normal modal logic is the triple
(W+, RT,VT) where W is the set of all maximal consistent sets in the given logic, R is defined
by xRTy if for all formulae p, p € y implies $p € z, and finally V*(p) = {x € WT : p € z}

There is a very important motivation behind the construction of canonical models. The valuation
in the canonical model identifies the truth of a propositional variable at x with its membership in .
Thus, for all z € W, and for all propositional variables p, we have M T,z |= p if and only if p € x.
Our aim now is to extend this idea to any modal formula.

Before satisfying our expectations, let us first consider the following lemma which we will need
soon.

Lemma 6.5. For any x € W, if Oy € z, then there is a state y € W such that xRy and ¢ € .
Proof. In class. |

Now we can state and prove the famous “truth lemma” which is the foundation of the complete-
ness proof.

Lemma 6.6 (Truth Lemma). For any formula ¢, we have M+, z |= o if and only if ¢ € .
Proof. In class. |
Here is the final touch.

Theorem 6.7 (Completeness). Any normal modal logic is strongly complete with respect to its canon-
ical model.

Proof. In class. |
Theorem 6.8. K is strongly complete with respect to the class of all frames.
Proof. Exercise! |

This is the end.
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