
Basic Algebra

(only a draft)

Ali Nesin
Mathematics Department
Istanbul Bilgi University
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Chapter 1

Definition and Examples of
Groups

1.1 Definition and Basics

A binary operation or a multiplication on a set G is just a map from the
cartesian product G×G into G. The binary operations are usually denoted by
such symbols as ∗, ×, ·, +, ◦, ⊥,... The image of a pair (x, y) ∈ G × G is then
denoted by x ∗ y, x× y, x · y, x + y, x ◦ y, x ⊥ y, . . .

A group is a set G together with a binary operation ∗ and a constant e
satisfying the following properties:

G1. Associativity. For all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).
G2. Identity Element. For all x ∈ G, x ∗ e = e ∗ x = x.
G3. Inverse Element. For all x ∈ G, there is a y ∈ G such that

x ∗ y = y ∗ x = e.

Thus a group is a triple (G, ∗, e) satisfying the properties G1, G2 and G3.

Remarks. 1. On the same set G we may have several different binary opera-
tions that turn G into a group. These are considered to be different groups. In
other words, a group is more than just a set.

2. G3 does not say that x∗y = y ∗x for all x, y ∈ G; it only says that, given
x, the equality x ∗ y = y ∗ x holds for at least one y, but not necessarily for all
y.

3. G1 says that parentheses are useless. For example, instead of (x∗y)∗(z∗t)
we can just write x ∗ y ∗ z ∗ t.

4. We will see that the element e of a group satisfying G2 is unique. This
element is called the identity element of the group.

9



10 CHAPTER 1. DEFINITION AND EXAMPLES OF GROUPS

Examples.

1. The following are groups: (Z, +, 0), (Q,+, 0), (R,+, 0). We denote these
groups by Z+, Q+ and R+ or even by Z, Q and R simply if there is no
room for confusion.

2. The following are groups: ({1,−1}, ·, 1), (Q \ {0}, ·, 1), (R \ {0}, ·, 1). We
denote the last two groups by Q∗ and R∗ respectively.

3. The following are groups: ({q ∈ Q : q > 0}, ·, 1), ({r ∈ R : r > 0}, ·, 1).
We denote these groups by Q>0 and R>0 respectively.

4. Let X be any set and G = Sym(X), the set of all bijections from X
into X. Consider the composition operation ◦ on Sym(X). The triple
(Sym(X), ◦, IdX) is a group. We denote this group by Sym(X) simply
and call it the symmetric group on X. If X = {1, . . . , n}, the group
Sym(X) is denoted by Sym(n) and is called the symmetric group on n
letters. The group Sym(n) has n! many elements. At Section 1.2 we will
have a closer look at this group.

5. Let I be a set and (G, ∗, e) a group. The set of all functions IG from I into
G is a group via the following operation: For f, g ∈ IG, define f ∗ g ∈ IG
by the rule (f ∗ g)(i) = f(i) ∗ g(i). The identity element of this group is
the function that sends all the elements of I to the identity element of G.

For f ∈ IG and i ∈ I, let us denote f(i) by fi. We can represent the
function f by its values (fi)i∈I . With this representation,

IG = {(fi)i∈I : fi ∈ G}

and
(fi)i∈I ∗ (gi)i∈I = (fi ∗ gi)i∈I

(the componentwise multiplication). When this notation is used, the group
IG is denoted by by

∏
i∈I G and we call it the direct product of the group

G over the index set I. If I has just two elements we denote the group by
G×G or by G2. Similarly, if I has n elements we denote the group by Gn

or by G× . . .×G or by G⊕ . . .⊕G.

6. ¶ The set of all n times differentiable functions from R into R is a group
under the addition of functions (see the above example), more precisely,
given f and g, two n times differentiable functions from R into R, we
define f + g as in the example above:

(f + g)(x) = f(x) + g(x)

for all x ∈ R.

The set of all integrable functions from R into R is a group under the
addition of functions.
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Given a ∈ R, the set of all functions f from R into R such that f is
differentiable n times and f (n)(a) = 0 is a group under the addition of
functions.

The set of all functions f from R into R such that limx→∞ f(x) = 0 is a
group under the addition of functions.

7. Let I be any set and (G, ∗, e) be a group. The set of all functions IG from
I into G such that {i ∈ I : f(i) = e} is cofinite in I is a group called
direct sum of the family (Gi)i. This group is denoted by ⊕IG. Thus,
with the notation introduced above,

⊕IG = {(gi)i∈I : gi = e except for finitely many i ∈ I}.

Clearly ⊕IG is a subset of
∏

I G and they are equal only when I is finite.

8. Let I be any set and for each i ∈ I let (Gi, ∗i, ei) be a group. The set of
all functions g from I into ∪i∈IGi such that g(i) ∈ Gi is a group under
the following operation: If g and h are two such functions, define their
product g ∗ h by the rule (g ∗ h)(i) = g(i) ∗i h(i). This group is called the
direct product of the family (Gi)i. This group is denoted by

∏
i∈I Gi.

As above we let gi = g(i) and set g = (gi)i. Clearly (ei)i∈I is the identity
element of this group.

Also the subset {(gi)i∈I ∈
∏

i∈I Gi : gi = ei for all i except for finitely many}
of

∏
i∈I Gi is a group under the same operation. This group is called the

direct sum of the family (Gi)i and is denoted by ⊕i∈IGi.

9. Let X be a set. Let φ : Rn −→ X be a function. The set of bijections
f : R −→ R such that φ(r1, . . . , rn) = φ(r1, . . . , rn) = φ(f(r1), . . . , f(rn))
for all r1, . . . , rn ∈ R is a group under composition.

10. Let X and Y be two sets. Let φ : X −→ Y be a function. Consider the
set of bijections f : X −→ X such that φ ◦ fφ. This set is a group under
composition. In particular, the set of bijections of Rn that preserve the
distance on Rn is a group, called the group of isometries of Rn.

11. Let (G, ∗, e) be a group. Let X ⊆ G be a subset. Then the set

CG(X) := {g ∈ G : g ∗ x = x ∗ g for all x ∈ X}

is a group under ∗.

From now on (G, ∗, e) stands for a group. We start by proving the most
basic facts about groups.

Lemma 1.1.1 (Simplification) For x, y, z ∈ G, if x ∗ z = y ∗ z then x = y.
Similarly, if z ∗ x = z ∗ y then x = y.
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Proof: By G3 there is an element t ∈ G such that z ∗ t = e. Now, x
G2= x ∗ e =

x ∗ (z ∗ t) G1= (x ∗ z) ∗ t = (y ∗ z) ∗ t
G1= y ∗ (z ∗ t) = y ∗ e

G2= y. ¤

Lemma 1.1.2 The element e satisfying G2 is unique. In fact if f ∈ G is such
that x ∗ f = x for some x ∈ G, then f = e.

Proof: Since, x ∗ f = x
G2= x ∗ e, by Lemma 1.1.1, f = e. ¤

The unique element e is called the identity element of the group. Since the
identity element is unique, a group may be written as (G, ∗) instead of (G, ∗, e).

Very often one writes xy instead of x ∗ y. Also, one replaces the symbol e by
1. This is what we will do from now on. If there are several groups G, H etc.,
to distinguish, we will sometimes denote their identity elements by 1G, 1H etc.

Lemma 1.1.3 Given x ∈ G, the element y that satisfies G3 is unique; in fact
if xz = 1, then y = z.

Proof: Since xz = 1 = xy, by Lemma 1.1.1, z = y. ¤

Given x the unique element y that satisfies G3 depends on x. We denote it
by the symbol x−1. Thus xx−1 = x−1x = 1.

Note that for all x, y ∈ G, (xy)−1 = y−1x−1. Be aware that we do not
necessarily have (xy)−1 = x−1y−1. Note also that (x−1)−1 = x. (It is clear
from G3 that if y is the inverse of x, then x is the inverse of y. Or: since
xx−1 = 1 for all x ∈ G, applying this equality to x−1 instead of x we get
x−1(x−1)−1 = 1 = x−1x, thus by Lemma 1.1.1 x = (x−1)−1).

Property G1 says that when multiplying the elements of a group, the paren-
theses are unnecessary. From now on we will omit them.

For x ∈ G and n ∈ N we denote the product of n many x’s by xn. Thus
x1 = x, x2 = xx, x3 = xxx etc. We let x0 = 1 and x−n = (xn)−1. More
formally, we should have defined xn for n ∈ N by induction on n as follows:
x0 = 1 and xn+1 = xnx. As usual, we call x2 the square of x, x3 the cube or
the third power of x etc.

Lemma 1.1.4 For any x ∈ G and n, m ∈ Z, xnxm = xmxn = xm+n and
(xn)m = xnm.

Proof: Left as an exercise. (The formal proof using the inductive definition
may not be so trivial). ¤

A group G is called abelian or commutative if xy = yx for all x, y ∈ G.
Unless |X| ≤ 2, the group Sym(X) is not abelian.
When the group is abelian, one sometimes uses the additive notation x + y

instead of xy. In this case the identity element is denoted as 0, the inverse of
x is denoted as −x and instead of xn, one writes nx. Thus the lemma above
becomes: nx + mx = (n + m)x and n(mx) = (nm)x.
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Exercise.

1. On Z which of the following binary operations is associative, i.e. satisfies
G1?

a) x ∗ y = x− y.

b) x ∗ y = x.

c) x ∗ y = xy.

d) x ∗ y = x2.

2. Let G = R and define the binary relation ∗ as x ∗ y = 0. Show that
(G, ∗, 0) satisfies G1 and G3 but not G2.

3. Prove or disprove:

a. {f ∈ Sym(N) : {x ∈ N : f(x) 6= x} is finite } is a group under composi-
tion.

b. {f ∈ Sym(N) : {x ∈ N : f(x) 6= x} is an even integer } is a group
under composition.

c. {q ∈ Q>0 : q = a/b and b is square-free} is a group under the usual
multiplication.

4. Show that the set of functions f : R −→ R∗ is a group under the usual
product of functions: (f · g)(x) = f(x)g(x). What is the identity element
and the inverse of an element?

5. a) Let n ∈ N. Show that the set nZ = {nx : x ∈ Z} is a group under
addition.

b) Show that any subset of Z which is a group under addition is of the
form nZ for some unique n ∈ N.

6. Show that any nonempty subset of R closed under substraction is a group
under addition.

7. Show that the set {a/2n : a ∈ Z, n ∈ Z} is a group under addition.

8. Let r ∈ R∗. Show that the set {rn : n ∈ Z} is a group under multiplication.

9. Let Q[
√

2] = {a + b
√

2 : a, b ∈ Q} and Q[
√

2]∗ = Q[
√

2] \ {0}. Show that
(Q[

√
2]∗, ·, 1) is a group.

10. Let Z[
√

2] = {a + b
√

2 : a, b ∈ Z} and let

Z[
√

2]∗ := {α ∈ Z[
√

2] : there is a β ∈ Z[
√

2] such that αβ = 1}.

Show that (Z[
√

2]∗, ·, 1) is a group.

11. Let G be a group such that g2 = 1 for all g ∈ G. Show that G is abelian.
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12. Let G be a group. Show that the set

Aut(G) := {φ ∈ Sym(G) : φ(xy) = φ(x)φ(y) for all x, y ∈ G}

is a group under composition.

13. Let G be a group. For x, y ∈ G, set xy = y−1xy. Show that (xy)z = xzyz

and that (xy)z = xyz.

14. Let G be a group. For x, y ∈ G, define [x, y] = x−1y−1xy. Show that for
x, y, z ∈ G,

a) [x, yz] = [x, z][x, y]z and [xy, z] = [x, z]y[y, z].

b) (Philip Hall.) [[x, y−1], z]y[[y, z−1], x]z[[z, x−1], y]x = 1.

15. Let G be a group. Show that for x, y ∈ G and n a positive integer,

[xn, y] = [x, y]x
n−1

[x, y]x
n−2

. . . [x, y]x[x, y].

16. Let G be a group, X a set and f : G −→ X a bijection. On X define the
binary operation xy = f(f−1(x)f−1(y)). Show that X becomes a group
under this operation.

17. Let G be a group. The center of G is defined to be the set

Z(G) := {z ∈ G : zg = gz for all g ∈ G}.

Show that Z(G) is a group under the multiplication of G.

18. Let G be a set together with a binary operation ∗ and an element e ∈ G
satisfying the properties G1, G3 and

G2′. For all x ∈ G, x ∗ e = x.

Show that (G, ∗, e) is a group.

19. Let G be a set together with a binary operation ∗ and an element e ∈ G
satisfying the following properties G1, G2′ (see the above exercise) and

G3′ For all x ∈ G, there is a y ∈ G such that x ∗ y = e.

Is (G, ∗, e) a group?

20. Let G be a set together with a binary operation ∗ and a constant e satis-
fying the following properties G1, G2′ (the above exercise) and

G3′′ For all x ∈ G, there is a y ∈ G such that y ∗ x = e.

Is (G, ∗, e) a group?
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21. Let G be a set together with an associative binary operation (x, y) 7→ xy.

a. Assume that for all a, b ∈ G there are unique x, y ∈ G such that
ax = ya = b. Show that G is a group under this binary operation.

b. Assume that for all a, b ∈ G there is a unique x ∈ G such that ax = b.
Is G necessarily a group under this binary operation?

22. Let (G, ∗, e) and (H,×, e′) be two groups. Let f : G −→ H be a map such
that f(x ∗ y) = f(x) × f(y) for all x, y ∈ G. Such a function is called a
group homomorphism from the group G into the group H.

a) Show that f(e) = e′.

b) Show that f(x−1) = f(x)−1 for all x ∈ G.

c) Show that f(xn) = f(x)n for all x ∈ G and n ∈ N.

d) Show that f−1(e′) is a group under ∗.
e) Suppose f is a bijection. Show that f−1(u × v) = f−1(u) ∗ f−1(v) for
all u, v ∈ H.

23. Let G be a group. Let

Aut(G) = {f : G −→ G : f is a bijection and f(xy) = f(x)f(y) for all x, yinG}.

a. Show that Aut(G) is closed under composition.

b. Show that IdG ∈ Aut(G).

c. Show that if f ∈ Aut(G), then f−1 ∈ Aut(G).

d. Conclude that Aut(G) is a group.

Elements of Aut(G) are called automorphisms of the group G.

1.2 Example: Sym(X)

We first study the group Sym(n) for n ∈ N. Let us for example consider the
following element g of Sym(7):

g(1) = 2
g(2) = 5
g(3) = 3
g(4) = 7
g(5) = 1
g(6) = 6
g(7) = 4

We can represent this element as

g =
(

1 2 3 4 5 6 7
2 5 3 7 1 6 4

)
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or as (1, 2, 5)(3)(4, 7)(6) or as (1, 2, 5)(4, 7). We will prefer the last representa-
tion. The last representation can be read as follows: “1 goes to 2, 2 goes to 5,
5 goes back to 1; 4 goes to 7, 7 goes back to 4; the rest of the numbers (3 and
6) are fixed”.

Written this way, the element g = (1, 2, 5)(4, 7) may be seen as an element of
Sym(7) as well as an element of Sym(8). If one is careful enough when needed,
this never causes a problem.

It is impossible to represent IdSym(6) with the representation we adopted, so
we will write simply IdSym(6) or just 1 (with abuse of language).

Such a representation is called the cyclic representation of the element.
The elements such as (1, 2, 5), (3) and (4, 7) of the cyclic representation (1, 2, 5)(4, 7)
are called cycles. The cycle (1, 2, 3) is a 3-cycle. The cycle (4, 7) is a 2-cycle.
The element (1, 2, 5)(4, 7) of Sym(7) has four cycles, namely (1, 2, 5), (3), (4, 7)
and (6). On the other hand, the element (1, 2, 5)(4, 7) of Sym(8) has five cycles,
namely (1, 2, 5), (3), (4, 7), (6) and (8). The element IdSym(6) or 1 of Sym(6)
has six cycles. But the element 1 of Sym(8) has eight cycles.

Clearly (1, 2, 3) = (2, 3, 1) = (3, 1, 2) 6= (1, 3, 2).
Also (1, 2, 5)(4, 7) = (4, 7)(1, 2, 5) = (7, 4)(5, 2, 1).
The multiplication (more precisely, the composition) of disjoint cycles is very

simple: One just juxtaposes them, e.g. the multiplication of (1, 2, 5) and (4, 7)
is just (1, 2, 5)(4, 7), or (4, 7)(1, 2, 5). Similarly, the product of the two elements
(1, 5, 7)(3, 4) and (2, 6)(8, 9) is just (1, 5, 7)(2, 6)(3, 4)(8, 9).

If the cycles are not disjoint, then the multiplication of elements is slightly
more complicated. For example to compute (1, 2, 3)(1, 2, 4, 3, 5) we start from
the right and see where 1 goes to: 1 first goes to 2 (the right cycle) and the left
cycle takes 2 to 3. Thus the product starts as (1, 3, . . .. Now we restart the same
procedure with 3. As a result we obtain (1, 2, 3)(1, 2, 4, 3, 5) = (1, 3, 5, 2, 4). As
an exercise the reader should check that

(1, 2, 3, 4)(3, 5, 4) = (1, 2, 3, 5)
(1, 3, 2, 4)(1, 4)(3, 5, 4) = (2, 4)(3, 5)

The inverse of an element is easy to find. For example (1, 2, 3, 4, 5)−1 =
(1, 5, 4, 3, 2) and ((1, 2, 3, 4)(5, 6, 7))−1 = (1, 4, 3, 2)(5, 7, 6). On the other hand,
((1, 2, 3, 5)(5, 6, 7))−1 = (5, 6, 7)−1(1, 2, 3, 5)−1 = (5, 7, 6)(1, 5, 3, 2) = (1, 7, 6, 5, 3, 2).

We can use the same notation for Sym(N). For example the element g :=
(0, 1)(2, 3)(4, 5)(6, 7) . . . is in Sym(N) and g2 = IdN. On the other hand the
element (0, 1, 2, 3, 4, 5, . . .) is not in Sym(N) because the number 0 is not in the
image and this function is not onto, hence not a bijection. An infinite cycle in
Sym(N) cannot have a beginning.

For example the element (. . . , 7, 5, 3, 1, 2, 4, 6, 8, . . .) is in Sym(N).
The reader should not that, for the moment, we do not see the element

(0, 1)(2, 3)(4, 5)(6, 7) . . . as the product of infinitely many elements (0, 1), (2, 3),
(4, 5) etc. We can only multiply finitely many elements of a group1.

1Unless there is a concept of limit in the group.
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The cycle type of the element g of Sym(n) is a sequence of n natural num-
bers a1−a2− . . .−an where ai is the number of i-cycles in the cyclic representa-
tion of g. For example the cycle type of (1, 2, 5)(4, 7) ∈ Sym(8) is 3− 1− 1, the
cycle type of (1, 2, 5)(4, 7) ∈ Sym(9) is 4−1−1, the cycle type of (1, 2, 3)(4, 5, 6) ∈
Sym(6) is 0−0−2. The following formalism is more convenient and expressive:
We will say that (1, 2, 5)(4, 7) ∈ Sym(8) is of cycle type (1)(2)(3, 4)(5, 6, 7), or
even of type (1, 2)(3, 4, 5) if there is no possible confusion. For example the
elements of Sym(5) of cycle type (1, 2, 3)(4, 5) are: (1, 2, 3)(4, 5), (1, 3, 2)(4, 5),
(1, 2, 4)(3, 5), (1, 4, 2)(3, 5), (1, 2, 5)(3, 4), (1, 5, 2)(3, 4), (1, 3, 4)(2, 5), (1, 4, 3)(2, 5),
(1, 3, 5)(2, 4), (1, 5, 3)(2, 4), (1, 4, 5)(2, 3), (1, 5, 4)(2, 3), (2, 3, 4)(1, 5), (2, 4, 3)(1, 5),
(2, 3, 5)(1, 4), (2, 5, 3)(1, 4), (2, 4, 5)(1, 3), (2, 5, 4)(1, 3), (3, 4, 5)(1, 2), (3, 5, 4)(1, 2).

Exercises.

1. Write the elements of Sym(n) for n = 1, 2, 3, 4. Draw the multiplication
table of these groups. Show that Sym(n) has n! elements.

2. Find elements of each cycle type of Sym(n) for n = 2, 3, 4, 5, 6.

3. How many cycle types of elements are there in Sym(9) whose square is 1?

4. Find the number of elements of type (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12, 13)
of Sym(15).

5. Let g := (. . . , 7, 5, 3, 1, 2, 4, 6, 8, . . .) ∈ Sym(N). Show that gn 6= 1 for any
n ∈ Z \ {0}.

6. Let a := (0, 1) ∈ Sym(N). Show that CSym(N)(a) := {g ∈ Sym(N) : ga =
ag} = {g ∈ Sym(N) : g({0, 1}) = {0, 1}}.

7. Multiply the elements (0, 1)(1, 2)(3, 4) . . . and (1, 2)(3, 4)(5, 6) . . . of Sym(n).
How many cycles does the product have?

8. For a group G and an element g ∈ G, define o(g) , the order of g, to be
the least positive natural number m such that gm = 1 if there is such an
m, otherwise define o(g) = ∞. Thus o(g) = 1 if and only if g = 1.

Let G = Sym(N). Show that o(1, 2, 3) = 3, o(1, 2, 3, 4) = 4, o((1, 2, 3)(4, 5)) =
6, o(. . . , 7, 5, 3, 1, 2, 4, 6, 8, . . .) = ∞.

For each n = 1, 2, . . . , 12, find max{o(g) : g ∈ Sym(n)}.
9. The exponent exp(G) of a group G is the minimum natural number n > 0

such that gn = 1 for all g ∈ G if there is such a natural number, otherwise
the exponent of a group is said to be infinite. Show that exp(Sym(3)) = 6.
Find exp(Sym(n)) for n = 4, . . . , 12.

10. Show that if exp(G) = n and exp(H) = m, then exp(G×H) = lcm(m,n).

11. ∗∗ Is it true that every element of Sym(N) is a product of finitely many
squares?
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12. ∗∗ Is it true that every element of Sym(N) is a product of finitely many
p-th powers?

1.3 Example: Automorphism Groups of Graphs

1.3.1 Automorphisms of Binary Relational Structures

A binary relation on a set X is just a subset R of X×X. Instead of (x, y) ∈ R,
we prefer to write xRy. A binary relational structure Γ is a set X together
with a binary relation R. Thus a binary relational structure Γ is a pair (X, R)
where X is a set and R is a binary relation Γ.

An isomorphism of a binary relational structure (X, R) into another bi-
nary relational structure (Y, S) is a bijection f : X −→ Y such that for any
x1, x2 ∈ X, x1Rx2 if and only if f(x1)Rf(x2). An isomorphism from a binary
relational structure onto itself is called an automorphism of the binary rela-
tional structure. The set of all automorphisms of a binary relational structure
Γ is a group and is called the automorphism group of Γ and is denoted by
Aut(Γ).

Two relational structures Γ and Γ1 among which there is an isomorphism
are called isomorphic. We then write Γ ' Γ1.

The dual of a binary relational structure (X, R) is the binary relational
structure (X,S) defined as follows:

xSy if and only if xRy does not hold.

Exercises.

1. Show that the set Aut(Γ) of all automorphisms of a binary relational
structure Γ is a group under composition.

2. Let Γ, Γ1 and Γ3 be binary relational structures. Show that

a) Γ ' Γ.

b) If Γ ' Γ1 then Γ1 ' Γ

c) If Γ ' Γ1 and Γ1 ' Γ2 then Γ ' Γ2.

3. Show that the automorphism groups of a binary relational structure and
its dual are equal.

4. Let (X, R) and (Y, S) be two binary relational structure. Let φ be an iso-
morphism from (X, R) onto (Y, S). Show that Aut(Y, S) = φAut(X, R)φ−1.

5. Let X be a set. On the set ℘(X) of all subsets of X consider the binary
relation ⊆.

For any f ∈ Sym(X), define φf : ℘(X) −→ ℘(X) by φf (A) = f(A). Show
that φf ∈ Aut(℘(X),⊆). Show that Aut(℘(X),⊆) = {φf : f ∈ Sym(X)}.
Show that, for f, g ∈ Sym(X), φf ◦ φg = φf◦g.
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6. Let (X,R) be a relational structure. We will call a bijection φ : X −→ X
a soft automorphism if for all x, y ∈ X, if xRy then φ(x)Rφ(y) .

Is the set of all soft automorphism necessarily a group?

Let now X be any set. Find the set of soft automorphisms of (℘(X),⊆).

1.3.2 Graphs and Their Automorphisms

A binary relation R on a set X is called symmetric if xRy implies yRx for all
x, y ∈ X; it is called reflexive if xRx for all x ∈ X; it is called irreflexive if
xRx does not hold for any x ∈ X.

A graph Γ is a set X together with a symmetric and irreflexive binary
relation X. Thus a graph Γ is a pair (X, R) where X is a set and R is a
symmetric and irreflexive binary relation on X.

If (X, R) is a graph and x, y ∈ X are such that xRy then we say that x and
y are connected or that they are of distance 1. We often write x− y instead
of xRy. In that case, we also say that x and y are related and that x − y is
an edge. The elements of a graph are called vertices. A chain of the form
x = x0 − x1 − . . . − xn−1 − xn = y is called a path. If all the vertices xi are
distinct, the path is called a reduced path. If x and y are two vertices of a
graph such that x = x0− x1− . . .− xn−1− xn = y for some x1, . . . , xn−1 and if
n is minimal such number, we say that n is the distance between x and y. In
that case the path x = x0−x1− . . .−xn−1−xn = y is called a minimal path.
Otherwise the distance is said to be infinite. A minimal path is necessarily
reduced. A graph whose vertices are all connected to each other by a path is
called a connected graph. The maximum of the distances of vertices of a
graph is called diameter of the graph. A cycle in a graph is a closed reduced
path, i.e. a reduced path of the form x = x0 − x1 − . . . − xn−1 − xn = x. A
triangle-free graph is a graph without cycles of length three. A square-free
graph is a graph without cycles of length four. In a cycle-free graph, all minimal
paths are unique.

Exercises.

1. Let us find all graph structures on the set X = {1, 2, 3}. For any two
distinct points x and y we know that if x− y then y−x, so to shorten our
writing, we will write only one of the two relations (or edges).

Γ∅ : no relations at all
Γ3 : only 1− 2 (and 2− 1 of course)
Γ2 : only 1− 3
Γ1 : only 2− 3
Γ13 : only 1− 2 and 2− 3
Γ12 : only 1− 3 and 2− 3
Γ23 : only 1− 2 and 1− 3
Γ123 : all possible relations 1− 2, 2− 3 and 1− 3
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Show that Γ1, Γ2 and Γ3 are isomorphic. Show that Γ13, Γ12 and Γ23 are
isomorphic. Show that G1 and G23 are not isomorphic, but duals of each
other.

Thus on X there are only fundamentally different (i.e. nonisomorphic)
graph structures: Γ∅, Γ1, Γ23 and Γ123.

Show that Aut(Γ∅) = Aut(Γ123) = Sym(3) and Aut(Γ1) = Aut(Γ23) =
{1, (2, 3)}.

2. The complete graph on a set X is the graph where any two distinct
x, y ∈ X are related. Show that the automorphism group of a complete
graph on a set X is Sym(X).

3. Consider the following graphs on X := {1, 2, 3, 4}:

Γ∅ : no relations at all
Γ12 : only 1− 2 (and 2− 1 of course)
Γ123 : only 1− 2 and 2− 3
Γ12−34 : only 1− 2 and 3− 4
Γ1234 : only 1− 2, 2− 3 and 3− 4
Γ∗ : only 1− 2, 1− 3 and 1− 4

Show that

Aut(Γ∅) = Sym(4)
Aut(Γ12) = Aut(Γ12−34) = {1, (1, 2), (3, 4), (1, 2)(3, 4)}
Aut(Γ123) = {1, (1, 3)}
Aut(Γ12−34) = {1, (12), (34), (12)(34), (13)(24), (23)(14), (1324), (1223)}
Aut(Γ1234) = {1, (14)(23)}
Aut(Γ∗) = {1, (12), (13), (23), (123), (132)}

Show that the automorphism group of a graph Γ on X = {1, 2, 3, 4} is the
automorphism group of one of the above graphs.

Draw the multiplication table of Aut(Γ12−34)

4. Find a graph Γ on six points such that Aut(Γ) = 1.

5. Find a finite graph Γ such that |Aut(Γ)| = 3. Find one with 10 vertices.

6. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ
define the relation αRβ if and only if α∩ β = ∅. Then Γ becomes a graph
with this relation.

a) Calculate Aut(Γ) when |X| = 4.

b) Draw the graph Γ when X = {1, 2, 3, 4, 5}.
c) Show that Sym(5) imbeds in Aut(Γ) naturally. (You have to show that
each element σ of Sym(5) gives rise to an automorphism σ̃ of Γ in such
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a way that the map σ 7→ σ̃ is an injection from Sym(5) into Aut(Γ) and
that σ̃1 ◦ σ2 = σ̃1 ◦ σ̃2).

d) Show that Aut(Γ) ' Sym(5).

Solution: (a) The graph Γ is just six vertices joined two by two. A group
isomorphic to (Z/2Z)3 preserves the edges. And Sym(3) permutes the
edges. Thus the group has 8× 3! = 48 elements.

More formally, one can prove this as follows. Let the points be {1, 2, 3, 4, 5, 6}
and the edges be v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6). We can embed
Sym(3) in Aut(Γ) ≤ Sym(6) via

Id3 7→ Id6

(12) 7→ (12)(45)
(13) 7→ (13)(46)
(23) 7→ (23)(56)
(123) 7→ (123)(456)
(132) 7→ (132)(465)

For any φ ∈ Aut(Γ) there is an element α in the image of Sym(3) such
that α−1φ preserves the three edges v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6).
Thus α−1φ ∈ Sym{1, 4} × Sym{2, 5} × Sym{3, 6} ' (Z/2Z)3. It follows
that Aut(Γ) ' (Z/2Z)3o Sym(3) (to be explained next year).

(b) There are ten points. Draw two pentagons one inside the other. Label
the outside points as {1, 2}, {3, 4}, {5, 1}, {2, 3}, {4, 5}. Complete the
graph.

(c and d) Clearly any element of σ ∈ Sym(5) gives rise to an automorphism
σ̃ of Γ via σ̃{a, b} = {σ(a), σ(b)}. The fact that this map preserves the
incidence relation is clear. This map is one to one because if σ̃ = τ̃ ,
then for all distinct a, b, c, we have {σ(b)} = {σ(a), σ(b)} ∩ {σ(b), σ(c)} =
σ̃{a, b} ∩ σ̃{b, c} = τ̃{a, b} ∩ τ̃{b, c} = {τ(a), τ(b)} ∩ {τ(b), τ(c)} = {τ(b)}
and hence σ(b) = τ(b).

Let φ ∈ Aut(Γ). We will compose φ by elements of Sym(5) to obtain the
identity map. There is an σ ∈ Sym(5) such that φ{1, 2} = σ̃{1, 2} and
φ{3, 4} = σ̃{3, 4}. Thus, replacing φ by σ−1φ, we may assume that φ
fixes the vertices {1, 2} and {3, 4}. Now φ must preserve or exchange the
vertices {3, 5} and {4, 5}. By applying the element (34) of Sym(5) we may
assume that these two vertices are fixed as well. Now φ must preserve or
exchange the vertices {1, 3} and {2, 3}. By applying the element (12) of
Sym(5) we may assume that these two vertices are fixed as well. Now all
the vertices must be fixed.

7. Let n ≥ 3 and let Γ be the cyclic graph on {1, 2, . . . , n}, i.e. the only
relations are 1−2−3− . . .− (n−1)−n−1. Show that ρ := (1, 2, . . . , n) ∈
Aut(Γ). Show that τ = (2, n)(3, n−1) . . . ∈ Aut(Γ). (For example if n = 6
then τ = (2, 6)(3, 5), if n = 7 then τ = (2, 7)(3, 6)(4, 5)). Show that

Aut(Γ) = {ρiτ j : i = 0, 1, . . . , n− 1 and j = 0, 1}
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and that |Aut(Γ)| = 2n.

1.3.3 Binary Trees and Their Automorphism Groups

A regular binary tree Γn of height n is the finite graph on the set {1, 2, . . . , 2n−1}
where two vertices a and b are connected if and only if 2n divides either (a−2b)
or (b− 2a) and b 6= a.

Exercises 1. Draw Γ1, Γ2, Γ3 and Γ4. (To visualize better this tree, start by
putting 2n−1 to the bottom of the page and go upwards).

2. Find Aut(Γ2) and draw its multiplication table.
3. Show that (1, 5)(3, 7) ∈ Z(Aut(Γ2)). (See Exercise 17, 14).

Lemma 1.3.1 The following hold in the regular binary tree Γn (n > 1):
a) The element 2n−1 (called the root) is the only vertex connected to exactly

two vertices, namely to a := 2n−2 and b := 2n−2 + 2n−1.
b) The odd numbers (called extremities) are the only vertices connected to

only one vertex.
c) Any automorphism of Γn fixes 2n−1, either fixes or swaps a and b, and

stabilizes the extremities.
d) Let H := {γ ∈ Aut(Γn) : γ(a) = a} and H1 := Aut(Γn) \ H. Then for

any α ∈ H1, αH = H1. Also H ' Aut(Γn−1)×Aut(Γn−1). Hence |Aut(Γn)| =
2|Aut(Γn−1)|2 = 22n−1.

Proof: Easy. For part (d) note that Γn \ {2n−1} is the union of two disjoint
isomorphic copies of Γn−1. ¤

Proposition 1.3.2 Aut(Γn) has 22n−1 elements. Its center consists just of two
elements Id and the automorphism that exchanges the extremities of distance 2.

Proof: We will prove the first statement by induction on n. For n = 0 the
statement is clear. An automorphism of Γn+1 must fix the root 2n because the
root is the only vertex with two edges. Thus an automorphism of Γn+1 must
either fix or exchange the two vertices a := 2n−2 and b := 2n−2+2n−1 of distance
one from the root. Let H = {φ ∈ Aut(Γn+1) : φ(a) = a and φ(b) = b} and
H1 = {φ ∈ Aut(Γn+1) : φ(a) = b and φ(b) = a}. Thus Aut(Γn+1) = H t H1.
For γ ∈ H1, H1 = γH, thus |H| = |H1| and so |Aut(Γn+1)| = 2|H|. But H acts
on the trees on top of the vertices a and b and these subtrees are isomorphic to
Γn. It follows easily that H ' Aut(Γn−1)×Aut(Γn−1). Thus |H| = |Aut(Γn)|2.
Hence |Aut(Γn)| = 2|Aut(Γn)|2. Now it follows quite easily by induction that
|Aut(Γn)| = 22n−1.

Consider the element ζ that swaps the extremities of Γn and fixes the rest.
Let γ ∈ Aut(Γn). We want to show that γζ = ζγ. Let x be a vertex in Gn. If
x is not an extremity, then γζ(x) = γ(x) because ζ(x) = x and ζγ(x) = γ(x)
because γ(x) cannot be an extremity. If x is an extremity, then g(x) is also an
extremity and so ζγ(x) = γ(x)′ and γζ(x) = γ(x′). (Here x′ and γ(x)′ denote
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the unique extremities of distance two from x and γ(x) respectively). Thus we
have to show that γ(x′) = γ(x)′. Since x and x′ have distance two, γ(x) and
γ(x′) have distance two as well. Thus γ(x)′ = γ(x′). Thus ζ is in the center of
Aut(Γn).

Conversely let ζ ∈ Z(Aut(Γn)).
Assume first that ζ fixes a and b. Then ζ fixes the two trees above a and

b. By induction we know how ζ acts on these subtrees. Assume it acts as
swap on the left tree (the one above a) and as identity on the right one. Let
γ ∈ Aut(Γn) swap these two subtrees in some way or other. Then ζγ(x) = γζ(x)
for all extremities x. If x is on the right, then ζγ(x) = γ(x)′ 6= γ(x) = γζ(x), a
contradiction. Thus ζ swaps all extremities.

Assume now ζ exchanges a and b and hence the trees above them. Let γ be
identity on the left tree and swap on the right tree. Then for an extremity x of
the left tree, γζ(x) = ζ(x)′ 6= ζ(x) = ζγ(x), a contradiction. ¤

Exercises. Show that Γn−1 is isomorphic to the subtree Γn\{extremities of Γn}
via the map x 7→ x/2. From now on we identify them. Conclude that the map
from Aut(Γn) into Aut(Γn−1) that sends γ to the restriction of γ to the set of
non-extremities of Γn (' Γn−1) is a surjection. What is its kernel? (Not defined
yet)
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Chapter 2

Subgroups

2.1 Definition and Examples

Let G be a group and H a subset of G. If the set H together with the multipli-
cation of G is a group, then we say that H is a subgroup of G.

Examples.

1. The subset {1, (123), (132)} of Sym(3) is a subgroup of Sym(3).

2. The set 2Z of even integers is a subgroup of Z, .

3. The center Z(G) of a group G is a subgroup of G. (See Exercise 17, page
14).

When H is a subgroup of G, we write H ≤ G. If H ≤ G and H 6= G, then
we write H < G and we say that H is a proper subgroup of G.

For a subset H of G to be a subgroup of G we need the following conditions:
1. H must be closed under the multiplication of G, i.e. we must have h1h2 ∈

H for all h1, h2 ∈ H.
2. The identity element 1 of G must be in H.
3. For h ∈ H, h−1 must be in H.
The first condition says that the binary operation of G restricted to H is

a binary operation on H. The second condition says that H has an identity
element. The third condition says that the inverse of an element of H, which
is in G, is in fact in H. The associativity of the multiplication in H holds
automatically since it holds in G.

Lemma 2.1.1 A subset H of a group G is a subgroup if and only if H 6= ∅ and
HH−1 ⊆ H. (Here HH−1 = {h1h

−1
2 : h1, h2 ∈ H}).

Proof: From left to right it is clear. We prove the other direction.

25
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a) Since H 6= ∅, we may choose an element h ∈ H. Then 1 = hh−1 ∈
HH−1 ⊆ H, so 1 ∈ H.

b) Let h ∈ H. Then by part (a), h−1 = 1h−1 ∈ HH−1 ⊆ H, so h−1 ∈ H.
c) Let h1, h2 ∈ H. Then by part (b), h1h2 = h1(h−1

2 )−1 ∈ HH−1 ⊆ H, so
h1h2 ∈ H. ¤

Examples.

1. Z+ ≤ Q+ ≤ R+.

2. {1,−1} ≤ Q∗ ≤ R∗.

3. Q>0 ≤ R>0. But Q>0 is not a subgroup of Q because these groups do not
have the same operations.

4. nZ ≤ Z. By Exercise 5, page 13 (see also Lemma 2.1.2), these are the
only subgroups of Z.

5. For any group G, {1} ≤ G and G ≤ G. By abuse of language, the subgroup
{1} is denoted by 1. It is called the trivial subgroup of G. Any subgroup
H of G which is not G is called a proper subgroup; in this case we write
H < G.

6. For any group G and any g ∈ G, the set 〈g〉 := {gn : n ∈ Z} is a subgroup
of G.

7. Let I be a set and for each i ∈ I, let Gi be a group.Then the direct sum

⊕i∈IGi := {g ∈
∏

i∈I

Gi : gi 6= 1 for only finitely many i ∈ I}

is a subgroup of the direct product
∏

i∈I Gi. If I is infinite then ⊕IGi <∏
i∈I Gi.

8. Properly speaking Sym(n−1) is not a subgroup of Sym(n), in fact Sym(n−
1) is not even a subset of Sym(n), because the elements of the first group
are the bijections of the set {1, . . . , n− 1} and the elements of the second
group are the bijections of the set {1, . . . , n}. But we may regard the
elements of Sym(n − 1) as the elements of Sym(n) that fixe the point n.
For example the elements

(1)(2)(3)
(1, 2)(3)
(1, 3)(2)
(2, 3)(1)
(1, 2, 3)
(1, 3, 2)
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of Sym(3) may be regarded as the elements

(1)(2)(3)(4)
(1, 2)(3)(4)
(1, 3)(2)(4)
(2, 3)(1)(4)
(1, 2, 3)(4)
(1, 3, 2)(4)

of Sym(4). Viewing this way, we may regard Sym(3) as a subgroup of
Sym(4). More generally, if Y ⊆ X, Sym(Y ) can be regarded as a sub-
group of Sym(X) by regarding the elements of Sym(Y ) as the elements of
Sym(X) that fix the set X \ Y pointwise.

Lemma 2.1.2 (Subgroups of Z) Any subgroup of Z is of the form nZ for a
unique n ∈ N.

Proof: Let H ≤ Z. If H = 0, we choose n = 0. So assume H 6= 0. Then,
since −H = H, the set H ∩N \ {0} is nonempty. Let n be the smallest element
of H ∩ N \ {0}. We will show that H = nZ. Since n ∈ H and H is a group,
nZ ≤ H. Conversely, let h ∈ H. Divide h by n: h = nq + r for some q and
r = 0, 1, . . . , n− 1. Now r = h− nq ∈ H because nq ∈ nZ ≤ H and h ∈ H. By
the choice of n, this implies that r = 0. Thus h = nq ∈ nZ. ¤

Lemma 2.1.3 Let G be a group and (Hi)i∈I any family of subgroups of G.
Then

⋂
i∈I Hi is a subgroup of G.

Proof: Trivial. ¤

Exercises.

1. Check that {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} ≤ Sym(4).

2. Let G be a group and a ∈ G. Show that CG(a) := {g ∈ G : ga = ag} is a
subset of G closed under multiplication. Show that CG(a) is a subgroup
of G. This subgroup is called the centraliser of a in G.

3. Let G be a group

a) Show that if A ⊆ B ⊆ G, then CG(B) ≤ CG(A).

b) Show that for any A ⊆ G, A ⊆ CG(CG(A)).

c) Show that for any A ⊆ G, CG(A) = CG(CG(CG(A))).

4. Let X be any set and Y ⊆ X. Show that {g ∈ Sym(X) : g(Y ) = Y } is a
subgroup of Sym(X).

5. Let X be any set and Y ⊆ X. Show that {g ∈ Sym(X) : g(y) =
y for all y ∈ Y } is a subgroup of Sym(X).
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6. Let G be an abelian group and n ∈ N. Show that {gn : g ∈ G} and
{g ∈ G : gn = 1} are subgroups of G.

7. Let G be an abelian group. Show that {g ∈ G : gn = 1 for some n ∈
N \ {0}} is a subgroup of G.

8. Show that {g ∈ Sym(X) : gn = 1 for some n ∈ N \ {0}} is not a subgroup
of Sym(X) unless |X| ≤ 2.

9. Let H be a nonempty finite subset of a group G closed under multiplica-
tion. Show that H is a subgroup of G. Does this hold for infinite subsets?

10. For n, m ∈ N \ {0}, show that nZ ≤ mZ if and only if m divides n.

11. Find all subgroups of Sym(3).

12. Find all subgroups of Sym(3)× {1,−1}.

13. Let G be a group and A and B two subgroups. Show that if G = A ∪ B
then either G = A or G = B

14. Let G be a group and A, B and C three proper subgroups. Assume that
G = A ∪B ∪ C. What can you say about G?

15. Let r ∈ R. Show that 〈r〉 = rZ.

16. Let r, s ∈ R. Show that the set rZ + sZ := {ra + sb : a, b ∈ Z} is a
subgroup of R. More generally, let X ⊆ R be any subset of R. Show that
the set

{
n∑

i=1

xiai : n ∈ N, xi ∈ X, ai ∈ Z}

is a subgroup of R.

17. Let H and K be two subgroups of a group G. Show that {HxK : x ∈ G} is
a partition of G, i.e. show that for any x, y ∈ G, either HxK ∩HyK = ∅
or HxK = HyK. The set HxK is called a double coset. (See also
Lemma 2.3.1).

Proof: The relation x ≡ y defined by “HxK = HyK” is certainly re-
flexive and symmetric. Let us prove the transitivity. It is clear that
HxK = HyK if and only if x ∈ HyK. Thus if x ∈ HyK and y ∈ HzK,
then x ∈ HHzKK ⊆ HzK. ¤

18. Let G be any group. Let X ⊆ G. Show that the set

{xa1
1 . . . xan

n : n ∈ N, xi ∈ X, ai ∈ Z}

is a subgroup of G.
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19. Let G be a group and A and B be two subgroups of G. Let AB = {ab :
a ∈ A, b ∈ B}.
a) Show that there is a quite a natural one to one correspondence between
AB and BA.

b) Consider the map f : A×B −→ AB given by f(a, b) = ab. Show that
f−1(ab) = {ac, c−1b : c ∈ A ∩ C}.
c) Conclude that if A and B are finite then |AB| = |A||B|/|A ∩B|.
d) Show that AB is a subgroup of G if and only if BA ⊆ AB if and only
if AB = BA.

20. Show that any two nontrivial subgroups of Q intersect nontrivially. What
is the intersection of all the nontrivial subgroups of Q?

21. Let G be any group. Let X ⊆ G. Show that the set

{xa1
1 . . . xan

n : n ∈ N, xi ∈ X, ai ∈ Z}
is a subgroup of G. (By convention,

∑0
i=1 ai = 0).

22. Let G be any group. Let X ⊆ G. Show that the set

{xa1
1 . . . xan

n : n ∈ N, xi ∈ X, ai ∈ Z,

n∑

i=1

ai is even}

is a subgroup of G.

23. Let X be a set. For α ∈ Sym(X), let Stab(α) = {x ∈ X. : α(x) = x}.
Let Sym<ω(X) = {α ∈ Sym(ω) : Stab(α) is cofinite } = {g ∈ Sym(N) :
g(x) 6= x for only finitely many elements of N}. Then Sym<ω(X) ≤ Sym(ω).

24. Let X be a set and κ a cardinal number. Let Sym<κ(X) = {α ∈ Sym(ω) :
|X \ Stab(α)| < κ}. Then Sym<κ(X) ≤ Sym(ω).

2.2 Generators

Let X ⊆ G. Then by Lemma 2.1.3, the intersection
⋂

X⊆H≤G H of all the
subgroups of G that contain X is a subgroup of G. Since it also contains X,⋂

X⊆H≤G H is the smallest subgroup of G containing X. We let

〈X〉 =
⋂

X⊆H≤G

H

and call it the subgroup generated by X.
The following clearly hold:

If x ∈ X then x ∈ 〈X〉
If x ∈ X and ε = ±1 then xε ∈ 〈X〉
If x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {1,−1} then xε1

1 . . . xεn
n ∈ 〈X〉
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It follows that the set {xε1
1 ∈ xεn

n : n ∈ N, xi ∈ X, εi = ±1} is a subset
of 〈X〉. On the other hand by Exercise 21, page 29, the set {xε1

1 . . . xεn
n : n ∈

N, xi ∈ X, εi = ±1} is a subgroup of G; since it also contains X, by the fact
that 〈X〉 is the smallest subgroup of G containing X, we must have the equality.
We have proved:

Lemma 2.2.1 Let X ⊆ G. Then

{xε1
1 . . . xεn

n : n ∈ N, xi ∈ X, εi = ±1} = 〈X〉.

We say that the subgroup 〈X〉 is generated by X. The set X is called a
set of generators of 〈X〉. For any H ≤ G, clearly 〈H〉 = H.

If G = 〈X〉 for some finite subset X of G, we say that G is finitely generated.
It is not true in general that a subgroup of a finitely generated group is finitely
generated (¶ For example, if G = F2, the free group on two generators, then G′

is not finitely generated).
If G = 〈x〉 for some x ∈ G, then the group G is called cyclic. Cyclic groups

are of course abelian (Lemma 1.1.4).

Exercises.

1. Find the subgroup of

a. Q+ generated by 2/3.

b. qq+ generated by 2/3 and 4/9.

c. Q∗ generated by {1/p : p a prime in N}.
d. Q∗ generated by {1/p : p an odd prime in ∈ N}.

2. Generators of Sym(n). a) Show that 〈(12), (13), . . . , (1, n)〉 = Sym(n).

b) Show that 〈(1, 2), (2, 3), . . . , (n− 1, n)〉 = Sym(n).

c) Show that 〈(1, 2, . . . , n), (1, 2)〉 = Sym(n).

3. What is the subgroup of Sym(12) generated by the element (12)(345)(6789)?

4. Finitely Generated Subgroups of Q. Let G = Q. Let q1, . . . , qn ∈ Q.
Show that there is a q ∈ Q such that 〈q1, . . . , qn〉 = 〈q〉.

5. Let G = Q. For i ∈ N, let qi = 1/2i. Show that 〈qi : i ∈ N = {a/2i :
a ∈ Z and i ∈ N} and that this subgroup of Q is not generated by finitely
many elements of Q.

6. Show that Q+ is not finitely generated.

7. Show that any two nontrivial subgroups of Q intersect nontrivially.

8. Find all subgroups of Q+.
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9. Greatest Common Divisor. Let G = Z and n,m ∈ Z. Show that
〈n,m〉 = nZ + mZ. Conclude that nZ + mZ = sZ for some s ∈ N
(Exercise 5, page 13). Show that s = gcd(n,m). Conclude that there are
x, y ∈ Z such that gcd(n,m) = nx + my.

10. Least Common Multiple. Let G = Z and n, m ∈ Z. We know that
nZ ∩mZ ≤ Z. Conclude that nZ+ mZ = rZ for some r ∈ N. Show that
r = lcm(n,m).

11. Let H ≤ G, g ∈ G and n and m two integers. Show that if gn, gm ∈ H,
then ggcd(n,m) ∈ H. (Hint: See Exercise 9). In particular if gn = gm = 1,
then ggcd(n,m) = 1.

12. Show that subgroups of a cyclic group are cyclic.

13. Show that every ascending chain of subgroups of G is stationary if and
only if every subgroup of G is finitely generated.

2.3 Cosets and Coset Spaces

Let G be a group and X and Y be two subsets of G. Let g ∈ G. We define the
following sets:

gX = {gx : x ∈ X}
Xg = {xg : x ∈ X}
XY = {xy : x ∈ X, y ∈ Y }
X−1 = {x−1 : x ∈ X}

The meaning of the terms XY Z, g−1Xg, gXhY , X−1X should be clear.
Note that X−1X = {y−1x : x, y ∈ X} is not necessarily the set {1}.

If H ≤ G and g ∈ G, the set gH is called a left coset of H in G, the set
Hg is called the right coset of H in G.

Lemma 2.3.1 For H ≤ G and x, y ∈ G, either xH = yH or xH ∩ yH = ∅.
Furthermore the first case happens if and only if y−1x ∈ H if and only if x−1y ∈
H if and only if x ∈ yH if and only if y ∈ xH.

Proof: Although a special case of Exercise 17, page 28, (take K = 1) we prove
the first statement anyway. Assume xH ∩ yH 6= ∅. Let a ∈ xH ∩ yH. Then
a = xh = yk for some h, k ∈ H. Now xH = xhh−1H = ykh−1H ⊆ yH.
Similarly yH ⊆ xH. Thus xH = yH. The second part is now obvious. ¤

If H ≤ G the set {xH : x ∈ G} is called the left coset space of H in G.
The right coset space is defined similarly.

Lemma 2.3.2 The left coset space is a partition of G.

Proof: Since for any x ∈ G, x = x1 ∈ xH, the sets xH for x ∈ G cover G.
They are also disjoint by the previous lemma. ¤
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Corollary 2.3.3 If G is finite and H ≤ G then |H| divides |G|.

Proof: The map x 7→ ba−1x is a one to one correspondence from aH onto bH.
Thus all the cosets of H have the same number of elements. The corollary now
follows from the previous lemma. ¤

If a group G is finite, its cardinality is called the order of G

Corollary 2.3.4 A group of prime order is cyclic, in fact it is generated by any
of its nontrivial elements. In particular such a group is abelian.

Proof: Let G be a group of prime order. Let g ∈ G#. Then 1 < 〈g〉 ≤ G and
by Corollary 2.3.3, 1 6= |〈g〉| divides |G|. Hence |〈g〉| = |G| and 〈g〉 = G. ¤

Note that the left coset space and the right coset space in general are not
equal. However there is a natural bijection between them (Exercise 11, page 33).
We denote by G/H any one of the coset spaces. We will say which coset space
we intend if that is relevant. In any event, we can speak of |G/H| ∈ N ∪ {∞}
without problems1. One sometimes writes [G : H] instead of |G/H|. This
number is called the index of H in G.

Note that the sets G/H and G do not intersect, even if H = 1, because the
elements of G/H are subsets of G, and not elements of G.

Corollary 2.3.5 If G is finite and H ≤ G then |G/H| = |G|/|H|.

Exercises.

1. Let H ≤ G and g ∈ G. Show that g−1Hg ≤ G.

2. Show that [Z : nZ] = n.

3. Show that [Q : Z] = ∞.

4. Show that [R : Q] = ∞.

5. Show that [R∗ : Q∗] = ∞.

6. Show that [R∗ : R>0] = 2.

7. Show that if k ≤ n then [Sym(n) : Sym(k)] = (k + 1)(k + 2) . . . n.

8. Find [Q[
√

2]∗ : Q∗].

9. Is the subgroup of Q∗ generated by 2/5 and 4/7 cyclic?

10. Show the subgroup of R∗ generated by
√

2 and
√

2 is isomorphic to the
subgroup of R generated by

√
2 and

√
3.

1To be precise, |G/H| is a cardinal number. But in group theory, most often what more is
important is whether or not |G/H| is finite.
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11. Let H ≤ G. Show that there is a natural bijection between the left coset
space and the right coset space.

Proof: Consider the map xH 7→ Hx−1. This is well defined and one to
one because xH = yH if and only if y−1x ∈ H if and only if y−1 ∈ Hx−1

if and only if Hy−1 = Hx−1. It is also onto.

12. Write the left and the right coset spaces of Sym(3) in Sym(4).

13. Show that Sym(n) = tn−1
i=1 (i, n) Sym(n− 1).

14. Let H ≤ G. Let NG(H) := {g ∈ G : gH = Hg}. Show that H ≤
NG(H) ≤ G. The group NG(H) is called the normalizer of H in G.

15. Let H, K be two subgroups of G. Assume that for all k ∈ K, kHk−1 ⊆ H.
Show that K ⊆ NG(H).

16. Let H and K be two subgroups of a group G. Show that for x and y in
G, xH ∩ yK either is empty or a coset of H ∩K.

Proof: Assume xH ∩ yK 6= ∅. Let z ∈ xH ∩ yK. Then xH = zH and
yK = zK. So xH ∩ yK = zH ∩ zK = z(H ∩K). ¤

17. Let G be any group generated by a subset X ⊆ G and let k ∈ N. Show
that the set

{xa1
1 . . . xan

n : n ∈ N, xi ∈ X, ai ∈ Z,

n∑

i=1

ai ≡ 0mod k}

is a subgroup of G of index at most k.

18. ∗ Does Sym(N) has a proper subgroup of finite index?

19. ∗ Show that Sym(N)/ Sym<ω(N) is uncountable.

20. Let G be a group. For a ∈ G, let aG := {g−1ag : g ∈ G} (the conjugacy
class of a in G.

a) For a, b ∈ G, show that either aG ∩ bG = ∅ or aG = bG.

b) Show that the map gCG(a) −→ gag−1 defines a bijection between
G/CG(a) and aG. (See Exercise 2, page 27).

Proof: By question 11, we may assume that G/CG(a) stands for the
right coset space {CG(a)g : g ∈ G}. It is easy to check that the map
CG(a)g 7→ ag is a well-defined bijection between G/CG(a) and aG. ¤

21. a) How many conjugacy classes are there in Sym(5)?

b). Find the sizes of the centralizers of the elements of Sym(5).

22. Proceeding as above show that there is a bijection between the right coset
space G/NG(H) and the set {g−1Hg : g ∈ G}.
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23. a) Show that the intersection of two subgroups of finite index is finite.

b) If C ≤ B ≤ A then [A : C] = [A : B][B : C].

c) If [G : H] = n and [G : K] = m, what can you say about [G : H ∩K]?

Proof: (a) Let H and K be two subgroups of index n and m of a group
G. Then for any x ∈ G, x(H ∩K) = xH ∩ xK and there are at most n
choices for xH and m choices for xK. Hence [G : H ∩K] ≤ nm.

(b) If B = tr
i=1biC and A = ts

j=1ajB, then A = tr
i=1 ts

j=1 biajC.

(c) Thus [G : K ∩ H] = [G : H][H : H ∩ K] = [G : K][K : H ∩ K]. It
follows that n and m both divide [G : K ∩ H], hence lcm(n,m) divides
[G : K ∩H]. Further in part (a) we have seen that [G : K ∩H] ≤ mn. ¤

2.4 Order of an Element

Let g ∈ G. We let o(g) to be the smallest positive natural number n such that
gn = 1 if there is such a number. Otherwise we let o(g) = ∞. The number o(g)
is called the order of g.

Lemma 2.4.1 If g is in a group G and gn = 1 then o(g) divides n.

Proof: Divide n by o(g): n = o(g)q+r for some q ∈ Z and r = 0, 1, . . . , o(g)−1.
We have 1 = gn = go(g)q+r = go(g)qgr = (go(g))qgr = 1qgr = gr. Thus gr = 1.
Since 0 ≤ r < o(g), from the definition of o(g) we get r = 0. Thus o(g) divides
n. ¤

Lemma 2.4.2 If g is in a group G, then |〈g〉| = o(g).

Proof: Left as an exercise. ¤

Corollary 2.4.3 If G is finite and g ∈ G then o(g) divides |G|.

Lemma 2.4.4 Let H ≤ G, g ∈ G and n and m two integers.
a) If gn, gm ∈ H, then ggcd(n,m) ∈ H.
b) In particular if n and m are prime to each other then g ∈ H.
c) In particular if n and m are prime to each other and gn = gm = 1 then

g = 1.

Proof: Everything follows from part (a) that we now prove: Let x, y ∈ Z
be such that xn + ym = gcd(n,m) (Exercise 9, page 31). Then ggcd(n.m) =
gxn+ym = (gn)x(gm)y ∈ H. ¤
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Exercises.

1. What is the order of (12)(345)(6789) ∈ Sym(9)?

2. Find all elements of order 5, 6 and 7 of Sym(5).

3. Find all elements of finite order of R∗.

4. Let g ∈ G have finite order n. Let m ∈ N. What is the order of gm?

5. Let g, h ∈ G be such that gn = h and o(h) = m. What can you say about
the order of g?

6. Let g ∈ G have order n. Let d divide n and q = n/d. Show that gq has
order d and that gd has order q.

7. Does the set of elements of finite order of a group form a subgroup?

8. Show that if G is a finite group and has an element of order n, then n
divides |G|. Is the converse true? I.e. if G is finite and divisible by n, is it
true that G has an element of order n?
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Chapter 3

Fundamental Concepts

3.1 Morphisms

Let G and H be two groups. A map φ : G −→ H is called a homomorphism
of groups if φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈ G. If G = H, we say that
φ is an endomorphism. A homomorphism which is also a bijection, is called
an isomorphism. If there is an isomorphism φ : G −→ H, then we say that G
and H are isomorphic. An isomorphism from a group onto itself is called an
automorphism.

The set of homomorphisms from a group G into a group H is denoted by
Hom(G,H). The set of endomorphisms and automorphisms of a group is de-
noted by End(G) and Aut(G) respectively.

Lemma 3.1.1 If φ : G −→ H and ψ : H −→ K are group homomorphisms,
then the map ψ ◦ φ : G −→ K is a group homomorphism.

Proof: Trivial. ¤

Lemma 3.1.2 If G is a group then Aut(G) is also a group under composition.

Proof: By Lemma 3.1.1, Aut(G) is closed under composition. Clearly IdG ∈
Aut(G). It remains to show that if φ ∈ Aut(G), then φ−1 ∈ Aut(G). We leave
this as an exercise. ¤

Lemma 3.1.3 If G is any group and A an abelian group then Hom(G,A) is also
a group under the multiplication (For φ, ψ ∈ Hom(G,A) and g ∈ G, (φψ)(g) =
φ(g)ψ(g)).

Proof: For φ, ψ ∈ Hom(G,A), the map φψ : G −→ A is defined by (φψ)(g) =
φ(g)ψ(g) for all g ∈ G. It is a matter of triviality (using the commutativity of
A) to check that φψ is a homomorphism of groups, i.e. that φψ ∈ Hom(G,A).

The map 1 : G −→ A defined by 1(g) = g for all g ∈ G is of course
in Hom(G, A). It is easy to check that the homomorphism 1 is the identity
element of Hom(G,A).

37
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If φ ∈ Hom(G,A) define φ−1 by φ−1(g) = φ(g)−1. It is a matter of triviality
(using the commutativity of A) to check that φ−1 is a homomorphism of groups,
i.e. that φ−1 ∈ Hom(G,A).

These prove the lemma. ¤

Examples.

1. For n ∈ Z, the map x 7→ nxis an endomorphism of Z. In general if G is
an abelian group, for each n ∈ Z, the map g 7→ gn is an endomorphism of
G.

2. Let G be a group and g ∈ G. Define Inng : G −→ G via Inng(x) = gxg−1.
Then Inng ∈ Aut(G).

3. For i ∈ I, the map pri :
∏

I Gi −→ Gi given by pri((gi)i∈I) = gi is
a surjective homomorphism of groups. It is called the i-th projection
map.

Lemma 3.1.4 Let φ : G −→ H be a homomorphism of groups. Then
i. φ(1G) = 1H .
ii. φ(g−1) = φ(g)−1 for all g ∈ G.
iii. φ(gn) = φ(g)n for all g ∈ G and n ∈ Z.

Proof: i. φ(1G) = φ(1G1G) = φ(1G)φ(1G), so φ(1G) = 1H .
ii. 1 = φ(1) = φ(gg−1) = φ(g)φ(g−1), so φ(g−1) = φ(g)−1.
iii. Clear. ¤

Lemma 3.1.5 Let φ : G −→ H be a group homomorphism. Then
i.For every K ≤ G, φ(K) ≤ H. In particular φ(G) ≤ H.
i.For every K ≤ H, φ−1(K) ≤ G. In particular Ker(φ) := φ−1(1H) ≤ G.

Proof: Easy. ¤

Let φ be a group homomorphism from G into H. We define the kernel of
φ to be

Ker(φ) := {g ∈ G : φ(g) = 1} = φ−1(1).

By Lemma 3.1.5.ii, Ker(φ) ≤ G.
The following result is used very often.

Lemma 3.1.6 A group homomorphism φ : G −→ H is one to one if and only
if Ker(φ) = 1}.

Proof: Assume φ is one to one. Let g ∈ Ker(φ). Then φ(g) = 1 = φ(1). Since
φ is one to one, we get g = 1.

Conversely, assume Ker(φ) = 1. Let g1, g2 ∈ G be such that φ(g1) = φ(g2).
Then by Lemma 3.1.4, φ(g1g

−1
2 ) = φ(g1)φ(g2)−1 = 1. Hence g1g

−1
2 ∈ Ker(φ) =

1 and so g1 = g2. ¤
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Exercises.

1. Let H ≤ G and g ∈ G. Show that gHg−1 is a subgroup of G isomorphic
to H.

2. Find a group G that has a proper subgroup isomorphic to itself.

3. Find the kernel and the image of the group homomorphism, φ : Z×Z −→ Z
given by, φ(x, y) = x + y.

4. Let φ : Z × Z −→ Z × Z given by, φ(x, y) = (x + y, x − y). Find φn for
n ∈ N. Show that each φn is an automorphism.

5. Show that the subgroups generated by
√

2 and
√

3 in R+ are isomorphic.

6. Show that the subgroup generated by
√

2 and
√

3 in R* is isomorphic to
Z× Z. (4 pts.)

7. Show that the maps φn(x) = nx (n ∈ Z) are the only endomorphisms of
Z. Show that Aut(Z) = {IdZ, φ−1} and that Aut(Z) is isomorphic to the
subgroup {1,−1} of R∗.

8. Show that the maps φq(x) = qx (q ∈ Q) are the only endomorphisms of
Q. Show that Aut(Q) = {φq : q 6= 0} and that Aut(Q) ' Q∗.

9. Let A be an abelian group written additively and let r an integer.

a) Let A[r] = {a ∈ A : ra = 1}. Show that A[r] ≤ A.

b) Let rA = {ra : a ∈ A}. Show that rA ≤ A. 4.

c) Assume A has exponent nm where (n,m) = 1. Show that nA = A[m],
mA = A[n] and A ' A[n]⊕A[m].

10. Let G be a group and g ∈ G. Define Inng : G −→ G via Inng(x) = gxg−1.
Show that the map g 7→ Inng is a homomorphism from the group G into
Aut(G). Thus Inn(G) := {Inng : g ∈ G} is a subgroup of G. Show that
Ker(Inn) = Z(G).

11. Consider the situation of Exercise 16, page 14. Show that f is an isomor-
phism of groups.

12. Let G be a group. For each n and σ ∈ Sym(n) show that the map σ̃ :
Gn −→ Gn given by σ̃(g1, . . . , gn) = (gσ(1), . . . , gσ(n)) is an automorphism
of Gn. Show that the map ˜ : Sym(n) −→ Aut(G) that sends σ ∈ Sym(n)
to σ̃ ∈ Aut(G) is a one-to-one group homomorphism.
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3.2 Quotient Group

Let G be a group and H ≤ G. Let us consider the left coset space G/H. For
xH, yH ∈ G/H, we may want to define a binary operation on G/H as follows:
(xH)(yH) = (xy)H for all xH, yH ∈ G/H. Assuming we can do this, then it
is clear that G/H becomes a group under this binary operation. However, this
binary operation may not be well defined, because, we may have xH = x1H
and yH = y1H, but (xy)H 6= (x1y1)H for some x, x1, y, y1 ∈ G, and this will
prevent the binary operation on the set G/H to be well-defined.

Lemma 3.2.1 For H ≤ G, the following conditions are equivalent:
i. For all x, x1, y, y1 ∈ G, if xH = x1H and yH = y1H, then (xy)H =

(x1y1)H.
ii. For all x ∈ G, xH = Hx.
iii. For all x ∈ G, xH ⊆ Hx.
iv. For all x ∈ G, Hx ⊆ xH.
v. For all x ∈ G, x−1Hx = H.
vi. For all x ∈ G, x−1Hx ⊆ H.

Proof: (ii ⇒ iii) is clear. Conversely, if xH ⊆ Hx for all x ∈ G, then x−1H ⊆
Hx−1 for all x ∈ G, i.e. Hx ⊆ xH for all x ∈ G. This show (ii). Thus (ii) and
(iii) are equivalent. By symmetry (ii) and (iv) are equivalent. (ii ⇒ v) is clear
as well. Certainly (v ⇒ vi). Conversely if (vi) holds then xHx−1 ⊆ H for all
x ∈ G, i.e. H ⊆ x−1Hx for all x ∈ G. Hence (v) holds. Thus, (ii), (iii), (iv), (v)
and (vi) are equivalent.

(i ⇒ v). Let y ∈ G and h ∈ H. Take y = y1 and x = h and x1 = 1 in (i).
Thus hyH = yH, i.e. y−1hy ∈ H. Thus y−1Hy ⊆ H for all y ∈ H.

(ii ⇒ i). Let x, x1, y, y1 ∈ G be such that xH = x1H and yH = y1H. Thus
. xyH = xy1H = xHy1 = x1Hy1 = x1y1H. ¤

A subgroup satisfying one of the above conditions is called a normal sub-
group. If the subgroup H is normal in G, we write H C G. Thus when H C G,
every left coset xH is equal to the right coset Hx. Hence the left coset space of
H in G is equal to the right coset space of H in G.

Condition (vi) is most often the easiest to check. Writing Hx for x−1Hx,
this condition becomes: Hx ⊆ H for all x ∈ G.

Problem 3.2.1 Is it true that if the left coset space of H in G is equal to the
right coset space of H in G then H C G?

One should be aware that if xH = Hx (even for all x ∈ G), does not imply
that xh = hx for all h ∈ H. The condition xH = Hx only means that for every
h ∈ H, xh = h1x for some h1 ∈ H.

It should be clear that when H CG then the left coset space (which is equal
to the right coset space) G/H is a group.

For x ∈ G, very often we will write x = xH = yH. Thus

x y = (xH)(yH) = (xy)H = xy
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and so the map from G into G/H is a group homomorphism. This map is
certainly onto. It is called the canonical homomorphism or the canonical
surjection from G onto G/H. Clearly Ker( ) = {x ∈ G : x = 1} = {x ∈ G :
xH = H} = {x ∈ G : x ∈ H} = H.

Examples.

1. For every group G, the trivial subgroup 1 and G itself are normal sub-
groups of G.

2. Every subgroup of an abelian group is normal.

3. The intersection of any collection of normal subgroups of a group is normal.

4. The subgroup Z(G) := CG(G) = {z ∈ G : zg = gz for all g ∈ G} is a
normal subgroup of G. It is called the center of G. Every subgroup of
Z(G) is a normal subgroup of G.

5. G/G = 1 and G ' G/1 via the canonical surjection g −→ g.

6. Let G = Z and H = nZ. If n = 0, then Z/nZ ' Z as above. Assume
n > 0. Let m ∈ Z. Divide m by n: m = nq + r for some q ∈ Z and
r = 0, 1, . . . , n− 1. Now we have m + nZ = nq + r + nZ = r + nZ. Thus

Z/nZ = {nZ, 1 + nZ, 2 + nZ, . . . , (n− 1) + nZ}.

Writing i for i + nZ, we have

Z/nZ = {0, 1, 2, . . . , n− 1}.

For example Z/Z = {0}, Z/2Z = {0, 1}, Z/6Z = {0, 1, 2, 3, 4, 5Z}. In
Z/6Z we have

4 + 5 = 4 + 5 = 9 = 3 + 6 = 3 + 6 = 3 + 0 = 3 + 0 = 3
4 + 2 = 0

Note that Z/2Z ' {0, 3} ≤ Z/6Z and Z/3Z ' {0, 2, 4} ≤ Z/6Z.

Lemma 3.2.2 Let φ : G −→ H be a group homomorphism. Then
i. If φ is onto then for every K C G, φ(K) C H.
ii.For every K C H, φ−1(K) C G. In particular Ker(φ) := φ−1(1H) C G.

Proof: Easy and is left as an exercise. ¤
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Exercises.

1. Let G be a group and let H C G be a normal subgroup of G.

a) Show that CG(H) := {g ∈ G : gh = hg for all h ∈ H} is a normal
subgroup of G.

b) For x ∈ G, define B(x) := {g ∈ G : g−1x−1gx ∈ H}. Show that B(x)
is a subgroup of G that contains H.

2. Let H and K be two normal subgroups of G. Show that if H ≤ K = 1
then hk = kh for all h ∈ H and k ∈ K.

3. Let H ≤ G, show that ∩g∈GgHg−1 is a normal subgroup of G contained in
H. Show that this subgroup contains all normal subgroup of G contained
in H. (See Theorem 3.2.3).

4. Let H = {(x, 2x, x) : x ∈ R}. Then H C R3. Show that R3/H ' R2.

5. We consider R as a group under addition. Since Z ≤ R, we can consider
the group G := R/Z.

a) Show that every element of G can be written as r +Z for some unique
r ∈ R with 0 ≤ r < 1.

b) Show that if q ∈ Q, then q + Z is an element of finite order of G.

c) Find all elements of order 2, 3 and 6 of G.

d) For a fixed integer n > 0, find all elements of order n of G.

6. Show that a subgroup of index 2 is normal. Show that this is false for 3.
(Hint: Look at Sym(3)).

7. Let H ≤ G. Show that ∩x∈GHx C G.

8. Find an example where K C H C G but K is not normal in G.

9. Let A be an abelian group. Let

B := {a ∈ A : a has finite order}.

Show that B ≤ A and that in the quotient group A/B, the order of every
nonidentity element is infinite.

10. Let A be an abelian group. Let n ∈ Z. Let B := {an : a ∈ A}. Then B is
a subgroup of A. Show that exp(A/B) divides n.

11. Let n, m, k ∈ Z. Show that in Z/nZ, km = km.

12. A group is called simple if it has no nontrivial proper normal subgroup.
Let A and B be two simple nonabelian groups. Find all normal subgroups
of A×B.
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13. Let G1, . . . , Gn be nonabelian simple groups. Find all normal subgroups
of G1 × . . .×Gn.

14. Let G be a group, H, K ≤ G. We say that K normalizes H if Hk = H
all k ∈ K. Suppose K normalizes H. Show that HK is a subgroup of G.

15. Let G be a group, H, K ≤ G. Suppose that Hk ⊆ H all k ∈ K. Show
that K normalizes H.

16. Let G be a group, H ≤ G. Define NG(H) = {g ∈ G : Hg = H}.
a) Show that H C NG(H) ≤ G.

b) Show that NG(H) contains all subgroups of G that normalize H.

We end this section with the following result:

Theorem 3.2.3 (Core) Let G be a group and H ≤ G a subgroup of index n.
Then CoreG(H) :=

⋂
g∈G Hg is a normal subgroup G contained in H and it

is the largest such subgroup of G (called the core of H in G). Furthermore
G/ CoreG(H) is isomorphic to a subgroup of Sym(n). In fact, CoreG(H) is the
kernel of the action of G on the coset space G/H.

Proof: Let G be a group and H ≤ G a subgroup of index n. Let X = G/H
be the left coset space. For g ∈ G, define g̃ : G/H −→ G/H by g̃(xH) = gxH
for x ∈ G.

Claim 1. g̃ ∈ Sym(X).
Proof: Nothing can be clearer.
Claim 2. ˜ : G −→ Sym(X) is a homomorphism of groups.
Proof: Nothing can be clearer.
Claim 3. Ker(̃ ) is the largest normal subgroup of G contained in H.
Proof: Ker(̃ ) is certainly a normal subgroup of G. Also Ker(̃ ) = {g ∈ G :

g̃ = Id} = {g ∈ G : gxH = xH for all x ∈ G} = {g ∈ G : x−1gx ∈ H for all x ∈
G} = {g ∈ G : g ∈ xHx−1 for all x ∈ G} = ∩x∈GHx. It is now clear that
Ker(̃ ) is the largest normal subgroup of G contained in H.

Claim 4. [G : Ker(̃ )] divides n!.
By above G/ Ker(̃ ) embeds in Sym(G/H) ' Sym(n). ¤

3.3 Subgroups of G/H

Theorem 3.3.1 Let G be a group and H C G.
a) Let K be such that H ≤ K ≤ G. Then K/H ≤ G/H.
b) Let K be such that H ≤ K C G. Then K/H C G/H.
c) Any subgroup X of G/H is of the form K/H for some unique subgroup

K of G containing H. In fact

K = {g ∈ G : g ∈ X}.
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Thus there is a one to one correspondence between {Subgroups of G/H} and
{subgroups of G containing H}.

d) Any normal subgroup X of G/H is of the form K/H for some unique
normal subgroup K of G containing H. In fact

K = {g ∈ G : g ∈ X}.
Thus there is a one to one correspondence between {Subgroups of G/H} and
{subgroups of G containing H}.
Proof: Consider the canonical surjection φ : G −→ G/Hand apply lemmas
3.1.5 and 3.2.2 to this map. ¤

Exercises.

1. Let H CG. Let X ⊆ G be such that G/H = 〈X〉. Show that G = 〈H,X〉.
2. Let G be such that G/Z(G) is cyclic. Show that G is abelian. (Hint: See

the exercise above).

3. Find all subgroups of Z/nZ. (Hint: See Exercise 10, page 28).

4. Let H C G, G = G/H and x ∈ G. We know that CΓ(x) = C/H for some
unique subgroup C of G containing H. Define C in terms of x and H.

3.4 Induced Homomorphisms

Theorem 3.4.1 Let φ : G −→ H be a group homomorphism. Let KCG be such
that K ≤ Ker(φ). Then the induced map φ : G/K −→ H given by φ(g) = φ(g)
is well-defined and is a homomorphism whose kernel is Ker(φ)/K. In particular
(taking K = Ker(φ)) the map φ : G/ Ker(φ) −→ H given by φ(g) = φ(g) is a
one to one homomorphism. If φ is onto then G/ Ker(φ) ' H.

Proof: Assume g = g1. Then g−1
1 g ∈ K ≤ Ker(φ), so φ(g1)−1φ(g) =

φ(g−1
1 g) = 1 and φ(g) = φ(g1)−1. Thus the map φ is well defined.
We have g ∈ Ker(φ) iff phi(g) = 1 iff φ(g) = 1 iff g ∈ Ker(φ) iff g ∈

Ker(φ)/K.
The second and third parts are direct consequences of these. ¤

The homomorphism φ : G/K −→ H is said to be induced from the homo-
morphism φ : G −→ H.

Exercises.

1. Let φ : Z× Z× Z −→ Z× Z be given by φ(x, y, z) = (2x− 3y, 4x− 3z).
a. Show that φ is a homomorphism of groups.
b. Is φ onto?
c. Show that Ker(φ) = {(3a, 2a, 4a) : a ∈ Z}.
d. Show that Z× Z× Z/ Ker(φ) ' Z× Z.
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3.5 Fundamental Theorem

Theorem 3.5.1 Let G be a group, K ≤ G, H ≤ G. Suppose K normalizes H,
i.e. suppose that K ≤ NG(H). Then

i. 〈H, K〉 = HK = KH.
ii. H C HK and K ∩H C K.
iii. HK/H ' K/(K ∩H).

Proof: i. Certainly HK is a subset of 〈H, K〉 and it contains H and K. So
it is enough to show that HK ≤ G. Let h, h1 ∈ H and k, k1 ∈ H. Then
(hk)(h1k1)−1 = hkk−1

1 h−1
1 = hkk−1

1 h−1
1 k1k

−1kk−1
1 = hh−k1k−1

1 kk−1
1 ∈ HK.

Thus HK ≤ G.
ii. Trivial.
iii. Look at the natural map K −→ HK/H given by k 7→ k. This map is

onto and its kernel is {k ∈ K : k = 1} = {k ∈ K : k ∈ H} = K ∩ H. By
Theorem 3.4.1, HK/H ' K/(K ∩H). ¤

Exercises.

1. Let G be a group. The set δ(G ×G) := {(g, g) : g ∈ G} is a subgroup of
G × G. Show that it is a normal subgroup of G × G if and only if G is
abelian.

2. Let G be a group. Let H C G. Show that H × H C G × G. When is
δ(H ×H) := {(h, h) : h ∈ H} is a normal subgroup of G×G?

3. Show that (Q×Q)/δ(Z×Z) ' Q/Z×Q where δ(Z×Z) = {(z, z) : z ∈ Z}.
4. a) Find all automorphisms of order 2 of Z/pZ (p a prime).

b) For what prime numbers p, does Z/pZ has an automorphism of order
3?

c) For what prime numbers p, does Z/pZ×Z/pZ×Z/pZ has an automor-
phism of order 3?

5. Let H and K be two normal subgroups of a group G such that H∩K = 1.
Show that hk = kh for all h ∈ H and k ∈ K.

6. Let G, H be two groups, φ : G −→ H a homomorphism of groups and
g ∈ G an element of finite order. Show that o(φ(g)) divides o(g).

7. Let G be a group and define Z0(G) = 1 and Zn+1(G) = {z ∈ G : forallg ∈
G, gzg−1z−1 ∈ Zn(G)}. Show that Zn(G) C G for all n.

8. A subgroup H of a group G is called characteristic if φ(H) = H for all
φ ∈ Aut(G).

a. Show that a characteristic subgroup is a normal subgroup.

b. Show that a subgroup H ≤ G is characteristic if φ(H) ⊆ H for all
φ ∈ Aut(G).
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c. Show that for all n, Zn(G) (see Exercise 7, page 45) is a characteristic
subgroup of G.

d. Let X ⊆ G be such that φ(X) ⊆ X for all φ ∈ Aut(G). Show that 〈X〉
is a characteristic subgroup of G.

e. Conclude that for any n ∈ Z the subgroup generated by {gn : g ∈ G}
is characteristic.

f. Conclude that the subgroup generated by {g−1h−1gh : g, h ∈ G} is
characteristic.

9. Let (Gi)i∈I be a family of groups. Let J ⊆ I. Show that {(gi)i∈I : gj =
1 for all j ∈ J}C

∏
i∈I Gi.

10. Let H ≤ G. Recall that the normalizer of H in G is the subgroup NG(H) =
{g ∈ G : gH = Hg}. Show that H C NG(H) and that NG(H) is the
largest subgroup of G that normalizes H, i.e. show that if H C K ≤ G
then K ≤ NG(H).

11. a) Is there an element of infinite order in Q/Z?

b) Is there an element of finite order in R/Q?

12. Let G be a group and let X be a subset of G satisfying g−1Xg ⊆ X. Show
that 〈X〉C G.

13. Let G be any group generated by a subset X ⊆ G. Show that the set

{xa1
1 . . . xan

n : n ∈ N, xi ∈ X, ai ∈ Z,

n∑

i=1

ai is even}

is normal subgroup of G of index at most n.

14. Let X be a set. Show that Sym<ω(X) C Sym(ω).

15. Let X be a set and κ a cardinal number. Show that Sym<κ(X)CSym(ω).

16. Suppose every subgroup of a group is normal. Is the group necessarily
abelian?

17. Let H ≤ G. Let G/H denote the left coset space. For g ∈ G and
xH ∈ G/H, let g∗(xH) = gxH.

a) Show that g∗ ∈ Sym(G/H).

b) Show that the map g 7→ g∗ is a homomorphism from G into Sym(G/H).

c) What is the kernel of the homomorphism ∗?
d. Assuming that [G : H] = n < ∞ , show that ∩g∈GgHg−1 is a normal
subgroup of G contained in H and that its index divides n!

and
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Cyclic Groups

In this section we will study cyclic groups that have been already partially
studied.

4.1 Classification

Theorem 4.1.1 A cyclic group is isomorphic to Z/nZ for some n ∈ N. In
particular any infinite cyclic group is isomorphic to Z+ and any finite cyclic
group of order n is isomorphic to Z/nZ for some natural number n > 0.

Proof: Let G be a cyclic group. Let g ∈ G be a generator of G. Consider the
map φ : Z −→ G given by φ(n) = gn. Clearly φ is a homomorphism (Lemma
1.1.4) and is onto. By Lemma 2.1.2, Ker(φ) = nZ for some unique n ∈ N. By
Theorem 3.4.1, the map φ : Z/nZ −→ G given by φ(n) = gn is well-defined and
is an isomorphism. ¤

Thus, to study cyclic groups, we only need to study the groups Z/nZ.
Note that if n = 0, then Z/nZ ' Z and if n = 1, then Z/nZ ' {0}

4.2 Subgroups and Quotients

We will find all subgroup of Z/nZ.

Lemma 4.2.1 All subgroups of Z/nZ are cyclic. If A ≤ Z/nZ, then A = 〈m〉 =
mZ/nZ ' Z/ n

mZ, for natural number m ∈ [1, n] that divides n.

Proof: First note that if m divides n, then nZ ≤ mZ ≤ Z, so that mZ/nZ
makes sense, and it is a subgroup of Z/nZ; also, 〈m〉 = Zm = {km : k ∈ Z} =
{km : k ∈ Z} = {x : x ∈ mZ} = mZ/nZ.

Let H ≤ Z/nZ. By Theorem 3.3.1, H = K/nZ for some unique subgroup
K such that nZ ≤ K ≤ Z. By Lemma 2.1.2, K = mZ for some m ∈ N. Since

47
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n ∈ nZ ≤ K = mZ, m divides n. Thus H = mZ/nZ for some natural number
that divides n.

Consider the map φ : Z −→ mZ/nZ given by φ(x) = mx. This is a surjective
homomorphism. Its kernel is {x ∈ Z : mx ∈ nZ} = n

mZ. By Theorem 3.4.1,
mZ/nZ ' Z/ n

mZ. ¤

Exercises.

1. Let n and k be positive natural numbers. Find m ∈ N such that m|n and
{mx : x ∈ Z/nZ} = kZ/nZ.

2. Let n and k be positive natural numbers. Find m ∈ N such that m|n and
{x ∈ Z/nZ : mx = 0} = kZ/nZ.

4.3 Morphisms

It is clear that a homomorphism φ from the cyclic Z/nZ into a (multiplicative)
group G is given just by the image of a generator of Z/nZ, say of 1. In other
words, if we know φ(1), then we know φ: φ(k) = φ(1+ . . .+1) = φ(1) . . . φ(1)) =
φ(1)k. But we do not have the right to choose the element φ(1) of G arbitrarily,
in other words, not all choices for the image of 1 give rise to a homomorphism;
in fact this element φ(1) of G must satisfy the following equality: 1 = φ(0) =
φ(n) = φ(1)n. Thus the order o(φ(1)) must divide n. It so happens that this
condition is enough.

Lemma 4.3.1 Let G be a group. The map val1 : End(Z/nZ) −→ {g ∈ G :
gn = 1} given by val1(φ) = φ(1) is a bijection. In particular there is one to one
correspondence between Hom(Z/nZ) and G.

Proof: It remains to prove that val1 is onto. Let g ∈ G be an element such that
gn = 1. Define φ : Z −→ G via φ(k) = gk. This is clearly a homomorphism.
Since nZ −→ Ker(φ), by Theorem 3.4.1, the map φ : Z/nZ −→ G given by
phi(k) = φ(k) = gk. is well-defined and is a homomorphism of groups. We have
val1(φ) = φ(1) = φ(1) = g. ¤

If G is an abelian group, we know that Hom(Z/nZ, G) is a group under the
multiplication of homomorphisms (Lemma 3.1.3).

Lemma 4.3.2 Let G be an abelian group. Then Hom(Z/nZ, G) ' Gn where
Gn is the subgroup {g ∈ G : gn = 1} of G.

Exercises.

1. Let n and m be two integers > 0. Show that Hom(Z/nZ,Z/mZ) '
m′Z/mZ ' Z/dZ where m′ = m/d and d = gcd(m,n).
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4.4 Decomposition

Proposition 4.4.1 If n and m are natural numbers coprime to each other, then
Z/nmZ ' Z/nZ⊕ Z/mZ.

Proof: Consider the map φ : Z −→ Z/nZ ⊕ Z/mZ given by φ(x) = (x, x̃)
where x and x̃ are the images of x in Z/nZ and Z/mZ respectively. φ is a
homomorphism of groups.

We first show that φ is onto. Let (a, b̃) ∈ Z/nZ ⊕ Z/mZ be any element.
Since n and m are prime to each other, there are x and y in Z such that
xn + ym = 1 (Exercise 9, page 31). Then for φ(xn) = (xn, x̃n) = (0, x̃n) =
(0, x̃n + 0̃) = (0, x̃n + ỹm) = (0, ˜xn + ym) = (0, 1̃). Similarly φ(ym) = (1, 0̃).
Hence φ(bxn + aym) = (a, b̃).

Thus Z/ Ker(φ) ' Z/nZ × Z/mZ. We now compute Ker(φ): Ker(φ) =
{x ∈ Z : x = 0 and x̃ = 0̃} = {x ∈ Z : n and m divide x} = {x ∈ Z :
nm divide x} = nmZ. Thus by Theorem 3.4.1, Z/nmZ ' Z/nZ× Z/mZ. ¤

We can have a sharpening of this result:

Proposition 4.4.2 If n and m are natural numbers coprime to each other, then
Z/nmZ = mZ/nmZ⊕ nZ/nmZ.

Proof: Note first that m(Z/nmZ) and n(Z/nmZ) are subgroups of Z/nmZ.
Since n and m are prime to each other, there are a and b in Z such that an+

bm = 1. Thus for every x ∈ Z, x = (an + bm)x = mbx + nax ∈ m(Z/nmZ) +
n(Z/nmZ).

Since nmZ ≤ mZ, we have m(Z/nmZ) = mZ/nmZ. Similarly n(Z/nmZ) =
nZ/nmZ. It follows that m(Z/nmZ) ∩ n(Z/nmZ) = {0}.

Hence Z/nmZ == m(Z/nmZ)⊕ n(Z/nmZ) = mZ/nmZ⊕ nZ/nmZ. ¤

One should note that Z/mZ ' nZ/nmZ via x̃ 7→ x.

Exercises.

1. Let G and H be two nontrivial groups. Show that G×H is cyclic if and
only if G and H are finite, cyclic and of orders prime to each other.

2. Show that a group of prime order is cyclic.

3. Let p be a prime number and n a natural number. How many elements
of order pi does Z/pn have?

4. Let n ∈ N \ {0}. Find a finite graph Γ such that Aut(Γ) = Z/nZ.
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Chapter 5

Abelian Groups

5.1 Generalities

The exponent of a group G is the smallest positive integer n (if it exists) such
that gn = 1 for all g ∈ N.

Theorem 5.1.1 (Abelian groups of exponent p) Let p be a prime. An abelian
group of exponent p is a vector space over Fp, thus it is isomorphic to a direct
sum of Z/pZ. In particular any two abelian group of exponent p and of the same
cardinality are isomorphic.

A group is called torsion if all its elements have finite order.

Theorem 5.1.2 (Torsion Abelian Groups) Let G be a torsion abelian group.
For p a prime, define G(p) = {g ∈ G : gpn

= 1 for some n ∈ N}. Then G(p) is
a p-group and G = ⊕p G(p). (See also Exercise 11).

Problem 5.1.1 Classify all abelian groups with a unique maximal subgroup.
(Note that given an element a ∈ G there may be no maximal subgroup containing
a). ¶ Show that the ring of endomorphisms of such a group is a local ring (see
Chapter 12).

5.2 Decomposition

5.3 Divisible Abelian Groups
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Part II

Basic Ring Theory
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Chapter 6

Definition and Examples

A ring is a structure of the form (R, +, ·, 0) where R is a set, 0 is a constant,
+ and · are two binary operations on R (called addition and multiplication)
such that

R1. The structure (R, +, 0) is a commutative group.

R2. For all x, y, z ∈ R, x(y + z) = x(y + z) and (x + y)z = xz + yz.

Since 0x = (0 + 0)x = 0x + 0x, by R1, in a ring, we always have 0x = 0.
Similarly x0 = 0. Also, since 0 = 0y = (x + (−x))y = xy + (−x)y, we have
(−x)y = −(xy). Similarly x(−y) = −(xy). From now on we let −xy denote
any of (−x)y, x(−y), −(xy).

If in a ring R,

R3. For all x, y, z ∈ R, x(yz) = x(yz),

then we say that the ring is associative.
If in a ring R there is an element 1 such that 1 6= 0 and x1 = 1x = x for all

x ∈ R, we will say that R is a ring with identity, or with 1.
If in a ring R, xy = yx for all x, y ∈ R, we will say that R is commutative.

Otherwise the ring will be called noncommutative.

Examples.

1. Let R be any abelian group written additively. Set xy = 0 for all x, y ∈ R.
Then R is a commutative and associative ring without 1.

2. Z is a commutative and associative ring together with the usual addition
and multiplication. It has an identity.

3. If r ∈ R, rZ is a ring. It has identity if and only if r = 1 or r = −1.
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4. Let A be an abelian group (written additively). Then the set End(A) of
endomorphisms of A is an associative ring with identity under addition
and composition.

5. If X is a set and R is a ring, the set of functions Func(X, R) from X into
R is a ring with pointwise addition and multiplication, i.e. for f, g ∈
Func(X, R), define f + g and fg by the rules,

(f + g)(x) = f(x) + g(x)

and
(fg)(x) = f(x)g(x)

for all x ∈ X. As with groups, we denote this ring as
∏

X R, call it the
direct product of the rings R, and denote its elements as (fx)x∈X . If all
the rings have 1, then the ring

∏
X R has also 1. The commutativity and

the associativity of R are reflected on
∏

X R. The set

⊕XR := {(fx)x∈X : fx = 0 except for finitely many x ∈ X}
is called the direct sum of the ring R. If X is finite, then clearly ⊕XR =∏

X R. If R has identity, then
∏

X R has also identity. On the other hand
if X is infinite

∏
X R does not have an identity even if R has. If X has n

elements, it is customary to denote
∏

X R as Rn.

6. More generally, if for i ∈ I, Ri is a ring, then
∏

i∈I

Ri := {(ri)i : ri ∈ Ri}

and

⊕i∈IRi := {(ri)i : ri ∈ Ri and ri = 0except for finitely many i ∈ I}
are rings.

7. Let R be a ring. Define a new multiplication [x, y] by xy − yx. Then
(R, +, [ , ], 0) is a ring satisfying [x, x] = 0 and [x, y] = −[y, x]. If the
original ring R is also associative, then [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
for all x, y, z ∈ R. This is the so-called Jacobi identity. A ring that
satisfies this kind of weak associativity is called a Lie ring.

An element r of a commutative ring R is called a zero-divisor if rs = 0 for
some s 6= 0.

An element r of an associative ring R is called nilpotent if rn = 0 for some
n 6= N.

An element r of a ring R is called invertible or a unit of R if there is an s
such that rs = sr = 1. The set of its invertible of a ring R is denoted by R∗. It
is easy to show that R∗ is a multiplicative group.

If R is a ring, forgetting that R has a multiplication, we may consider R
only as a group under addition. We let R+ denote this group. We call it the
additive group of R.
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Exercises.

1. Let S be a set, ℘(S) be the set of all subsets of S. For A,B ∈ ℘P (S)
define

A + B := (A−B) ∪ (B −A) and A ·B := A ∩B.

Show that (℘P (S), +, ·) is a commutative ring.

2. Find Z∗, Q∗, R∗. Show that Z∗ ' Z/2Z and Q∗ ' Z/2Z⊕ (⊕NZ). Show
that R∗ ' Z/2Z× R>0.

3. Show that Z[
√

2] := {a + b
√

2 : a, b ∈ Z} is a ring. ¶ Find Z[
√

2]∗. Find
its elements of finite order.

4. Show that Q[
√

2] := {a + b
√

2 : a, b ∈ Q} is a ring. Find Q[
√

2]∗.

5. Let R be an associative and commutative ring with identity. On R × R
define the addition componentwise and the multiplication by the rule
(x, y)(z, t) = (xz, xt + yz). Show that R × R is a commutative and asso-
ciative ring with identity. Find its zero-divisors, its nilpotent elements, its
idempotents and its invertible elements.

6. Let n ∈ Z. Consider the abelian (additive) group Z/nZ.

a)For a, b, c, d ∈ Z, show that if a = b and c = d then ac = bd.

b) Conclude that Z/nZ is a commutative and associative ring with identity
with respect to the usual addition, and multiplication defined by x y = xy.

c) Find the zero-divisors, the nilpotent elements, the idempotents and the
invertible elements of Z/24Z.

7. Let A be an abelian group (written additively). Show that the set End(A)
of endomorphisms of A is an associative ring with identity under addition
and composition. Is it always commutative?

8. Let R be a ring and x ∈ R. Let `x : R −→ R be defined by `x(y) = xy.
Show that `x is an additive group homomorphism of R+. What is its
kernel?

9. Let R be a commutative and associative ring with identity and without
zero-divisors (such a ring is called a domain). For x, y ∈ R, define the
relation x|y by y ∈ xR. In such is the case, we say that x divides y.

a) Show that this is a transitive and reflexive relation.

b) Show that the units of R divide all the elements of R.

c) Define x ≡ y by x|y and y|x. Show that x ≡ y if and only if x ∈ yR∗.
Conclude that ≡ is an equivalence relation.

d) Show that if x ≡ x1, y ≡ y1 and x|y, then x1|y1. Conclude that for
x, y ∈ R/ ≡, the relation x|y defined by x|y is well-defined and that it is
a partial order on R/ ≡.
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10. Let R be a commutative ring. Show that the set of zero-divisors of R form
an additive subgroup of R+. Show that if x is a zero-divisor and y ∈ R,
then xy is a zero-divisor. In particular the set of zero-divisors is a ring
(without identity) by itself.

11. Let R be an associative and commutative ring. Show that the set of
nilpotent elements form an additive subgroup of R+. Show that if x is a
nilpotent element and y ∈ R, then xy is a nilpotent element. In particular
the set of nilpotent elements is a ring (without identity) by itself.

12. Let R be a ring. A function ∂ : R −→ R is called a derivation if it is
an additive group homomorphism and if ∂(xy) = ∂(x)y + x∂(y) for all
x, y ∈ R.

a) Show that if R has 1 and ∂ is any derivation, then ∂(1) = 0.

b) Show that if ∂1 and ∂2 are derivations of R, then ∂ + ∂1 is a derivation
of R.

c) Show that if R is ∂1 and ∂2 are derivations of R, then ∂1 − ∂2 and
[∂1, ∂2] := ∂1 ◦ ∂2 − ∂2 ◦ ∂1 (bracket operation) a derivation of R.

d) Show that the set Der(R) of derivations of R is a Lie ring under the
addition and the bracket operations.

13. Let R be a finite associative ring without zero divisors. Show that R has
identity. Show that every nonzero element of R is invertible. (It is known
that such a ring must also be commutative, but this is a much much harder
result).



Chapter 7

Fundamental Notions

7.1 Subring

Let R be a ring. A subring of R is a subset S of R that is a ring under the
operations of R. Thus a subset S of a ring R is a subring if and only if it is an
additive subgroup and it is closed under multiplication.

If R is a ring with identity, then we also request from a subring to contain
the identity of R.

If S is a subring of R (with or without identity, the context will make it
clear), then we write S ≤ R.

The notation S ≤ R may be confusing because we use the same notation for
subgroups. To avoid this confusion, if S is a subgroup of the additive group of
a ring R, we will use the notation S ≤ R+.

A ring R with an identity element may be considered only as a ring (without
speaking about the existence of an identity, just forgetting it). When considered
as a ring without identity, a subring S of R may or may not contain the identity
element of R.

Examples.

1. Z ≤ Q ≤ R.

2. nZ is a subring of Z if the latter is considered as a ring without identity.
If n 6= 1,−1, then nZ is not a subring of Z, if the latter is considered as a
ring with identity.

3. For i ∈ I, let Ri be a ring. Then ⊕i∈IRi is a subring of
∏

i∈I Ri. If
each Ri has identity, then as we know

∏
i∈I Ri has identity and – if X is

infinite – ⊕i∈IRi does not have an identity. In this case, we cannot say
that ⊕i∈IRi is a subring of the ring

∏
i∈I Ri, when the latter is considered

as a ring with identity. On the other hand, ignoring the existence of the
identity, ⊕i∈IRi is a subring of the ring

∏
i∈I Ri.
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4. Let R be a ring. The set R× {0} is a subring of R×R. If R has identity
1, then both rings R × {0} and R × R have identities, namely (1, 0) and
(1, 1) respectively. But since (1, 0) 6= (1, 1), we cannot say that R×{0} is
a subring of R×R when the latter is considered as a ring with identity.

7.2 Ring Homomorphisms

Let R and S be two rings. A ring homomorphism is a map f : R −→ S
which is an additive group homomorphism and also a multiplicative map, i.e.
f(r1 + r2) = f(r1) + f(r2) and f(r1r2) = f(r1)f(r2). If R and S both have
identity elements (1R and 1S respectively) and we consider them both as rings
with identity, then we also want from a homomorphism to satisfy the equality
f(1R) = 1S .

For example, the map that sends all the elements of a ring to its zero element
0 is a ring homomorphism. But if we consider a ring R with identity, then the
zero-map is not a ring homomorphism anymore.

Isomorphisms, automorphisms and endomorphisms of rings are de-
fined in the expected way. If two rings R and S are isomorphic, we denote this
fact by R ' S.

Exercises.

1. Let R be a ring (with or without identity). Show that the projection map
π1 : R⊕R −→ R given by π1(x, y) = x is a homomorphism of rings. What
is its kernel?

2. Let R and S be two rings (with or without identity). Let φ : R −→ S be
a ring homomorphism. Show that φ(R) ≤ S.

3. Let R and S be two rings. Let φ : R −→ S be a ring homomorphism.
Show that φ−1(0) ≤ R (i.e. is a subring of R). Show that if R and S are
rings with identity then φ−1(0) is not a subring of R anymore.

4. Let R be any ring with identity. Let 1R be the identity element of R. Show
that the map from Z −→ R defined by n 7→ n1R is a ring homomorphism.

7.3 Ideals

Since a ring homomorphism is an additive group homomorphism, we can con-
sider its kernel. Thus if f : R −→ S is a ring homomorphism, we have

Ker(f) := {r ∈ R : f(r) = 0}.

We know that Ker(f) is an additive subgroup of R+. It is also a subring of R (if
R is considered as a ring without identity), in other words Ker(f) is also closed
under multiplication. But Ker(f) satisfies an even stronger property: If x ∈ R
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and y ∈ Ker(f), then xy and yx are also in Ker(f). This is trivial to check:
f(xy) = f(x)f(y) = f(x)0 = 0 and f(yx) = f(y)f(x) = 0f(x) = 0.

An additive subset of R that satisfies this property is called an ideal of R.
Thus an ideal of R is an additive subgroup I of R such that RI ⊆ I and IR ⊆ I.
If I is an ideal of R, symbolically we represent this fact as I C R.

There is another way to introduce ideals. Let R be a ring. Let I be an
additive subgroup of R. Since the additive group structure of R is commutative,
the quotient R/I is a group, with the addition defined as

(r + I) + (s + I) = (r + s) + I,

or as
r + s = r + s

where r = r + I etc. We attempt to define a multiplication on R/I by setting

(r + I)(s + I) = rs + I.

But this may not be a well-defined addition. In other words, it is very possible
that for r, r1, s, s1 ∈ R, r + I = r1 + I, s + I = s1 + I, but rr1 + I 6= ss1 + I.
This attempt to define multiplication on the additive group R/I succeeds only
if I C R.

Theorem 7.3.1 Let R be a ring and I an additive subgroup of R. Then the
following conditions are equivalent:

i) For all r, r1, s, s1 ∈ R, if r + I = r1 + I and s + I = s1 + I, then
rs + I = r1s1 + I.

ii. I C R.

Proof: (⇒). Let r ∈ R and i ∈ I. Take r = r1, s = i and s1 = 0. Then we
have r + I = r1 + I and s + I = s1 + I, so we must have rs + I = r1s1 + I, i.e.
ri + I = I, i.e. ri ∈ R. Thus RI ⊆ I. Similarly IR ⊆ I. Hence I C R.

(⇐). Assume r, r1, s, s1 ∈ R are such that r + I = r1 + I and s+ I = s1 + I
then rs− r1s1 = rs− rs1 + rs1 − r1s1 = r(s− s1) + (r − r1)s1 ∈ I. ¤

If R is a ring, then R and {0} are two ideals of R. By abuse of language, the
ideal {0} is denoted by 0; it is called the zero-ideal. An ideal I is called proper
if I 6= R.

Exercises.

1. Let R be a ring with identity and I ⊆ R. Show that I C R if and only if
I + I ⊆ I, RI ⊆ I and IR ⊆ I.

2. Let R be a ring with identity and let I C R. Show that I = R if and only
if 1 ∈ I.

3. Let R be a ring with identity and let I C R. Show that I = R if and only
if I ∩R∗ 6= ∅.
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4. Show that any ideal of R is equal to {0} or to R.

5. Find all ideals of Z⊕Q.

6. Find all the ideals of Z[
√

2].

7. Let R be an associative and commutative ring.

a) Let x ∈ R. Show that the set Rx is an ideal.

b) Let x1, . . . , xn ∈ R. Show that {r1x1 + . . . rnxn : ri ∈ R}C R.

c) Let X ⊆ R. Show that {r1x1 + . . . rnxn : n ∈ N, xi ∈ X, ri ∈ R}C R.

8. Let R be a commutative ring. An element x ∈ R is called a zero-divisor
if xy = 0 for some nonzero y ∈ R. Show that the set of zero divisors of a
commutative ring is an ideal.

9. Let R be a commutative ring. Show that the set of nilpotent elements of
R is an ideal.

10. Is an ideal of an ideal of a ring necessarily an ideal of the ring?

11. Let R be a commutative and associative ring and I C R. Let
√

I := {r ∈ R : rn ∈ I for some n ∈ N}.
√

I is called the radical of I.

a) Show that I ⊆ √
I C R.

b) Show that
√

I =
√√

I.

c) Note that an element is nilpotent if and only if it is in
√

0.

12. Show that any ideal of the ring Z is of the form nZ for a unique n ∈ N.

13. Find all the ideals of Z⊕ Z.

14. Find all the ideals of Zn (n ∈ N).

15. Let I and J be two ideals of a commutative and associative ring R. Show
that the set

I + J := {i + j : i ∈ I, j ∈ J}
is an ideal. Show that it is the smallest ideal containing I ∪ J .

16. Let I and J be two ideals of a commutative and associative ring R. Show
that the set

IJ := {i1j1 + . . . + injn : n ∈ N, ik ∈ I, jk ∈ J}

is an ideal contained in I ∩ J .
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7.4 Ideal Generated by a Set

Lemma 7.4.1 Let R be a ring. Then the intersection of a set of ideals of R is
an ideal of R.

Proof: Trivial. ¤

Let R be an associative and commutative ring and let X ⊆ R. Consider the
intersection ∩X⊆ICRI of all the ideals of R that contains X. By Lemma 7.4.1,
this is an ideal of R. If R has identity, then this ideal certainly contains the set
X. It follows that if R is an associative and commutative ring with identity,
then ∩X⊆ICRI is the smallest ideal of R that contains X.

We let 〈X〉 = ∩X⊆ICRI and call it the ideal generated by the set X.
Clearly {r1x1 + . . . rnxn : n ∈ N, xi ∈ X, ri ∈ R} ⊆ 〈X〉. But the set on the

left hand side is an ideal of R by Exercise 7, page 62, and, since R has identity,
it contains X (take n = 1 and r1 = 1). Hence it is equal to 〈X〉.

We summarize these:

Theorem 7.4.2 Let R be an associative and commutative ring with 1. Let
X ⊆ R. Then 〈X〉 := ∩X⊆ICRI is the smallest ideal of R that contains X.
Furthermore, 〈X〉 = {r1x1 + . . . rnxn : n ∈ N, xi ∈ X, ri ∈ R}.

If X = {x1, . . . , xn} then we sometimes write 〈x1, . . . , xn〉instead of 〈X〉.
Instead of 〈X ∪ Y 〉, we also write 〈X, Y 〉.

Exercises. In this set of exercises R denotes an associative and commutative
ring with 1, unless stated otherwise.

1. Show that 〈R〉 = 〈−X〉.

2. Show that 〈1〉 = R.

3. Show that 〈(1, 0), (0, 1)〉 = R⊕R.

4. Show that if I C R, then 〈I〉 = I.

5. Let R = Z. Find 〈2, 3〉.

6. Let R = Z. Find 〈24, 36, 30〉.

7. Let R = Z⊕ Z. Find 〈(24,−15), (7, 36)〉.

8. If I and J are ideals of R, show that 〈I, J〉 = I + J .

9. Do not assume that R has identity. Let x ∈ R. Show that Rx + Zx is
the smallest ideal of R containing x. Generalize this result to an arbitrary
subset of R.
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7.5 Quotient of a Ring and Fundamental Theo-
rems

Let R be a ring and I C R. As we have seen above, we can define addition and
multiplication on the coset space

R/I := {r + I : r ∈ R}
by

(r + I) + (s + I) = (r + s) + I

and
(r + I)(s + I) = rs + I.

Letting r = r + I, we get
r + s = r + s

and
r s = rs.

Theorem 7.5.1 If R is a ring and ICR, then R/I is a ring with the operations
defined as above. The map r 7→ r is a homomorphism of rings from R onto R/I.
The quotient ring R/I inherits the commutativity and the associativity of R.
Furthermore if R has identity and I is a proper ideal of R, then 1 is the identity
element of R/I.

Proof: Easy. ¤

We can also describe the ideals of the quotient R/I:

Theorem 7.5.2 Let R be a ring and I C R. If I ⊆ J C R, then J/I is an ideal
of R/I. Conversely, any ideal α of R/I is of the form J/I for some unique
ideal J or R containing I. Indeed,

α = {r ∈ R : r ∈ α}.
Proof: Easy. ¤

Sometimes we can “factor out” a homomorphism:

Theorem 7.5.3 Let R and S be two rings (with r without identity) and φ :
R −→ S be a ring homomorphism. Let I C R be such that I ≤ Ker(φ). Then
the map φ : R/I −→ S given by phi(r) = φ(r) is well-defined and is a ho-
momorphism of rings. We have Ker(φ) = Ker(φ)/I. In particular, the map
φ : R/ Ker(φ) −→ S is a one-to-one homomorphism of rings.

Proof: Assume r ≡ r1(mod I). Then r−r1 ∈ I ≤ Ker(φ), so that φ(r−r1) = 0
and φ(r) = φ(r1). Thus φ is well-defined. Also, Ker(φ) = {r : φ(r) = 0} = {r :
φ(r) = 0} = {r : r ∈ Ker(φ)} = Ker(φ)/I. The rest is easy. ¤

The quotient of R/I by some ideal J/I is as expected:
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Theorem 7.5.4 Let R be a ring and I C R. Let I ⊆ J C R. Then R/J '
(R/I)/(J/I) naturally, via the map r̃ 7→ r̂ where r̃ is the class of r ∈ R in R/J ,
r is the class of r ∈ R in R/I, and r̂ is the class of r ∈ R/I in (R/I)(J/I).

Proof: Consider the composition of the canonical surjections R −→ R/I −→
(R/I)/(J/I) given by r 7→ r 7→ r̂. The kernel of this composition is {r ∈ R :
r̂ = 0̂} = {r ∈ R : r = J/I} = {r ∈ R : r ∈ J} = J . Now apply Theorem 7.5.3.
¤

Exercises.

1. Find End(Z/12Z) and Aut(Z/12Z). Find nilpotent elements and idempo-
tents of the ring End(Z/12Z).

2. Show that Aut(R⊕R) has an element of order 2.

3. Does Aut(Z/3Z⊕ Z/3Z) have an element of order 3?

4. Does Aut(Z/4Z⊕ Z/4Z) have an element of order 3?

5. Find all ideals of Z/12Z.

6. Find all ideals of Z/nZ. How many of them are there?

7. Find all ideals I of Z for which Z/I has no nonzero nilpotent element.

8. Find all ideals I of Z for which Z/I has no nonzero zero-divisor.

9. Find all ideals I of Z for which Z/I has no idempotent element.

10. Let R be a ring and I C R. Show that the ring R/I is associative if and
only if for all x, y, z ∈ R if (xy)z − x(yz) ∈ I.

11. Let R be a ring and I C R.

a) Show that the ring R/I is ring if and only if xy−yx ∈ I for all x, y ∈ R.

b) Show that the ideal 〈xy−yx : x, y ∈ I〉 is the smallest ideal I for which
the ring R/I is commutative.

12. Let R be a ring and I C R. Show that the ring R/I has no nonzero zero-
divisors if and only if for all x, y ∈ R if xy ∈ I then either x or y is in I.
Such an ideal is called a prime ideal.
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Chapter 8

Domains, Division Rings
and Fields

8.1 Some Facts About Ideals

A commutative, associative ring identity and without zero divisors is called
a domain. An associative ring identity in which every nonzero element is
invertible is called a division ring. A commutative division ring is called a
field. Thus a field is a division ring and a division ring is a domain. But the
converses are false. For example Z is a domain, but not a field. The rings Q
and R are fields. Later we will give example of domains which are not fields.

An ideal M of a ring R is called maximal if it is a proper ideal and M < ICR
implies I = R. We need Zorn’s Lemma to prove the next lemma.

Lemma 8.1.1 Let R be a ring with identity and I C R a proper ideal of R.
Then there is a maximal ideal of R containing I.

Proof: We will apply Zorn’s Lemma to the set Z = {J C R : I ⊆ J < R}
ordered by inclusion. Since I ∈ Z, Z 6= ∅. Let us show that Z is an inductive
set. If (Jλ)λ∈Λ is a chain from Z, then clearly ∪λ∈ΛJλ 6= R because 1 is not
in ∪λ∈ΛJλ. We now show that ∪λ∈ΛJλ is an ideal. Let x, y ∈ ∪λ∈ΛJλ. Let
λ1, λ2 ∈ Λ be such that x ∈ Jλ1 and y ∈ Jλ2 . If λ = max(λ1, λ2), then x, y ∈ Jλ

and so x+ y ∈ Jλ ⊆ ∪λ∈ΛJλ. Similarly, one can show that zx, xz ∈ ∪λ∈ΛJλ for
all z ∈ R. Thus Z is an inductive set. It follows that Z has a maximal element
M . This maximal element M is a maximal ideal of R containing I. ¤

Note that in the lemma above we can take I = 0 to show that every ring
with 1 has maximal ideals. This is false for rings without 1, see Question 2, 89.

Proposition 8.1.2 Let R be a commutative ring with identity. Then R is a
field if and only if R has only two ideals, 0 and R.

67
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Proof: Suppose R is a field. Let 0 < I C R. Let x ∈ I \ {0}. Since x has a
multiplicative inverse y, 1 = xy ∈ I. So for every r ∈ R, r = r1 ∈ I. Therefore
I = R.

Conversely suppose that R has only two ideals 0 and R. Let x ∈ R \ {0}.
Then 0 6= x = 1x ∈ Rx C R. Thus Rx = R and so 1 ∈ R = Rx. Thus 1 = yx
for some y ∈ R. This shows that x is invertible and that R is a field. ¤

In fact this theorem almost holds even if we do not assume that R has an
identity.

Theorem 8.1.3 Let R be a commutative ring without nontrivial proper ideals.
Then

i. Either R is a field, or
ii. R = Z/pZ with p a prime and with the usual addition but trivial (zero)

multiplication, or
iii. R = 0.

Proof: Let R be such a ring. Assume first R has zero multiplication, i.e.
xy = 0 for all x, y ∈ R. Then ideals of R are just the subgroups of the additive
group R+. Thus R+ has no proper, nontrivial subgroups. It follows from the
Claim of Question 2, page 88 that either ii or iii holds. Assume from now on
that the multiplication is not trivial.

For x ∈ R, xR is either 0 or R. The set annR(R) := {x ∈ R : xR = 0} is
clearly an ideal of R. Thus either annR(R) = 0 or R. The second case gives the
zero multiplication. So annR(R) = 0, i.e., if x 6= 0, then xR 6= 0.

Also for x ∈ R \ {0}, 0 6= xR C R, so xR = R. Thus there is a y ∈ R such
that xy = x. Let now z ∈ R. Then since Rx = R, z = rx for some y ∈ R.
Hence zy = rxy = rx = z and y is the identity element of R. Now the theorem
follows from Theorem 8.1.2. ¤

Corollary 8.1.4 Let R be a commutative ring with identity and I C R. Then
R/I is a field if and only if I is a maximal ideal of R.

Proof: Follows from above and Theorem 7.5.2. ¤

Proposition 8.1.5 Let n ∈ N \ {0}. Then Z/nZ is a domain if and only if n
is a prime if and only if Z/nZ is a field.

Proof: The equivalence of the last two assertions follows from Corollary 8.1.4,
but we will give a direct proof.

Note that each one of the three conditions implies that n 6= 1. So we assume
n 6= 1.

Assume Z/nZ is a domain. If n = ab for a b ∈ N, then a b = n = 0, so that
either a = 0 or b = 0, i.e. n divides either a or b. If n divides a, then a = na1

for some a1 ∈ N. Now we have n = ab = na1b and a1b = 1, implying b = 1.
Similarly if n divides b, then a = 1. Thus n is a prime. (See also Exercise 4,
page 69).
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Assume n is a prime. Let x ∈ Z/nZ\{0}. Then x is prime to n and so there
are a, b ∈ N such that ax + bn = 1. Now a x = 1 and so x is invertible.

If Z/nZ is a field, it is clear that it is a domain. ¤

Let R be a ring with identity. As we know the map Z −→ R given by
n 7→ n1R is a homomorphism of rings. (Exercise 4, page 60). Let nZ be the
kernel of this map (n ∈ N \ {1}). Then Z/nZ imbeds in R (Theorem 7.5.3).
We call n the characteristic of the ring R and we write n = char(R). If
n = char(R), then we have for any x ∈ R, nx = (n1R)x = 0x = 0. In fact, if
char(R) > 0, then char(R) is the smallest positive natural number n for which
nx = 0 for all x ∈ R. And if char(R) = 0, then there is no smallest such n > 0.

If D is a domain of characteristic n, then, since Z/nZ imbeds in D (Theorem
7.5.3), Z/nZ is a domain and it follows from Proposition 8.1.5 that either n = 0
or n is a prime. In fact, in a domain D, if nx = 0 for some x ∈ D \ {0} and
n ∈ N \ {0}, then char(D) divides n.

Now we ask the following question: Given a ring R and an ideal I CR, what
should be the conditions on I for R/I not to have zero-divisors? This is easy
to answer: R/I does not have a nonzero divisor if and only if for all r, s ∈ R, if
rs ∈ I, then either r or s is in I. We leave the formal proof to the reader. Such
an ideal is called a prime ideal.

Now a harder question: Given a ring R and an ideal I C R, what should be
the conditions on I for R/I to be a division ring?

Exercises.

1. Show that a subring of a domain is a domain.

2. Show that the ring R⊕R is never a domain.

3. Show that in a domain D, if nx = 0 for some x ∈ D \{0} and n ∈ N\{0},
then char(D) divides n.

4. Show that a finite domain is a field. (See Exercise 13, page 58).

5. Does the ring XR[X] have a maximal ideal?

8.2 Field of Fractions of a Domain
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Chapter 9

Ring of Polynomials

9.1 Definition

We start by giving a mathematical definition of the polynomials. Towards the
end of this section, the polynomials will take the form that we believe the reader
is most accustomed.

Let R be a ring. Consider the set ⊕NR. We know that ⊕NR is an addi-
tive abelian group with the componentwise addition. We define another binary
operation called multiplication as follows:

(rn)n(sn)n = (
∑

i+j=n

risj)n.

Theorem 9.1.1 The set ⊕NR together with the componentwise addition and
the multiplication defined as above is a ring. If R is a commutative ring, then
so is the ring ⊕NR. If R is an associative ring, then so is the ring ⊕NR. If R
has identity, then so does the ring ⊕NR.

Proof: Everything is trivial. Note that (1, 0, 0, . . .) is the identity of ⊕NR if 1
is the identity of R. ¤

We may view the ring R as a subring of ⊕NR by identifying r ∈ R with the
element (r, 0, 0, . . .) of ⊕NR (even if R has identity). With this identification,
we may multiply an element of R and an element of ⊕NR:

r · (rn)n = (rrn)n.

Assume now R has identity. Let

X = (0, 1, 0, 0, . . .).

Then it is easy to check that

X2 = (0, 0, 1, 0, 0, . . .)
X3 = (0, 0, 0, 1, 0, . . .)
X4 = (0, 0, 0, 0, 1, . . .)

71



72 CHAPTER 9. RING OF POLYNOMIALS

Thus every element of f = (fi)i ∈ ⊕NR can be written as f =
∑

i fiX
i. With

this notation, the addition and the multiplication become:

(
∑

i fiX
i) + (

∑
i giX

i) =
∑

i(fi + gi)Xi

(
∑

i fiX
i)(

∑
i giX

i) =
∑

n(
∑

i+j=n figj)Xn.

From now on, we will denote this ring as R[X]. The ring R[X] is called the
ring of polynomials over R and its elements are called polynomials over R.
Because the notation suggests, an element f of R[X] is often denoted as f(X).

If f(X) =
∑

i fiX
i 6= 0, then there is a largest n for which fn 6= 0. This

natural number n is called the degree of f(X). We let the degree of the zero-
polynomial to be −∞. We denote the degree of f(X) as deg(f(X)). Note
that

deg(f + g) ≤ max(deg(f), deg(g))

and if deg(f) 6= deg(g), then

deg(f + g) = max(deg(f), deg(g)).

Also
deg(fg) ≤ deg(f) + deg(g)).

On the other hand, if R has no zero-divisors, then

deg(fg) = deg(f) + deg(g)).

If f(X) = f0 +f1X + . . .+fnXn and fn 6= 0 (i.e. deg(f) = n), them fn is called
the leading coefficient and f0 is called the constant term of the polynomial
f(X). A polynomial whose leading coefficient is 1 is called a monic polynomial.
Polynomials of degree < 1 (i.e. the elements of R as they imbed in R[X]) are
called constant polynomials.

Exercises.

1. Let R = Z/2Z and f(X) = X2 +X ∈ R[X]. Note that f(X) is not a zero
polynomial but that x2 + x = 0 for all x ∈ R.

2. Show that if S ≤ R, then S[X] ≤ R[X].

3. Show that the product of two monic polynomials is a monic polynomial.

4. Let R be a commutative ring with no nonzero nilpotent elements. If the
polynomial f(X) = a0 +a1X + . . .+amXm in R[X] is a zero-divisor (that
is g(X)f(X) = 0 for some nonzero polynomial g(X) ∈ R[X]), prove that
there is an element b 6= 0 in R such that ba0 = ba1 = . . . = bam = 0.

5. Show that (R[X])[Y ] ' (R[Y ])[X] (as rings).

6. Let I C R.

a) Show that I[X] C R[X].

b) Show that R[X]/I[X] ' (R/I)[X].
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7. Let I CR and n ∈ N. Show that the set of polynomials over R whose first
n coefficients are in I is an ideal of R[X].

8. Let I be the set of polynomials over Z whose constant term is in 2Z. Then
I C Z[X]. Find Z[X]/I.

9. Let I be the set of polynomials over Z whose first two coefficients are in
2Z. Then I C Z[X]. Find Z[X]/I.

10. Let n ∈ N \ {0}. Let I be the set of polynomials over Z whose first n
coefficients are in 2Z. Then I C Z[X]. Find Z[X]/I.

11. Let n ∈ N. Show that Z[X]/nZ[X] ' (Z/nZ)[X].

12. Find the idempotents, the zero-divisors, the invertible elements, the nilpo-
tent elements of Z[X]/〈3X − 2〉.

13. Show that Z[X]/〈X − 2〉 ' Z.

14. Find the idempotents, the zero-divisors, the invertible elements, the nilpo-
tent elements of R[X]/〈X2〉.

15. Find the idempotents, the zero-divisors, the invertible elements, the nilpo-
tent elements of R[X]/〈X2 − 1〉.

16. Find the idempotents, the zero-divisors, the invertible elements, the nilpo-
tent elements of R[X]/〈X2 + 1〉.

17. Show that R[X]/〈X2 + 1〉 ' R[X]/〈X2 + X + 1〉.
18. Find the idempotents, the zero-divisors, the invertible elements, the nilpo-

tent elements of R[X]/〈X3〉.
19. Find the nilpotent elements of (Z/4Z)[X].

20. Show that the ideal 〈2, X〉 of Z[X] is not generated by a single element of
Z[X].

9.2 Euclidean Division

Theorem 9.2.1 (Euclidean Division) Let R be a ring. Let f(X), g(X) ∈
R[X]. Assume the leading coefficient of g(X) is invertible. Then there are
unique q(X), r(X) ∈ R[X] such that f(X) = g(X)q(X)+r(X) and deg(r(X)) <
deg(g(X)).

Proof: We first show the existence of q(X) and r(X) by induction on the
degree of f(X). Assume first that deg(f(X)) < deg(g(X)). Then we can take
q(X) = 0 and r(X) = f(X). Assume now deg(f(X)) ≥ deg(g(X)). Let fn

and gm be the leading coefficients of f(X) and g(X) respectively. Consider the
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polynomial f(X)− g(X)g−1
m fnXn−m. The degree of this polynomial is strictly

less than the degree of g(X). By induction, there are q1, r ∈ R[X] such that
f(X) − g(X)g−1

m fnXn−m = g(X)q1(X) + r(X) and deg(q(X)) < deg(g(X)).
Thus we have, f(X) = g(X)(g−1

m fnXn−m+q1(X))+r(X). We can take q(X) =
g−1

m fnXn−m + q1(X).
We now prove the uniqueness of q(X) and r(X). Assume g(X)q(X)+r(X) =

g(X)q1(X) + r1(X) and deg(r(X)) < deg(g(X)) and deg(r1(X)) < deg(g(X))
for some q(X), q1(X), r(X), r1(X) ∈ R[X]. Then g(X)(q(X) − q1(X)) =
r1(X) − r(X) and so deg(g(X)) + deg(q(X) − q1(X)) = deg(g(X)(q(X) −
q1(X))) = deg(r1(X) − r(X)) < deg(g(X)). Thus deg(q(X) − q1(X)) = −∞
and q(X) = q1(X). It follows that r(X) = r1(X) as well. ¤

9.3 Ideals of K[X]

9.3.1 Irreducible Polynomials

9.4 Ideals of K[[X]]

9.5 Ideals of K[X1, . . . , Xn]
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Euclidean Domains and
Principal Ideal Domains
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Chapter 11

Modules and Vector Spaces
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Chapter 12

Local Rings

12.1 Introduction

A commutative ring R with identity is called local M if it has a unique maximal
(proper of course) ideal. Thus R/M is a field, called the residue field of R. In
this section all our rings are commutative and have identity.

Note the trivial fact that if R is a local ring with M its unique maximal
ideal and if I C R, then R/I is a local ring with M/I its unique maximal ideal.

Lemma 12.1.1 A ring is local if and only if its noninvertible elements form
an ideal.

Proof: Let R be the ring. Assume it is local. Let M be its unique maximal
ideal. Clearly M ⊆ R \ R∗. Conversely let r be a noninvertible element of R.
Assume r 6∈ M . Then there is a maximal ideal N containing r. Since N 6= M ,
this contradicts the fact that M is the unique maximal ideal of R. ¤

From now on, R denotes a local ring. We let M denote its maximal ideal.
By the lemma above we have M = R \R∗.

Lemma 12.1.2 For Mn/Mn+1 is an R/M -vector space in a natural way.

Proof: Suppose m, m′ ∈ Mn are such that m ≡ m′modMn+1 and r, r′ ∈ R
such that r ≡ r′mod M . Then rm − r′m′ = r(m −m′) + (r − r′)m′ ∈ Mn+1.
Thus we can multiply an element r ∈ R/M and an element m ∈ Mn/Mn+1 by
r ·m = rm. To check that Mn/Mn+1 is an R/M -vector space is easy. ¤

We will see in Section 12.3.1 that if ∩nMn = 0 then the local ring R is also
a metric space compatible with the ring structure (Proposition 12.3.1).

Exercises.

1. Let K be a field. Show that K[X]/〈Xn〉 is a local ring.
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2. Show that K[[X]] is a local ring.

3. Let R be any local ring and k ∈ N>0. Show that the ring S = R[X]/〈Xk〉
is also a local ring. Show that N = M + Rx + . . . + Rxk−1 is the unique
maximal ideal of S. Find Nn for n ∈ N>0. Show that if ∩nMn = 0 then
∩nNn = 0.

4. Find a local ring R whose maximal ideal M satisfies ∩nMn 6= 0.

12.2 Completion of a Ring

Let R be a commutative ring with 1 which is also a metric space compatible
with the operations of R, i.e. the maps (x, y) 7→ x − y and (x, y) 7→ xy from
R×R into R are continuous. Let d denote the metric. Let R̃ be the completion
of R. Recall that R̃ is the set of Cauchy sequences of R divided out by the
equivalence relation

(rn)n ≡ (sn)n ⇐⇒ lim
n→∞

rn − sn = 0.

We embed R into R̃ by sending an element r ∈ R to the class of the constant
sequence (r)n. Recall also that R̃ is a metric space with

d((rn)n, (sn)n) = lim
n→∞

d(rn, sn).

Lemma 12.2.1 The maps (x, y) 7→ x− y and (x, y) 7→ xy from R̃ × R̃ into R̃
are continuous.

Proof:

Exercises. Let (R, d) be as in this subsection.

1. Show that any polynomial map from R into R is continuous.

12.3 Discrete Valuation Rings

12.3.1 Introduction

Let R be a commutative ring with identity and I C R an ideal. Set I0 = R
and In+1 = InI = 〈xy : x ∈ In, y ∈ I〉. Clearly In+1 ≤ In and InIm ≤ In+m.
If x ∈ In \ In+1, we set valI(x) to be n. If x ∈ ∩nIn, set valI(x) = ∞. In
particular valI(0) = ∞. Thus valI is a function from R into N t {∞}. We
order N t {∞} naturally and define addition on it in a natural way. Clearly
valI(x) ≥ n if and only if x ∈ In. Also,

val(x) = ∞ ⇐⇒ x ∈ ∩nIn

valI(xy) ≥ valI(x) + valI(y),
val(−x) = val(x),
valI(x + y) ≥ min{valI(x), valI(y)},
valI(x + y) = min{valI(x), valI(y)} if valI(x) 6= valI(y).
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Exercises.

1. Give an example of a ring R with an ideal I such that In+1 < In and
∩nIn 6= 0. (Example: R = R[X,Y ]/〈XY − Y 〉 and I = 〈X,Y 〉).

2. Let K be a field, R = K[X, Y ]/〈X2 − Y 3〉, I = 〈X, Y 〉. Show that In

is generated by two elements. Show that valI(x) = 1 and valI(x2) = 3.
More generally find valI(xn).

For λ ∈ (0, 1), a fixed real number, define dI(x, y) = λval(x−y) ∈ R. (We let
λ∞ = 0). Then, for all x, y, z ∈ R we have,

dI(x, y) ≥ 0,
dI(x, y) = 0 if and only if x− y ∈ ∩nIn,
dI(x, y) = dI(y, x),
dI(x, y) ≤ max(dI(x, z), dI(z, y)) ≤ dI(x, z) + dI(z, y).

We even have a sharper relation than the last one, namely,

dI(x, y) = max(dI(x, z), dI(z, y))

if dI(x, z) 6= dI(z, y).
As one notices, dI looks like a distance function. For dI to be a distance

function, we need sharper relations:

dI(x, y) = 0 if and only if x = y.

In other words we need ∩nIn = 0.

Proposition 12.3.1 Let R be a commutative ring with 1. Let I C R be such
that ∩nIn = 0. Let λ ∈ (0, 1) be any real number. Define

valI(x) =
{

max(n ∈ N : x ∈ In) if x 6= 0
∞ otherwise.

Then valI is a map from R into N ∪ {∞} with the following properties:

valI(x) = ∞ if and only if x = 0,
valI(x) = valI(−x),
valI(xy) ≥ valI(x) + valI(y),
valI(x + y) ≤ min(valI(x), valI(y)).

If λ is any real number strictly between 0 and 1, defining

d(x, y) = λvalI(x−y),

we get a metric space (R, d) where the ring operations subtraction and multipli-
cation are continuous maps from R×R into R. The ideal In are clopen subsets
of R.
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Proof: We already have shown that the four properties of valI hold. We also
have shown that d is a metric on R.

Let us show that substraction is continuous. We have to show that the
inverse image of an open subset of R under the map − : R×R −→ R, (x, y) 7→
x − y, is open in R × R. It is enough to show this for the open balls B(a, r)
of R. We will show that if b − c ∈ B(a, r) then the image B(b, r) − B(c, r) of
B(b, r)×B(c, r) is a subset of B(a, r), this will show that (b, c) is in the interior
of the inverse image of B(a, r), proving that the inverse image of B(a, r) is open.

Let n be such that λn ≥ r > λn+1. Let x ∈ B(b, r) and y ∈ B(c, r). Then
λvalI(x−b) = dI(x, b) < r ≤ λn, so that valI(x−b) > n, i.e. x−b ∈ In+1. Similarly
y−c ∈ In+1 and b−c−a ∈ In+1. Thus x−y−a = (x−b)−(y−c)+(b−c−a) ∈
In+1, valI(x− y − a) > n + 1 and dI(x− y, a) = λvalI(x−y−a) < λn+1 < r.

Assume now that bc ∈ B(a, r). We will know show that B(b, r)B(c, r) ⊆
B(a, r). Let x ∈ B(b, r) and y ∈ B(c, r). As before, x− b, y − c, bc− a ∈ In+1.
Thus xy− a = xy− by + by− bc + bc− a = (x− b)y + b(y− c) + (bc− a) ∈ In+1.

Since In = {x ∈ R : val(x) ≥ n} = {x ∈ R : d(x, 0) ≤ λn} = B(0, λn) =
B(0, λn−1/2), In is both open and closed subset of R. ¤

The metric space (R, dI) satisfies an inequality sharper than the triangular
inequality, namely,

d(x, y) ≤ max{d(x, z), d(z, y)}.
Metric spaces satisfying this sharper inequality are called ultrametric spaces

Exercise.

1. Let R and I be as in the proposition above. Show that if In = 0 for some
n, then (R, dI) is a complete metric space. (Hint: Cauchy sequences are
eventually constant).

12.3.2 Discrete Valuation Rings

Let R be a commutative ring with identity. To the properties of the function
valI defined above we will add a new one to get the concept of discrete valuation
ring.

A map val : R −→ Z ∪ {∞} is called a valuation if

val(x) = ∞ ⇐⇒ x = 0
valI(xy) = valI(x) + valI(y),
valI(x + y) ≥ min{valI(x), valI(y)},

A commutative ring with identity together with a valuation above is called
a discrete valuation ring. Note that we have not used the multiplication
on Z in the definition, we have only used the ordered abelian group structure
(Z,+, 0,≤). Replacing Z with any other ordered abelian group, we get a more
general concept of valuation.

From now on (R, val) stands for a discrete valuation ring. We start listing
the properties of such a ring.
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Properties of (R, val).

1. val(1) = val(−1) = 0.

Proof: Since val(1) = val(1 · 1) = val(1) + val(1), we have val(1) = 0.
Also, since 0 = val(1) = val((−1) ·(−1)) = val(−1)+val(−1), val(−1) = 0.

2. For all x ∈ R, val(x) = val(−x).

Proof: Since val(−1) = 1, val(−x) = val((−1)x) = val(−1) val(x) =
val(x).

3. R is a domain.

Proof: Assume xy = 0. Then ∞ = val(0) = val(xy) = val(x) + val(y).
Therefore either val(x) or val(y) is ∞, i.e. either x or y is 0.

4. val extends to the field of fractions K of R and (K, val) is also a discrete
ring (field!) of valuation.

Proof: Let x, y, z, t ∈ R with y 6= 0 and t 6= 0. Assume x/y = z/t in K.
Then xt = yz and so val(x)− val(y) = val(z)− val(t). Therefore we may
define val(x/y) to be val(x) − val(y). The fact that (K, val) is a discrete
ring (field!) of valuation is easy to check and we leave it to the reader.

From now on we forget about R, and we work with the field K, the field of
fractions of R.

Since val is a homomorphism from the multiplicative group (K∗, ·) into the
additive group (Z, +), val(K∗) ≤ Z+. Thus val(K∗) = nZ for some unique
n ∈ N>0. Replacing val by val(n), we may assume that val : K∗ −→ Z is onto.
In particular there is a π ∈ K such that val(π) = 1. From now on we fix such a
π.

We let
O = {x ∈ K : val(x) ≥ 0}

and

M = {x ∈ K : val(x) > 0} = {x ∈ K : val(x) > 0} = {x ∈ K : val(x) ≥ 1}.

We continue listing the properties of (K, val).

Properties of (K, val).

1. For x ∈ K∗, val(x−1) = − val(x).

Proof: Since 0 = val(1) = val(xx−1) = val(x) + val(x−1), val(x−1) =
− val(x).

2. O is a ring with 1 and MCO.

Proof: This follows from the fact that val(xy) = val(x) + val(y).
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3. O is a local ring with M as its unique maximal ideal. In other words
O∗ = O \M.

Proof: Let x ∈ O∗. Then val(x) ≥ 0 and − val(x) = val(x−1) ≥ 0. Thus
val(x) = 0. It follows that x ∈ (O) \ (M).

Conversely, if x ∈ (O)\(M), then val(x) = 0 and so val(x−1) = − val(x) =
0 ≥ 0, i.e. x−1 ∈ O. Thus x ∈ O∗.

4. M = πO.

Proof: Since val(π) = 1, π ∈ M. So πO ≤ M. Conversely, if x ∈ M,
then x = π(xπ−1) ∈ πO because val(xπ−1) = val(x)+val(π−1) = val(x)−
val(π) = val(x)− 1 ≥ 0.

5. For n ∈ Z, {x : val(x) ≥ n} = πnO and {x : val(x) = n} = πnO∗.
Proof: Let x ∈ K have valuation n. Then x = πn(xπ−n) and since
val(xπ−n) = val(x) + val(π−n) = 0, xπ−n ∈ O∗.

Example. R = Z and M = pZ (p a prime). We get the so-called p-adic
valuation. Its completion is denoted Zp and is called the p-adic integers.

Exercises.

1. What is the field of fractions of Zp?

2. (Conway and Sloan) Let

a1 = 4, a2 = 34, a3 = 334, a4 = 3334, . . .

Show that 3an = 5n + 2. Conclude that in Z5, limn→∞ an = 2/3.

3. Show that there is a sequence (an)n of integers such that

a2
n + 1 ≡ 0 mod 5n

an+1 ≡ an mod 5n+1

for all n ≥ 1 Conclude that x2 + 1 = 0 is solvable in Z5.

4. Show that x2 + 1 = 0 has a solution in Zp if and only if p ≡ 1mod 4.
(Needs some finite field theory).

12.3.3 p-adic Integers

Theorem 12.3.2 (Hensel’s Lemma) Let f(X) ∈ Zp[X]. Assume that there
is an α ∈ Zp (equivalently in Z) such that f(a) ≡ 0mod p and f ′(a) 6≡ 0 mod p.
Then there is a unique β ∈ Zp such that f(β) = 0 and β ≡ α mod p.
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Exams

13.1 Basic Algebra I, Midterm, November 2003
and Its Correction

1. How many abelian groups are there up to isomorphism of order 67500? (5
pts.)

Answer: Since 67500 = 675×102 = 25×27×102 = 22×32×54, the answer
is 2× 2× 5 = 20.

For the 2-part of the group we have two choices: Z/2Z ×Z/2Z and Z/4Z.
For the 3-part of the group we have two choices: Z/3Z ×Z/3Z and Z/9Z.
For the 5-part of the group we have five choices:
Z/5Z× Z/5Z× Z/5Z× Z/5Z,
Z/5Z× Z/5Z× Z/25Z,
Z/5Z× Z/125Z,
Z/625Z,
Z/25Z× Z/25Z

2. Let Z(p∞) be the Prüfer p-group. Prove or disprove: Z(p∞) ' Z(p∞)⊕
Z(p∞). (5 pts.)

Disproof: The first one has p − 1 elements of order p, the second one has
p2 − 1 elements of order p, so that these two groups cannot be isomorphic.

3. Show that a subgroup of index 2 of a group is necessarily normal. (5 pts.)
Proof: Let H be a subgroup of index 2 of G. Let a ∈ G/H. Then G = Ht
Ha = Ht aH, so that aH = G/H = Ha, hence aH = Ha. If a ∈ H, aH = Ha
as well. So aH = Ha all a ∈ G and H. G.

4. Show that Q∗ ≈ (Z/2Z)⊕ (⊕ωZ). (5 pts.)
Proof: Let q ∈ Q∗. Then q = a/b for some a, b ∈ Z/ {0}. Decomposing a and
b into their prime factorization, we can write q as a ±product of (negative or
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positive) powers of prime numbers. Set,

q = ε(q)
∏

p prime pvalp(q)

where valp(q) ∈ Z and ε(q) = ±1 depending on the sign of q. Note that all the
valp(q) are 0 except for a finite number of them. Let φ : Q∗ → (Z/2Z)⊕ (⊕ωZ)
be defined by

φ(q) = (ε(q), val2(q), val3(q), val5(q), ... )
It is clear that φ is an isomorphism of groups. (Here we view Z/2Z as the

multiplicative group {1, -1}).
5. Find |Aut(Z/pnZ)|. (10 pts.)
Solution. The group Z/pnZ being cyclic (generated by 1, the image of 1),

any endomorphism φ of Z/pnZ is determined by φ( 1 ). Then φ( x ) = xφ( 1 )
for all x ∈ Z. Conversely any a ∈ Z/pnZ gives rise to a homomorphism φa via
φa( x ) = xa. In other words End(Z/pnZ) ≈ Z/pnZ via φ 7→ φ(1) as rings with
identity. Thus Aut(Z/pnZ) = End(Z/pnZ)∗ ≈ (Z/pnZ)∗ = {a : a prime to p}
= {a : a not divisible by p} = Z/pnZ/pZ/pnZ and has pn − pn−1 elements.

6. What is Hom(Z/8Z, Z/6Z)? More generally, what is Hom(Z/nZ,
Z/mZ)? How many elements does it have? (15 pts.)

Answer: Since Z/nZ is cyclic and generated by 1 (the image of 1 in Z/nZ),
any element φ of Hom(Z/nZ, Z/mZ) is determined φ( 1 ) ∈ Z/mZ. Let

val1 : Hom(Z/nZ, Z/mZ) → Z/mZ

be the map determined by val1(φ) = φ( 1 ). This is a homomorphism of (ad-
ditive) groups. Furthermore it is one to one. However val1 is not onto as in
Question 5, because not all a ∈ Z/mZ gives rise to a well-defined function x
7→ xa.

Claim: An element a ∈ Z/mZ gives rise to a well-defined function x 7→ xa
if and only if m/d divides a where d = gcd(m, n).

Proof of the Claim: Assume m/d divides awhere d = gcd(m, n). We want
to show that the map x 7→ xa from Z/nZ into Z/mZ is well-defined. Indeed
assume x = y . Then n divides x − y. So na divides xa - ya. By hypothesis,
it follows that nm/d divides xa - ya. Since nm/d = lcm(m, n), we get that
lcm(m, n) divides xa - ya. Hence m divides xa - ya. It follows that xa = ya.

Conversely, assume that the function x 7→ xa from Z/nZ into Z/mZ is well-
defined. Then na = 0a = 0 and m divides na. Hence m/d divides (n/d)a. Since
n/d and m/d are prime to each other we get that m/d divides a. This proves
the claim.

Now we continue with the solution of our problem. The claim shows that
the homomorphism

val1 : Hom(Z/nZ, Z/mZ) → (m/d)Z/mZ

is an isomorphism. We can go further and prove that (m/d)Z/mZ ≈ Z/dZ
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Claim: If n = mp then mZ/nZ ≈ Z/pZ.
Proof of the Claim: Let φ : Z → mZ/nZ be defined by φ(x) = mx .

Clearly φ is a homomorphism and onto. Its kernel is {x ∈ Z : n divides mx} =
{x ∈ Z : mp divides mx} = {x ∈ Z : p divides x} = pZ. So Z/pZ ≈ mZ/mZ.

Thus Hom(Z/nZ, Z/mZ) ≈ Z/dZ where d = gcd(m, n).

7. Let p be a prime, A a finite p-group and φ ∈ Aut(A) an automorphism
of order pn for some n. Show that φ(a) = a for some a ∈ A#. (10 pts.)
Proof: Let G = 〈φ〉. Then |G| = pn and G acts on A#. For a ∈ A#, there is
a bijection between the G-orbit Ga of a and the coset space G/Ga where Ga =
{g ∈ G : g(a) = a} given by gGa 7→ga. Thus |Ga| = |G/Ga| and

|A#| = |ta Ga| = Σa |Ga| = Σa|G/Ga|.
If Ga 6= G for all a, then |G/Ga| = pi for some i ≥ 1 so that p divides

Σa|G/Ga| = |A#| = pn− 1, a contradiction. Thus Ga 6= G for some a and for
this a, |Ga| = 1, i.e. Ga = {a} and φ(a) = a.

8. Let G be a group and g ∈ G#. Show that there is a subgroup H of G
maximal with respect to the property that g /∈ H. (10 pts.)
Proof: Let Z = {H ≤ G : g /∈ H}. Order Z by inclusion. Since the trivial
group 1 ∈ Z, Z 6= ∅. It is easy to show that if (Hi)I is an increasing chain
from Z then ∪IHi ∈ Z. Thus Z is an inductive set. By Zorn’s Lemma it has a
maximal element, say H. Then H is a maximal subgroup of G not containing
g.

9. A group G is called divisible if for every g ∈ G and n ∈ N/ {0} there is
an h ∈ G such that hn = g.

9a. Show that a divisible group cannot have a proper subgroup of finite index.
(10 pts.)
Proof: Assume G is divisible. Let H ≤ G be a subgroup of finite index, say n.
We first prove that G has a normal subgroup K of finite index contained in H.

Claim: A group G that has a subgroup of index n has a normal subgroup of
index dividing n! and contained in H.

Proof of the Claim. Let G act on the left coset space G/H via g.(xH )
= gxH. This gives rise to a homomorphism φ from G into Sym(G/H), and the
latter is isomorphic to Sym(n). Thus Ker(φ) is a normal subgroup and φ gives
rise to an embedding of G/ Ker(φ) into Sym(n). Thus |G/ Ker(φ)| dives n! and
Ker(φ) is a normal subgroup of index dividing n!

An easy calculation shows that Ker(φ) = {g ∈ G : g(xH) = xH all g ∈
G} = ∩x∈GHx ≤ H. This proves the claim.

Let K be the normal subgroup of index m of G. Let a ∈ G. Let b ∈ G be
such that a = bm. Then a = bm ∈ K (because the group G/K has order m)
and so G = K.

9b. Conclude that a divisible abelian group cannot have a proper subgroup
which is maximal with respect to being proper. (10 pts.)
Proof: Let G be a divisible abelian group. Let H < G be a maximal subgroup
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of G. Then G/H has no nontrivial proper subgroups. Thus G/H is generated
by any of its nontrivial elements. In particular G/H is cyclic. Since G/H cannot
be isomorphic to Z (because Z has proper nontrivial subgroups, like 2Z), G/H
is finite. By the question above H = G.

10. Let G be a group. Let H . G.

10a. Assume Z ≈ H. Show that CG(H) has index 1 or 2 in G. (10 pts.)
Proof: Any element of G gives rise to an automorphism of H (hence of Z)

by conjugation. In other words, there is a homomorphism of groups φ : G →
Aut(H) ' Aut(Z) given by φ(g)(h) = hg for all h ∈ G. The kernel of φ is clearly
CG(H). Thus G/CG(H) embeds in Aut(Z). But Z has only two generators,
1 and -1 and any automorphism of Z is determined by its impact on 1, which
must be 1 or -1. Thus |Aut(Z)| = 2. This proves it.

10b. Assume H is finite. Show that CG(H) has finite index in G. (5 pts.)
Proof: As above. φ is a homomorphism from G into the finite group Aut(H)

and the kernel of this automorphism is CG(H).

13.2 Basic Algebra I, Final, January 2004 and
Its Correction

1. Let R be a ring with 1. Show that R has a maximal (and proper) ideal. (5
pts.)

Proof: Let Z be the set of proper ideals of R. Since the trivial ideal 0
is in Z, Z is nonempty. Order Z by inclusion. If (Ii)i is an increasing
chain from Z, then ∪iIi is also in Z since 1 cannot be in ∪iIi (this is the
important point: 1 exists! Otherwise the statement does ot hold as we
will see. Also if (Ii)i were not a chain, it wouldn’t be an ideal), not being
in any of the Ii’s. Thus Z is an inductive set and by Zorn’s Lemma Z has
a maximal element. Any maximal element of Z is a maximal ideal of R.

2. a. Let G be an abelian group. Let H < G be a proper maximal subgroup.
Show that G/H ' Z/pZ for some prime p. (7 pts.) Conclude that a
divisible abelian group cannot have a maximal proper subgroup. (7 pts.)

Proof: Since H is a maximal subgroup, the quotient group G/H does
not have a proper nontrivial subgroup. Now the first part of the question
follows from the following:

Claim: Any group (abelian or not) that does not have a proper nontrivial
subgroup is either the trivial group or isomorphic to Z/pZ for some prime
p.

Proof of the Claim: Let G be such a group. Then for any g ∈ G,
CG(g) = G, thus G is abelian. Since G = 〈g〉 for any g ∈ G \ {1}, G
is cyclic. We cannot have G ' Z, since otherwise G would have many
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subgroups corresponding to the subgroups nZ, n > 1. Thus G ' Z/nZ
for some n ≥ 0. Assume n 6= 0. If p were a proper divisor of n, then
0 < pZ/nZ < Z/nZ, a contradiction. Thus n is a prime. This proves the
claim and the first part.

Let now G be a divisible abelian group. Let H < G be a maximal sub-
group. Then, by the first part, G/H ' Z/pZ for some (prime) integer p.
Let g ∈ G. Let k ∈ G be such that kp = g. Then in the quotient group
G/H, g = k

p
= 1, so that g ∈ H. Thus G = H.

b. Conclude from part a that there are rings (necessarily without 1) with-
out maximal ideals. (5 pts.)

Proof: Let G be any divisible group, e.g. G = Q+, R+ or Zp∞ . Denote
G additively. Define multiplication on I by decreeing gh = 0 all g, h ∈ G.
Then G becomes a ring. An ideal of the ring G corresponds to a subgroup
of the group G. Thus G – not having maximal subgroups – does not have
maximal ideals.

c. Let G be a group and 1 6= a ∈ G. Show that G has a subgroup which is
maximal with respect to not containing a. (4 pts.)

Proof: Exactly as in Question 1.

d. Find a subgroup of Q+ which is maximal with respect to not containing
1. (7 pts.)

Solution. Let p be any prime. Consider

H := {a/b : a, b ∈ Z such that p divides a but not b}.

Then H is a subgroup of Q+. Clearly 1 6∈ H and p ∈ H. We claim that if
H < K ≤ G then 1 ∈ K. This will show that H is a maximal subgroup
of Q not containing 1. Let γ ∈ K \ H. We can write γ = c/d for some
c, d ∈ Z with (c, p) = 1. There are x, y ∈ Z such that cx + yp = 1. Thus
1 = (dx)γ + yp ∈ 〈γ, H〉 ≤ K.

3. Let R = XR[X] considered as a ring (without 1). Let I = X2R[X] C
XR[X].

a. Show that R/I as an additive group is isomorphic to R+ and that the
multiplication of R/I is the zero-multiplication (i.e. the product of any two
elements of R/I is zero). (3 pts.)

Proof: Consider the map φ : R −→ R/I given by φ(a) = aX. This is
certainly a homomorphism of additive groups.

φ is onto because for any f(X) = f0 + f1X + ... + fnXn, φ(f0) = Xf(X).

φ is one-to-one because if a ∈ ker(φ), i.e. if φ(a) = 0 then aX = 0 and
the second degree polynomial X2 divides the first degree polynomial aX,
which implies that aX = 0 and a = 0.
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For the multiplication in R/I: Given any Xf(X), Xg(X) ∈ R/I, we have
Xf(X)Xg(X) = X2f(X)g(X) = 0.

b. Conclude that R/I has no maximal ideals. (4 pts.)

By part a, instead of R/I we may just consider the ring R with the usual
addition and the zero multiplication. By the solution of part b of Question
2, R has no maximal ideals.

c. Conclude that R has no maximal ideals. (8 pts.)

Proof: Note first that I is not a maximal ideal of R (because otherwise
0 would be a maximal ideal of R/I, contradicting part b.

Let J be a maximal ideal of R. Since (I + J)/I C R/I, either I + J = I
or I + J = R. In the first case J ≤ I, making I a maximal ideal, a
contradiction. Assume I + J = R.

I do not know how to continue... The question seems to be open for the
moment. Does R have a maximal ideal? Is a maximal ideal of R that does
not contain X a maximal ideal of R?

4. Let R = Z[
√

d] where d 6= 0, 1 is a square-free element of Z.

a. Show that the map : R −→ R defined by a + b
√

d = a − b
√

d for all
a, b ∈ Z is a ring automorphism. (2 pts.)

Proof: This is easy to show. We need to compute to check that α + β =
α + β, α β = αβ for all α, β ∈ R. The facts that the map is onto and
one-to-one is trivial.

b. For α ∈ R, let N(α) = αα. Show that N(α) ∈ Z and that N : R −→ Z
is multiplicative. (2 pts.)

Proof: Since, for a, b ∈ Z and α = a + b
√

d, N(α) = (a + b
√

d)(a −
b
√

d) = a2 − db2, N(α) ∈ Z. Also, for any αβ ∈ R, N(αβ) = (αβ)αβ =
(αα)(ββ) = N(α)N(β).

c. For α ∈ R, show that α ∈ R∗ if and only if N(α) = ±1. (5 pts.)

Proof: If α ∈ R∗, then there is a β ∈ R such that αβ = 1. Thus
1 = N(1) = N(αβ) = N(α)N(β). Since N(α), N(β) ∈ Z, this implies
that N(α) = N(β) = ±1.

Conversely, assume N(α) = ±1. Then (N(α)α)α = N(α)2 = 1 so that
N(α)α is the inverse of α.

d. For α ∈ R, show that if N(α) is prime then α is irreducible. (3 pts.)

Proof: Assume N(α) is prime. Let α = βγ where β, γ ∈ R. Then
N(α) = N(βγ) = N(β)N(γ). Since N(α) is prime, this implies that
either N(β) or N(γ) is ±1, i.e. either β or γ is invertible. Hence α is
irreducible.
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e. Assume d < −1. Find R∗. (3 pts.)

By part c, R∗ = {α ∈ R : N(α) = ±1}. But N(α) = a2 − db2 = a2 + |d|b2

for α = a + b
√

d and a, b ∈ Z. So N(α) ≥ |d| > 1 if b 6= 0. Thus
R∗ = {1,−1} ' Z/2Z.

f. Assume d = −1. Find R∗ and its group structure. (5 pts.)

Proof: By part c, R∗ = {a+b
√−1 : a, b ∈ Z a2+b2 = 1} = {1,−1, i,−i}

where i2 = −1. Since i has order 4, R∗ ' Z/4Z.

e. Show that the map : R −→ R defined above is the only nontrivial
ring automorphism of R. (5 pts.)

Proof: Any automorphism must be trivial on Z, as usual. Thus it is
enough to find the image of

√
d. Let x =

√
d. Then x2 = d and so

φ(x)2 = φ(x2) = φ(d) = d, hence φ(x) = ±
√

d.

5. Let G be a finite abelian group. Show that if any p-subgroup of G is cyclic
for any prime p then G is cyclic itself. (5 pts.)

Proof: G is the direct sum of its primary parts, which are all cyclic. We
know that the product of finitely many cyclic groups of order two by two
prime to each other is a cyclic group. (For this, it is enough to prove that
if (n,m) = 1, then Z/nZ× Z/mZ = Z/nmZ).

6. Show that if r ≤ s then Xpr − 1 divides Xps − 1. (3 pts.)

Proof: Let s = r + t and Y = Xpr

. Then Xps

= Xpr+t

= Xprps

=
(Xpr

)pt

= Y pt

. Thus we need to show that Y − 1 divides Y pt − 1, but
Y − 1 always divides Y n − 1.

7. Show that if F1 and F2 are two finite subfields of a field K of the same
cardinality then F1 = F2. (5 pts.)

Proof: Say |F1| = |F2| = n. Then F ∗1 and F ∗2 are groups of order
n − 1. Hence, for any x ∈ F ∗1 ∪ F ∗2 , xn−1 = 1. It follows that for any
x ∈ F1 ∪ F2, xn = x. Hence the elements of F1 ∪ F2 are the roots of
the polynomial Xn − X. But this polynomial has at most n roots. So
F1 = F2 = {x ∈ K : xn = x}. (In reality n is a prime power).

8. Show that a finite subgroup of a field is cyclic. (15 pts.)

Proof: Let F be a field and G be a finite group of F ∗. By decomposing
G into its primary parts, we may assume that G is a p-group for some
prime p. (Direct sum of finitely many cyclic groups whose orders are two
by two relatively prime to each other is cyclic). Since any finite abelian
p-group, for p prime, is a direct sum of cyclic p-subgroups, it is enough to
show that G cannot be of the form Z/pnZ ⊕ Z/pmZ for some m, n ≥ 1.
Assume not. Then {x ∈ F : xp = 1} has at least p2 − 1 elements, so the
polynomial Xp − 1 has at least p2 − 1 roots in the field F , more than p, a
contradiction.
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9. Conclude from Question 8 that if F ≤ K are finite fields then K = F [α]
for some α ∈ K. (3 pts.)

Proof: Since K∗ is a cyclic group, there is an a ∈ K∗ such that K∗ = 〈α〉.
Then K = F [α] of course.

13.3 Basic Algebra II First Midterm May 2003

K stands for a field.

1. Let K be a finite field. Show that K has pn elements for some prime p
and some natural number n. (5 pts.)

2. Find all ideals of K × . . .×K. (5 pts.)

3. Let R be a commutative ring with 1 and I CR. Show that I is a maximal
ideal if and only if R/I is a field. (5 pts.)

4. Let K be a field with a valuation v. Recall that this means that v is a
map from K into Z ∪ {∞} such that for all x, y ∈ K,

v(x) = ∞ if and only if x = 0,

v(x + y) ≥ min(v(x), v(y)),

v(xy) = v(x) + v(y).

5. Show that if v(x) 6= v(y), then v(x + y) = min(v(x), v(y)). (10 pts.)

6. Let R be a domain containing a field K. Then R is a vector space over
K. Assume that dimK(R) < ∞.

a) Show that R is a field.

b) Show that for every r ∈ R there is an irreducible polynomial p(X) ∈
K[X] such that p(r) = 0. (20 pts.)

After that I classified all finite dimensional central R-algebras, not as
difficult as it seems: R, C, H.

7. Let K be a field and X a set. Let R be the ring of all functions from X
into K. Find a maximal ideal of R. (5 pts.)

8. Show that, except for p = 2, Zp has no elements satisfying xp = 1. (10
pts.)

9. Let R be a commutative ring. Let I be a maximal ideal of R[X]. Is R∩ I
necessarily a prime ideal of R? (10 pts.)

10. Find all two-sided ideals of Mat2×2(K). (10 pts.)

11. Find all the ring automorphisms of K[X]. (20 pts.)
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13.4 Basic Algebra II Final, May 2003

1. Find all ring homomorphisms from Cn onto C. (The ring structure on Cn

is componentwise).

2. Show that the additive group of a commutative ring with identity cannot
be isomorphic to the additive group Q/Z.

3. Let R be a principal ideal domain. And let I and J be nonzero ideals of
R. Show that IJ = I ∩ J if and only if I + J = R.

4. Is the ideal of Z[X] generated by X3 + X + 1 prime?

5. Let I be an ideal and S be a subring of the ring R. Prove that I ∩S is an
ideal of S. Give an example to show that every ideal of S need not be of
the form I ∩ S for some ideal I of R.

6. Let R be a commutative ring and P be a maximal ideal of R. Let I = P [X]
be the ideal of the polynomial ring R[X] consisting of the polynomials in
R[X] with coefficients in P . Show that I is a nonmaximal prime ideal.

7. Let R be a commutative ring with identity. Let f(X) = a0 + a1X + . . . +
anXn ∈ R[X]. Prove that f(X) is unit if and only if a0 is a unit in R and
ai is nilpotent for all i > 0.

8. Suppose A and B are finitely generated R-modules where R is a principal
ideal domain. Show that if A⊕A ' B ⊕B, then A ' B.

9. Suppose A is a finitely generated R-module where R is a principal ideal
domain. If A⊕A ' A, show that A = 0.
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Chapter 14

Rings of Matrices

Let R be a ring with 1. We consider the additive abelian group Rn (with the
componentwise addition). For r ∈ R and v = (r1, . . . , rn) ∈ Rn, we let

r(r1, . . . , rn) = (rr1, . . . , rrn).

We call this last multiplication, multiplication by a scalar. In this section,
we will forget the ring structure on Rn defined in the previous section and we
will only care about the addition on Rn and the multiplication by a scalar as
defined just above.

Now we consider the additive group homomorphisms φ : Rn −→ Rm such
that φ(rv) = rφ(v) for all r ∈ R and v ∈ Rn. We denote the set of such
homomorphisms by HomR(Rn, Rm). It is clear that HomR(Rn, Rm). It can
also be checked that if φ ∈ HomR(Rn, Rm) and ψ ∈ HomR(Rm, Rp), then
ψ ◦ φ ∈ HomR(Rn, Rp).

Lemma 14.0.1 The set EndR(Rn) := HomR(Rn, Rn) is an associative ring
with identity.

Proof: Left as an exercise. ¤

Now we will describe the elements of HomR(Rn, Rm) in terms of the elements
of R.

Consider the n elements

(1, 0, 0 . . . , 0, 0)
(0, 1, 0, . . . , 0, 0)

. . .
(0, 0, 0, . . . , 0, 1)

of Rn. This set of elements of Rn is called the canonical basis of Rn. Denote
them by e1, . . . , en. The canonical basis e1, . . . , en has the following property,

for any v ∈ Rn, there are unique r1, . . . , rn ∈ R such that v = r1e1 + . . .+ rnen.

95
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Indeed, if v = (r1, . . . , rn), then v = r1e1 + . . . + rnen.
Note that there may be other sets of elements that have the same property.

But the canonical basis is considered to be a special one. Let f1, . . . , fm be the
canonical basis of Rm.

Now let φ ∈ HomR(Rn, Rm). Let v = (r1, . . . , rn) ∈ Rn. Then φ(v) =
φ(r1e1+ . . .+rnen) = r1φ(e1)+ . . .+rnφ(en). Thus if we know φ(e1), . . . , φ(en),
then we know φ. In other words φ is determined by the n elements φ(e1), . . . , φ(en)
of Rm. And each element of Rm is given by an m-tuple of elements of R. Write,

φ(e1) = (φ11, . . . , φm1)
φ(e2) = (φ12, . . . , φm2)

. . .
φ(ej) = (φ1j , . . . , φmj)

. . .
φ(en) = (φ1n, . . . , φmn)

Thus any φ ∈ HomR(Rn, Rm) gives rise to an nm-tuple

(φij)i=1,...,m; j=1,...,n ∈ Rnm.

Conversely, any mn-tuple (φij)i=1,...,m; j=1,...,n ∈ Rnm determines a homomor-
phism φ ∈ HomR(Rn, Rm). We write the mn-tuple (φij)i=1,...,m; j=1,...,n in the
following way: 



φ11 φ12 . . . φ1j . . . φ1n

φ21 φ22 . . . φ2j . . . φ2n

...
... · · · ... · · · ...

φi1 φi2 . . . φij . . . φin

...
... · · · ... · · · ...

φm1 φm2 . . . φmj . . . φmn




Such an object is called an (m × n)-matrix. The set of (m × n)-matrices
with coefficients in R is denoted by Matm×n(R).

Note that, as a set, Matm×n(R) is just Rmn.
Thus there is a bijection, let us call it M , from Hom(Rn, Rm) into Matm×n(R).
Note that, for φ ∈ Hom(Rn, Rm), the j-th column of the matrix Θ(φ) is the

entries of φ(ej).
Now we carry the addition, the scalar multiplication and the composition

when possible. of



Part III

Basic Field Theory
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Let F ⊇ K be an algebraic extension of fields and let R be a subring of F
with R ⊇ K. Show that R is a field.
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Part IV

Basic Module Theory
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Chapter 15

Finitely Generated Torsion
Modules over PIDs
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Part V

Basic Linear Algebra
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Part VI

Intermediate Group Theory
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Chapter 16

Commutator Subgroups

Exercises.

1. Show that if H, K ≤ G, then H and K normalize the subgroup [H, K].
(Hint: See Exercise 14, page 14).

2. Show that if A ≤ G is an abelian subgroup and if g ∈ NG(A), then the
map ad(g) : A −→ A given by ad(g)(a) = [g, a] := g−1a−1ga is a group
homomorphism whose kernel is CA(g). (Hint: See Exercise 1, page 109).
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Chapter 17

Cauchy’s Theorem

Theorem 17.0.2 (Cauchy’s Theorem) Let G be a finite group whose order
is divisible by the prime p. Then G has an element of order p.
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Chapter 18

Sylow Theory

Theorem 18.0.3 (Sylow Theory) Let G be a finite group and p a prime.
Assume |G| = pnm where m and p are prime to each other. Then G has
subgroups of order pn (called Sylow p-subgroups of G). Furthermore

i. The Sylow p-subgroups are conjugate to each other.
ii. Any p-subgroup of G is in some Sylow p-subgroup of G.
iii. The number of Sylow p-subgroups divides m and is 1 modulo p.

Proof: (See Lemma 28.0.13 for groups acting on sets). Let ℘ be the set of
maximal p-subgroups. The group G acts on the set ℘ by conjugation. For
P, Q ∈ ℘, |PQ| = |Q/NQ(P )|. Hence |PQ| = 1 if and only if P = Q, and if
P 6= Q then p divides |PQ|. Let ∅ 6= ℘1 ⊂ ℘ be a G-stable subset, and let
P ∈ ℘1, Q ∈ ℘\℘1. By counting the P -orbits in ℘1 we see that |℘1| ≡ 1 modulo
p. By counting the Q-orbits in ℘1 we see that p divides |℘1|, a contradiction.
Thus there is only one G-conjugacy class in ℘. This proves that the maximal
p-subgroups of G are conjugate to each other. Thus ℘ = PG some P ∈ ℘
(so |℘| ≡ 1 modulo p) and |℘| = |G/NG(P )| (thus pn divides |NG(P )| and |℘|
divides m). Since NG(P )/P is a p⊥-group, pn divides |P | and so |P | = pn.

If H is a p-subgroup, by letting H act on ℘ and counting the H-orbits, we
see that H must fix (i.e. normalize) a P ∈ ℘. Then H ≤ P . ¤

Exercises.

1. Find the number of Sylow 3-subgroups and the number of Sylow 5-subgroups
of the symmetric group Sym(5).

2. Let G be a group of order 165 = 3 · 5 · 11. Show that

a) G has a normal Sylow 11-subgroup, say C.

b) G/C is cyclic. (HINT: Show that every group of order 15 is cyclic.)

c) G has normal subgroups of orders 33 and 55.
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3. Let H ≤ G and P a Sylow p-subgroup of G. Show that for some g ∈ G,
P g ∩ H is a Sylow p-subgroup of H. By considering Sym(4), show that
we may not be able to choose g ∈ H.

4. Let G be a finite group and H C G. If P ≤ G is a Sylow p-subgroup of
G, then P ∩H is a Sylow p-subgroup of H and all Sylow p-subgroup of H
arise in this way.



Chapter 19

Semidirect Products

Let U and T be two groups and let φ : T −→ Aut(U), t 7−→ φt be a group
homomorphism. We will construct a new group denoted by U o φT , or just by
U oT for short. The set on which the group operation is defined is the Cartesian
product U × T , and the operation is defined as follows:

(u, t)(u′, t′) = (u · φt(u′), tt′).

The reader will have no difficulty in checking that this is a group with (1, 1) as
the identity element. The inverse is given by the rule:

(u, t)−1 = (φt−1(u−1), t−1).

Let G denote this group. G is called the semidirect product of U and T (in this
order; we also omit to mention φ). U can be identified with U × {1} and hence
can be regarded as a normal subgroup of G. T can be identified with {1} × T
and can be regarded as a subgroup of G. Then the subgroups U and T of G
have the following properties: U C G, T ≤ G, U ∩ T = 1 and G = UT.

Conversely, whenever a group G has subgroups U and T satisfying these
properties, G is isomorphic to a semidirect product U o φT where φ : T −→
Aut(U) is given by φt(u) = tut−1.

When G = U oT , one says that the group G is split1; then the subgroups U
and T are called each other’s complements. We also say that T (or U) splits
in G. Note that T is not the only complement of U in G: for example, any
conjugate of T is still a complement of U .

When the subgroup U is abelian, it is customary to denote the group oper-
ation of U additively. In this case, it is suggestive to let tu = φt(u). Then the
group operation can be written as:

(u, t)(u′, t′) = (tu′ + u, tt′).

1This is an abuse of language: every group G is split, for example as G = Go {1}. When
we use the term ”split”, we have either U or T around.
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¶ One should compare this with the following formal matrix multiplication:(
t u
0 1

) (
t′ u′

0 1

)
=

(
tt′ tu′ + u
0 1

)
.

Examples.

1. ¶ Let V be a vector space and GL(V ) be the group of all vector space
automorphisms of V . The group V o GL(V ) (where φ = Id) is a subgroup
of Sym(V ) as follows: (v, g)(w) = gw + v.

2. ¶ The subgroup Bn(K) that consists of all the invertible n × n upper
triangular matrices over a field K is the semidirect product of UTn(K)
(upper-triangular matrices with ones on the diagonal) and Tn(K) (invert-
ible diagonal matrices).

Exercises.

1. ¶ Let K be any field. Show that the group

G =
{(

t u
0 1

)
: t ∈ K∗, u ∈ K

}

is a semidirect product of the form G′oT for some subgroup T . This
group is called the affine group.

2. Let G = U oT .
a. Let U ≤ H ≤ G. Show that H = U o (H ∩ T ).
b. Let T ≤ H ≤ G. Show that H = (U ∩H)oT .
c. Show that if T is abelian then G′ ≤ U .
d. Show that if T1 ≤ T , then NU (T1) = CU (T1).

3. Let G = U oT . Let t ∈ T and x ∈ U . Show that xt is G-conjugate to an
element of T if and only if xt is conjugate to t if and only (xt)u = t for
some u ∈ U if and only if x ∈ [U, t−1].

4. Let G = U oT and let V ≤ U be a G- normal subgroup of U . Show that
G/V ' U/V oT in a natural way.

5. Let G = U oT and let V ≤ U be a G- normal subgroup of U . By
Exercise 4, G/V ' U/V oT . Let t ∈ T be such that V = ad(t)(V ) and
U/V = ad(t)(U/V ). Show that U = ad(t)(U). (Here ad(t)(v) = [t, v]).

6. ¶ Let K be a field and let n be a positive integer. For t ∈ K∗ and x ∈ K,
let φt(x) = tnx. Set G = K+o φK∗. What is the center of G? Show that
Z2(G) = Z(G). What is the condition on K that insures G′ ' K+? Show
that G is isomorphic to a subgroup of GL2(K).

Lemma 19.0.4 Let G be a group and A a normal subgroup of G. Assume G/A
is cyclic of order n and A is torsion without elements of order p for any divisor
p of n. Then G = AoH for some subgroup H of G.



Chapter 20

Solvable Groups

Throughout this subsection G denotes a group. If x, y ∈ G and n any integer
(even a negative one), we let xny = y−1xny and [x, y] = x−1y−1xy. In particular
x−y = y−1x−1y. An element of the form [x, y] is called a commutator. If
X, Y ≤ G are two subsets of G, [X,Y ] denotes the subgroup generated by the
set {[x, y] : x ∈ X, y ∈ Y }. Since [x, y] = [y, x]−1, [X, Y ] = [Y, X].

Clearly, if H and K are normal subgroups of G, then [H,K] is also a normal
subgroup of G. Exercise 2.a below will show that the subgroup [H, K] is normal-
ized by H and K, and therefore by 〈H,K〉. However it is not always true that if
H, K ≤ G and H C G, then [H, K] C G. As an example, let G = GL2(K)oK2

with the natural action. Let H = K2 C G and K be the set of strictly lower
triangular matrices of GL2(K). Then one can check easily that [H,K] is (one
dimensional and) not normal in G.

The subgroups Gn and G(n) are defined inductively:

G0 = G(0) = G, G1 = G(1) = [G, G],
Gn+1 = [Gn, G], G(n+1) = [G(n), G(n)].

Lemma 20.0.5 Gn and G(n) are characteristic subgroups of G, i.e. they are
invariant under the automorphisms of G.

The subgroup G1 is denoted by G′ and is called the derived subgroup or
the commutator subgroup of G.

Lemma 20.0.6 G′ ≤ H ≤ G if and only if HCG and G/H is abelian. In other
words, G′ is the smallest normal subgroup H of G such that G/H is abelian.

The subgroup G2 is also denoted by G′′ sometimes. A group G is called
solvable if G(n) = 1 for some n. The smallest such n is called the solvability
class of G. A group G is said to be nilpotent if Gn = 1 for some n. Again,
the smallest such n is called the nilpotency class of G.

For an integer n, we define Zn(G) inductively. The subgroup Z◦(G) is defined
to be {1} and Zn+1(G) = {g ∈ G : [g, G] ≤ Zn(G)}. The subgroup Z1(G) is
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also denoted by Z(G); it is the set of elements that commute with every element
of G and is called the center of G. An element or a subgroup is called central if
it is in the center of G. It immediately follows (by induction) from the definition
that Zn(G) C Zn+1(G) C G and that Zn+1(G)/Zn(G) is the center of G/Zn(G).

Exercises. Throughout the exercises G is a group. We let Zi = Zi(G) and
Z = Z(G).

1. Show that for x, y ∈ G and n a positive integer,

[xn, y] = [x, y]x
n−1

[x, y]x
n−2 · · · [x, y].

2. a. Show that for x, y, z ∈ G, [x, yz] = [x, z][x, y]z and [xy, z] = [x, z]y[y, z].
Conclude that if H, K ≤ G, then H and K normalize the subgroup [H, K].
Conclude also that if A ≤ G is an abelian subgroup and if g ∈ NG(A),
then ad(g) : A −→ A is a group homomorphism whose kernel is CA(g).
(Here ad(t)(v) = [t, v]).

b. Let x, y, z ∈ G. Show that

[[x, y−1], z]y[[y, z−1], x]z[[z, x−1], y]x = 1.

Conclude that if H and K are two subgroups of a group G and if [[H,K], K] =
1, then [H, K ′] = 1.

c. Three Subgroup Lemma of P. Hall. Let H, K, L be three normal
subgroups of G. Using part b, show that

[[H, K], L] ≤ [[K,L],H][[L,H],K].

d. Conclude from part (c) that [Gi, Gj ] ≤ Gi+j+1, G(i) ≤ G2i−1, [Gi, Zj ] ≤
Zj−i−1, [Zi+1, G

i] = 1.

e. Show that a nilpotent group is solvable. Show that the converse of this
statement is false.

3. a. Let G be nilpotent of class n. Show that Gn−i ≤ Zi. Conclude that
G = Zn.

b. Conversely, assume that G = Zn. Show that Gi ≤ Zn−i. Conclude
that G is nilpotent of class ≤ n.

c. Show that G is nilpotent of class n if and only if Zn = G and Zn−1 6= G.

4. Let H C G and K, L ≤ G.

a. Show that [KH/H, LH/H] = [K,L]H/H.

b. Conclude that if G is solvable (resp. nilpotent), then so are H and
G/H.

c. Show that if G/H and H are solvable, then so is G.
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d. Find an example where the previous result fails if we replace the word
“solvable” by “nilpotent”.

e. Deduce from part c that if A and B are solvable subgroups of G and if
one of them normalizes the other, then 〈A,B〉 = AB is also solvable.

5. Let X ≤ Zn(G) be a normal subgroup of G. Show that G is nilpotent
if and only if G/X is. Let i be fixed integer. Show that G is nilpotent
of class n if and only if G/Zi is nilpotent of class n − i. Show that Zi is
nilpotent of class ≤ i. Find a (nilpotent) group where Z2 6= Z and Z2 is
abelian.

6. a. Show that the subgroup Gn is generated by the elements of the form
[x1, [x2, . . . , [xn, xn+1] . . .]], where xi ∈ G. Find a similar statement for
G(n).

7. ¶ Let K be a field. By Exercise 20.0.6, GLn(K)′ ≤ SLn(K). Show that if
K 6= F2, F3, GL2(K)′ = SL2(K). Find GL2(F2)′ and GL2(F3)′.

8. ¶ The prototype of solvable groups is the group Bn(K) of n×n invertible
upper-triangular matrices over some fixed field K 6= F2. Show that Bn(K)
is solvable of class ≤ n. (But not necessarily of class n, for example B4(K)
is solvable of class 3).

9. ¶ Find the solvability class of Bn(K).

10. ¶ Consider the group UTn(K) of strictly upper-triangular (or unitri-
angular) n× n matrices (i.e. with ones on the diagonal). Show that it is
a nilpotent group of class n− 1.
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Chapter 21

Nilpotent Groups

21.1 p-Groups

Let p be a prime. A p-element of a group is an element whose order is a p-th
power. A group is called a p-group if all its elements are p-elements.

Lemma 21.1.1 If H, K ≤ G are p-subgroups such that K ≤ NG(H), then HK
is a p-group.

Lemma 21.1.2 A finite p-group has nontrivial center. (Corollary 28.0.14)

Corollary 21.1.3 A finite p-group is nilpotent.

Proposition 21.1.4 A finite p-group is nilpotent.

Proposition 21.1.5 A group of order pk is nilpotent of class ≤ k.

Proposition 21.1.6 Let A be a locally finite p-group and G a finite p-group of
automorphisms of A. Then CA(G) 6= 1, thus Z(AoG) 6= 1.

Exercises.

1. ¶ Let V be a vector space over a field of characteristic p. Let σ ∈ GL(V )
be a p-element of order pk say. Then V o 〈σ〉 is a nilpotent group of class
≤ pk + 1.

2. Let A = Z2∞ and σ ∈ Aut(Z2∞) be the inversion. Then G := Z2∞ o 〈σ〉 is
solvable of class 2 and nonnilpotent. Furthermore Z/2nZ ' Zn(G) ≤ Z2∞ .

3. Let A = (Z/pZ)n. Find all involutions σ ∈ Aut(A) such that Ao 〈σ〉 is
nilpotent of class 2 (and p). How many of them are nonisomorphic?

4. (Normalizer Condition) Show that a nilpotent group G satisfies the
normalizer condition (i.e. if H < G then H < NG(H)).
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5. Let G be a nilpotent group. Show that if 1 6= H C G, then H ∩ Z 6= 1.

6. Let A and B be two normal nilpotent subgroups of G. Show that the
subgroup 〈A,B〉 = AB is also normal and nilpotent.

7. a. Let g ∈ G and H ≤ G be such that [g, H] ⊆ Z. Show that the map
ad(g) : H −→ Z given by ad(g)(x) = [g, x] is a group homomorphism.
(Here ad(t)(v) = [t, v]). Show that for all h ∈ H, n ∈ Z, [g, h]n =
[gn, h] = [g, hn].

b. Using Exercise 1, show that if z ∈ Z2 and zn ∈ Z, then [z, G] is a
central subgroup of finite exponent and that exp([z, G]) divides n.

c. Use part b to prove, by induction on the nilpotency class, that if a
nilpotent group has an element of order p where p is a prime, then it has
central elements of order p.

d. Let G be a nilpotent group and D a p-divisible subgroup of G. Show
that D commutes with all the p-elements of G. Deduce that in a divisible
nilpotent group, elements of finite order form a central subgroup.

8. (p-Divisible Nilpotent Groups.) Let p be a prime and let G be a
p-divisible nilpotent group.

a. Show that if gp ∈ Z, then g ∈ Z.

b. Conclude that Z is p-divisible, contains all the p-elements and that
G/Z is p-torsion-free and p-divisible.

c. Show that G/Zi is p-torsion-free for all i ≥ 1.

d. Conclude that Zi+1/Zi is p-torsion-free and p-divisible for i ≥ 1.

9. (p-Divisible Nilpotent Groups) Let G be a nilpotent group.

a. Let i ≥ 1 be an integer. Show that G/Gi is p-divisible if and only if
G/Gi+1 is p-divisible.

b. Conclude that G is p-divisible if and only if G/G′ is p-divisible.

c. Show that G has a unique maximal p-divisible subgroup D.

d. Assume that for some D C G, D and G/D are p-divisible. Show that
G is p-divisible.

10. (Nilpotent Groups of Bounded Exponent) Let G be nilpotent and
assume that exp(G/G′) = n.

a. Show that exp(Gi/Gi+1)|n for all i.

b. Conclude that exp(G)|nc where c is the nilpotency class of G.

11. (Sylow p-Subgroup of Nilpotent Groups) Let P be a Sylow p-subgroup
of a nilpotent group G. Show that P is characteristic in NG(P ). Conclude
that NG(NG(P )) = NG(P ). By Exercise 4, if G is nilpotent, NG(P ) = G,
i.e. P C G.
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Conclude that, for a given prime p, a nilpotent group G has a unique
Sylow p-subgroup, and that if G is torsion, then G is the direct sum of its
Sylow p-subgroups.
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Chapter 22

Sym(X) Revisited

22.1 Alt(n)

Odd and even permutations...

Exercises.

1. If a subgroup G of the symmetric group Sn contains an odd permutation,
then |G| is even and exactly half the elements of G are odd permutations.

22.2 Conjugacy Classes

Proposition 22.2.1 Let G be a group, a ∈ G, G/CG(a) the right coset space.
Then the map CG(a)g −→ ag is a bijection between G/CG(a) and aG.

Proof: By question 3, we may assume that G/CG(a) stands for the right coset
space {CG(a)g : g ∈ G}. It is easy to check that the map CG(a)g 7→ ag is a
well-defined bijection between G/CG(a) and aG. ¤

Theorem 22.2.2 Two elements of Sym(X) are conjugate if and only if they
have the same cycle type.

Proof: Suppose α and β have the same cycle structures. Write α and β as
the product of disjoint cycles one under another in such a way that the cycles
of the same length are one on top of another:

α = (. . . a1 a2 a3 . . .) . . .

β = (. . . b1 b2 b3 . . .) . . .

Now let g ∈ Sym(X) send a’s to b’s in that order. Now gαg−1(bi) = gα(ai) =
g(ai+1) = bi+1, hence gαg−1 = β.

Conversely, suppose that gαg−1 = β. Suppose for example that (a1 . . . , an)
is a cycle of α. It follows easily that (g(a1) . . . , g(an)) is a cycle of β. ¤
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Exercises.

1. By using Theorem 22.2.2, find the sizes of conjugacy classes in Sym(n) for
n = 2, 3, 4, 5, 6, 7. By using Proposition 22.2.1, find the sizes of centralisers
in Sym(n) for n = 2, 3, 4, 5, 6.

Answer:
n 2 3 4 5 6
Idn 1 1 1 1 1
(12) 1 3 6 10 15
(123) 2 8 20 40
(12)(34) 3 15 45
(1234) 6 30 90
(12)(345) 20 120
(12345) 24 144
(12)(34)(56) 15
(12)(3456) 90
(123)(456) 40
(123456) 120
Total 2 6 24 120 720

2. Show that the elements (01)(12)(34) . . . and (12)(34)(56) . . . of Sym(ω)
are not conjugate.

Proof: They do not have the same cycle structure. The first one has no
cycles of length 1, the second one has one cycle of length 1.

3. Can (01)(23)(45) . . . and (12)(34)(56) . . . of Sym(ω) be conjugate in a
larger group?

Answer: Yes! In Sym(Z)... Because in Sym(Z) they have the same cycle.

4. Show that CSym(n)(12 . . . n) is cyclic of order n.

Proof: Clearly 〈(12 . . . n)〉 ≤ CSym(n)(12 . . . n). By Exercise 20.b, page 33
and 22.2.2, page 125, |CSym(n)(12 . . . n)| = n!/(12 . . . n)G| = n!/(n− 1)! =
n. It follows that 〈(12 . . . n)〉 = CSym(n)(12 . . . n).

5. Let X be a set and g ∈ Sym(X). let Y = {x ∈ X : g(x) 6= x}. Show that
CSym(X)(g) ' CSym(Y )(g)× Sym(X \ Y ).

Proof: We view Sym(Y ) and Sym(X \ Y ) as subgroups of Sym(X) in
the obvious way.

We certainly have CSym(Y )(g), Sym(X\Y ) ≤ CSym(X)(g). Also CSym(Y )(g)∩
Sym(X \ Y ) = 1 and the elements of CSym(Y )(g) commute with the ele-
ments of Sym(X\Y ). Thus CSym(Y )(g)×Sym(X\Y ) = 〈CSym(Y )(g),Sym(X\
Y ) ≤ CSym(X)(g).

Conversely, let c ∈ CSym(X)(g). Then gc = cg. If x ∈ X \ Y , we get
g(x) = gc(x) = cg(x), so that c fixes g(x) and hence g sends X \ Y into
X\Y . Similarly, if x ∈ Y , then g(x) 6= gc(x) = cg(x), so that g(x) ∈ Y and
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hence g sends Y into Y . Now we can write g = ab where a ∈ Sym(X \ Y )
and b ∈ Sym(Y ). Now b = a−1g ∈ Sym(X \ Y )CSym(X)(g) ≤ CSym(X)(g).
It follows that b ∈ CSym(Y )(g). ¤

6. Let α = (1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (n1 + . . . + nk−1, . . . , n1 +
. . . + nk−1 + nk). Let n = n1 + . . . + nk−1 + nk. Suppose that the
cycle lengths ni are all distinct. Show that CSym(n)(α) = {αi1

1 . . . αik

k :
ij = 0, 1, . . . , nj − 1 for all j = 1, . . . , k} ' Z/n1Z × . . . × Z/nkZ where
αj = (n1 + . . . + nj−1, . . . , n1 + . . . + nj−1 + nj).

7. Let g = (01)(234)(5678)(9 10 11 12 13) . . .. What is the group structure of
CSym(ω)(g)?

Answer: By parts 4 and 5, CSym(ω)(g) ' ⊕∞n=2Z/nZ.

8. Let a = (123)(456)(789)(10 11 12) Show that CSym(12)(a) ' (Z/3Z)4o Sym(4).

Proof: We embed Sym(4) in Sym(12) via

Id3 7→ Id12

(12) 7→ (14)(25)(36)
(13) 7→ (17)(28)(39)
(23) 7→ (47)(58)(79)
(123) 7→ (147)(258)(369)
etc

In other words, we view Sym(4) as the permutations of the four cycles
(123), (456), (789), (10 11 12).

It is clear that the image of Sym(4) in Sym(12) is in CSym(12)(a).

Let g ∈ CSym(12)(a). Then g permutes the four cycles (123), (456), (789),
(10 11 12). Hence there is an h ∈ Sym(4) (or in its image) such that h−1g
preserves the four cycles. Hence h−1g is in the centralizer of these four
cycles, which is equal to 〈(123), (456), (789), (10 11 12)〉 and to

〈(123)〉 ⊕ 〈(456)〉 ⊕ 〈(789)〉 ⊕ 〈(10 11 12)〉,

hence isomorphic to (Z/3Z)3.

Thus CSym(12)(a) = (CSym(12)((123), (456), (789), (10 11 12))) Sym(4) '
(Z/3Z)3o Sym(4). ¤

9. Show that, except for n = 4, the centralizer of a transposition is the
smallest centralizer of involutions (≡ elements of order 2) in Sym(n).

Proof: An involution is a product of disjoint transpositions. For 2 ≤ 2i ≤
n, let ai = (12)(34) . . . (2i− 1, 2i). We want to show that |CSym(n)(ai)| ≥
|CSym(n)(a1)| for all i and all n 6= 4. By Exercise 1, page 126, we may
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assume that n ≥ 5. By part 20, it is enough to show that |aSym(n)
i | ≥

|aSym(n)
1 | for all i and all n ≥ 5. By Exercise 22.2.2, page 125,

|aSym(n)
i | =

(
n
2

)(
n− 2

2

)
. . .

(
n− 2i + 2

2

)
/i!

= n!
2i(n−2i)!i! .

Hence we have to show that

n!
2i(n− 2i)!i!

≥ n!
2(n− 2)!

,

i.e. that
(n− 2)! ≥ 2i−1(n− 2i)!i!

for all n ≥ 5 and all i such that 2 ≤ 2i ≤ n. We proceed by induction on
n. We know that the inequality must hold for n = 5 (by Exercise 1, page
126). Assume for n. We have to show that

(n− 1)! ≥ 2i−1(n + 1− 2i)!i!

for all i such that 2 ≤ 2i ≤ n + 1. Then for all i such that 2 ≤ 2i ≤ n, we
have

(n− 1)! = (n− 1)(n− 2)! ≥ (n− 1)2i−1(n− 2i)!i!
≥ (n + 1− 2i)2i−1(n− 2i)!i! ≥ 2i−1(n + 1− 2i)!i!

It remains to prove the case 2i = n+1, or n = 2i−1, i.e. we have to show
that (2i− 2)! ≥ 2i−1i! for i ≥ 3. This is easy to show.

10. Find and prove a similar statement for Alt(n).

22.3 Sylow p-Subgroups

Proposition 22.3.1 (Sylow p-subgroups of Sym(n)) Let n ∈ N and p a
prime. Let k = [n/p]. Then a Sylow p-subgroup of Sym(n) is isomorphic to
(Z/pZ)k oP where P is a Sylow p-subgroup of Sym(k) and P acts on (Z/pZ)k

by permuting the components.
The generators of (Z/pZ)k can be taken to be the cycles

σi = ((i− 1)p + 1, . . . , ip)

for i = 1, . . . , k. The element σ1σ2 . . . σk is in the center of the Sylow p-subgroup.
And the center of the Sylow p-subgroup is in (Z/pZ)k.

Proof: Let P be a Sylow p-subgroup of Sym(n). We first note that |P | =
p[n/p]+[n/p2]+....
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If p does not divide n, then P ≤ Sym(n − 1) ≤ Sym(n). So we may as-
sume that p divides n. Let n = kp. Now we have |P | = p[n/p]+[n/p2]+... =
pk+[k/p]+[k/p2]....

Since P has a nontrivial center, there is an element z of order p in Z(P ).
Conjugating if necessary, we may assume that

z = zi = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p) . . . ((i− 1)p + 1, (i− 1)p + 2, . . . , ip)

for some i = 1, . . . , k. Thus P ≤ CSym(n)(zi). Now we compute |CSym(n)(zi)|
and choose i so that p[n/p]+[n/p2]+... (which is equal to pk+[k/p]+[k/p2]...) divides
|CSym(n)(zi)|.

It is clear that

|zSym(n)
i | =

(
n
p

)
(p− 1)!

(
n− p

p

)
(p− 1)! . . .

(
n− (i− 1)p

p

)
(p− 1)!

i!
=

n!
pii!

Thus
|CSym(n)(zi)| = | Sym(n)|/|zSym(n)

i | = pii!

The maximal power of p that divides pii! is pip[i/p]+[i/p2]+... = pi+[i/p]+[i/p2]+....
Thus if we take i = k, then CSym(n)(zi) will be large enough to contain P .

We now find CSym(n)(zk). Recall that it has pkk! elements. Let

σi = ((i− 1)p + 1, . . . , ip)

for i = 1, . . . , k. Then

(Z/pZ)k ' 〈σ1, σ2, . . . σk〉 = 〈σ1〉 ⊕ 〈σ2〉 ⊕ . . .⊕ 〈σk〉 ≤ CSym(n)(zk).

Also the elements of Sym(n) that permute the cycles of σi are in CSym(n)(zk).
Consider the ones of the form {σ : for all i = 1, . . . , k, σ(ip) = jp for some j and σ(ip−
`) = σ(ip) − ` for all ` = 1, . . . , p − 1} ' Sym(k). It is easy to see that
CSym(n)(zk) ' (Z/pZ)k o Sym(k), where Sym(k) permutes the components.
Thus P is isomorphic to a Sylow p-subgroup of (Z/pZ)k o Sym(k), which is
(Z/pZ)k oQ for some Sylow p-subgroup Q of Sym(k). The last statements are
easy to prove. ¤
Corollary 22.3.2 (Sylow p-subgroups of Alt(n)) If p 6= 2 then Sylow p-
subgroup of Sym(n) are in Alt(n).

If p = 2, then with the notation of the theorem above, a Sylow 2-subgroup of
Alt(n) is isomorphic to

{(a0, . . . , ak−1) :
k−1∑

i=0

ai is even}oP

where P is a Sylow 2-subgroup of Sym(k) and it acts on the normal part by
permuting the components.

Corollary 22.3.3 Let G be a finite p-group. Then there is a finite p-subgroup
P such that G ≤ P and Z(P ) ' Z/pZ.
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Exercises.

1. Find the Sylow 3-subgroups of Sym(n) for n = 1, . . . , 27.

2. Show that the center of the Sylow p-subgroups of Sym(pn) has p-elements.



Chapter 23

Classification of Finite
Abelian Groups

Theorem 23.0.4 Let G be a torsion abelian group. Then

G =
⊕

p

Gp

where
Gp = {g ∈ G : gpn

= 1 for some n ∈ N \ {0}}
and p ranges over all primes.

Proof: It is clear that each Gp is a subgroup and that for any prime q, Gq∩〈Gp :
p 6= q〉 = 1. Thus

〈Gp : p〉 =
⊕

p

Gp.

To be continued... pppp

Theorem 23.0.5 (Classification of Finite Abelian p-Groups) Let p be a
prime and G a finite abelian p-group. Then G ' Z/pn1Z ⊕ . . . ⊕ Z/pnkZ for
some unique n1 ≥ n2 ≥ . . . ≥ nk.

Proof: Let pn = exp(G). Let h ∈ G be an element of maximal order, i.e.
of order pn. Let H = 〈h〉. We will show that H has a complement in G.
(This may be false if h is not chosen to be of maximal order, as an exercise
find a counterexample). Let K be a subgroup of G maximal with respect to
intersecting H trivially. Note that 〈H,K〉 = HK = H ⊕ K. We will show
that G = HK. Assume not. Let g ∈ G \ HK. We would be done if the
subgroup generated by K and g did not intersect H. Unfortunately this is
false if g is not chosen properly (find a counterexample, but do not choose
K maximal because otherwise there is no g outside of HK, as we will soon
show!) Some nontrivial pth power of g is in HK. Assume gpi ∈ G \ HK
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but gpi+1 ∈ HK. Replacing g by gpi

, we may assume that gp ∈ HK. Thus
gp = hk for some (unique) h1 ∈ H and k ∈ K. Since o(gp) ≤ pn−1 and
HK = H ⊕K, o(h1) ≤ pn−1. But h1 ∈ H = 〈h〉 ' Z/pnZ and it is an element
of order pn−1. It follows from Lemma ?? that h1 is a pth power in H. hence
h1 = hp

2 for some h2 ∈ H. Now (gh−1
2 )p = gph−p

2 = gph−1
1 = k ∈ K. Also,

gh−1
2 ∈ G \KH because otherwise g would be in KH, contradicting its choice.

Therefore, replacing g by gh−1
2 , we may assume that gp ∈ K. Now consider

the subgroup 〈K, g〉 = K ∪Kg ∪ . . . ∪Kgp−1. We claim that Kgi ∩ H = ∅ if
i = 1, . . . , p − 1. Indeed, otherwise gi would be in HK, and since (p, i) = 1
and gp ∈ K ≤ KH, we would also have g ∈ KH, contradicting the choice of g.
Thus

〈K, g〉 ∩H = (K ∪Kg ∪ . . . ∪Kgp−1) ∩H = K ∩H = 1.

This contradicts the fact that K was maximal with respect to intersecting H
trivially.

Now by induction on |G|, K ' Z/pn2Z ⊕ . . . ⊕ Z/pnkZ for some unique
n2 ≥ . . . ≥ nk. Clearly pn2 = exp(K) ≤ pn. We now have G = H ⊕ K '
Z/pnZ ⊕ Z/pn2Z ⊕ . . . ⊕ Z/pnkZ where n ≥ n2 ≥ . . . ≥ nk. Uniqueness of the
exponents is clear. ¤

Exercises.

1. Find all isomorphism types of abelian groups of order 1728.
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Divisible Groups

24.1 Generalities

A group G is called divisible if for every g ∈ G and integer n > 0 there is an
h ∈ G such that hn = g. The additive group Q is divisible.

Theorem 24.1.1 (Divisible Groups) A quotient of a divisible group is di-
visible. In particular, a divisible group does not have a proper subgroup of finite
index.

Let p be a prime. A group G is called p-divisible if for every g ∈ G and
there is an h ∈ G such that hp = g.

exercise

1. Show that a torsion group without elements of order p is p-divisible.

2. ¶ Find the fields K and integers n for which the groups GLn(K), SLn(K),
PGLn(K), PSLn(K) are divisible.

3. Let G be an abelian group. Suppose G has a normal abelian subgroup A
such that A and G/A are p-divisible. Then G is p-divisible.

4. The statement above is false if G is not abelian; more precisely, there is a
group G with a normal subgroup A such that A and G/A are abelian and
p-divisible, but G not p-divisible.

24.2 Divisible Abelian Groups

A group G is called divisible if for every g ∈ G and integer n > 0 there is an
h ∈ G such that hn = g. The additive group Q is divisible.
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Theorem 24.2.1 (Classification of Torsion-Free Divisible Abelian Groups)
Any divisible abelian torsion-free group is a vector space over Q. Thus such a
group is isomorphic to a direct sum of Q’s. In particular any two divisible
torsion-free abelian group of the same uncountable cardinality are isomorphic.

Theorem 24.2.2 (Splitting of Divisible Subgroups) Let G be an abelian
group and A a divisible subgroup of G. Then A splits in G, i.e. G = A⊕B for
some B ≤ G.

Let p be a prime. The set {z ∈ C : zpn

= 1} is a subgroup of C∗. It is called
Prüfer p-group and is denoted by Zp∞ . It is a divisible p-group. For each n,
it has a unique cyclic subgroup of order pn.

Theorem 24.2.3 (Classification of divisible abelian groups) Any divisi-
ble abelian group is isomorphic to

(⊕IQ)⊕ (⊕p prime(⊕Ip
Zp∞)).

The isomorphism type is determined by the cardinalities of the index sets I and
Ip.

A subgroup A of an abelian group G is called pure if nG ∩A = nA.

Theorem 24.2.4 (Finitely Generated Subgroups of Q) For a/b, c/d ∈ Q,
〈a/b, c/d〉 = 〈gcd(ad, bc)/bd〉. Thus a finitely generated subgroup of Q is in fact
generated by one element.

Theorem 24.2.5 (Classification of Subgroups of Q) Let G be a nontrivial
subgroup of Q+. Then there are unique a ∈ N \ {0} and f : {primes of N} −→
N ∪ {∞} such that

G = Q(a, f) = a{x/pn1
1 . . . pnk

k : k ∈ N, pi prime and ni ≤ f(pi) forall i}.

Exercises.

1. Show that Zp∞ is the only infinite subgroup of Zp∞ . Show that if H <
Zp∞ , then Zp∞/H ' Zp∞ .

2. Show that a divisible subgroup of (Zp∞)n is isomorphic to Zp∞ for some
i ≤ n.

3. (Splitting of Pure and Bounded Subgroups) Let G be an abelian
group and A a pure subgroup of bounded exponent of G. Then A splits
in G, i.e. G = A⊕B for some B ≤ G.

4. Find the isomorphism type of Q/Q(a, f). Is it isomorphic to a subgroup
of Q?

5. When do we have Q(a, f) ' Q(a1, f1)?
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6. Can you find a group theoretic characterization of subgroups of Q?

7. Try to classify subgroups of Q × Q. Note: I do not know the answer to
the above problem. On the other hand, Simon Thomas proved that, in
some sense, classification of subgroups of Q× Q is ”harder than (i.e. not
reducible to) the classification of subgroups of Q.

24.3 Divisible Nilpotent Groups
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Chapter 25

Free Groups

25.1 Definition

Let X be a set. A free group over X is a group FX together with a map
i : X −→ FX such that for any group G and map f : X −→ G there is a unique
group homomorphism φ : FX −→ G such that φ ◦ i = f .

Theorem 25.1.1 Free groups exist and are unique up to isomorphism.

Theorem 25.1.2 FX is generated by X.

Theorem 25.1.3 A group is generated by a subset X is a quotient of FX

25.2 Free Abelian Groups

Let X be a set. A free abelian group over X is a group AX together with
a map i : X −→ AX such that for any abelian group G and map f : X −→ G
there is a unique group homomorphism φ : FX −→ G such that φ ◦ i = f .

Theorem 25.2.1 Free abelian groups exist, are unique up to isomorphism and
are abelian. Furthermore AX ' FX/F ′X .

Theorem 25.2.2 AX is generated by X.

Theorem 25.2.3 An abelian group is generated by a subset X is a quotient of
AX

Theorem 25.2.4 AX ' ⊕X Z.

Theorem 25.2.5 (Subgroups of Z× Z) If G ≤ Z×Z is a subgroup which is
not generated by one element then there are unique integers x, y, z such that
0 ≤ x < z, 0 < y and G = 〈(x, y), (z, 0)〉.
Theorem 25.2.6 (Subgroups of Zn) Any subgroup of Zn is generated by at
most n elements and is isomorphic to Zi for some i = 0, 1, . . . , n.
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Exercises.

1. Classify all subgroups of Z3.



Chapter 26

General Linear Groups
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Chapter 27

Automorphism Groups of
Abelian Groups

¶ Note that an abelian group is nothing else than a Z-module.

Lemma 27.0.7 If A is an abelian group, then End(A) is a ring and Aut(A) =
End(A)∗.

If G is an arbitrary group, Hom(G,A) is naturally an abelian group.

Theorem 27.0.8 Let p be a prime. Then
i. End(Z/pnZ) ' Z/pnZ.
ii. Aut(Z/pnZ) ' (Z/pnZ)∗ ' Z/pn−1 × Z/(p− 1)Z and is cyclic.
iii. Aut(Z/2nZ) ' (Z/2nZ)∗ ' Z/2n−2 × Z/2Z if n ≥ 2.

Theorem 27.0.9 (General Linear Groups over Z/pnZ) Let p be a prime
and n and m two natural naturals. Set R = Z/pnZ and M = pZ/pnZ. Then
End(Rm) ' Matm×m(R) and Aut(Rm) ' GLm(R). Furthermore,

i. |GLm(R)| = (pn − 1)(pn − p) . . . (pn − pn−1)p(n−1)m2
.

ii. The set of matrices with entries of the diagonal from 1 + M and the
entries below the diagonal from M is a Sylow p-subgroup of GLn(R).

Theorem 27.0.10 (Automorphisms of the Prüfer p-Groups) End(Zp∞) '
Zp (the p-adic integers, see below) and Aut(Zp∞) ' Z∗p.

Theorem 27.0.11 End(Zn
p∞) ' Matn×n Zp and Aut(Zn

p∞) ' GLn(Zp).

Exercises.

1. When is Aut(Z/nZ) cyclic?

2. What is the nilpotency class of the Sylow p-subgroup of GLm(Z/pnZ)?

3. What is the group structure of Aut(Z/p2Z⊕ Z/pZ)?
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4. Find elements of order p of GL2(Zp). Find the Sylow p-subgroups (i.e.
the maximal p-subgroups) of GLn(Zp). Find the involutions (elements of
order 2) of GL2(Zp). Find the Sylow 2-subgroups of GL2(Zp).



Chapter 28

Permutation Groups

Let G be a group and X any set. A map G ×X −→ X is called an action of
the group G on the set X if for all g, h ∈ G and x ∈ X (we will denote the
image of the pair (g, x) ∈ G×X by gx)

i. g(hx) = (gh)x,
ii. 1x = x.
The action of the group G on the set X gives rise naturally to a group

homomorphism˜ from G into Sym(X) defined by g 7→ g̃ where g̃(x) = gx for
x ∈ X. Conversely any group homomorphism˜ : G −→ Sym(X) gives rise to a
group action of G on X via gx := g̃(x).

The pair (G,X) is called a permutation group. The kernel Ker(̃ ) of the
homomorphism ˜ is called the kernel of the action. Clearly the kernel is a
normal subgroup of G. An action is called faithful if its kernel is trivial; this
means that if gx = x for all x ∈ X, then g = 1.

Lemma 28.0.12 Let (G,X) be a permutation group. If H C G is a subgroup
of Ker(̃ ), then G/H acts on X in a natural way via gx := gx. The kernel of
this action is Ker(̃ )/H. In particular G/ Ker(̃ ) acts faithfully on X.

If x ∈ X, then the G-orbit of X is the set Gx. The stabilizer of x is
defined to be Gx := {g ∈ G : gx = x}.
Lemma 28.0.13 i. Gx ≤ G and there is a natural one to one correspondence
between the left coset space G/Gx and the G-orbit Gx given by gGx 7→ gx.

ii. Any two G-orbits are either equal or disjoint.
iii. For x ∈ X and g ∈ G, Gg

x = Gg−1x.
iv. If |X| is finite, then |X| =

∑
x |G/Gx| where the summation is over a

set of representatives of distinct orbits.

Corollary 28.0.14 Let G be a group.
i. If H ≤ G has finite index in G, then |{Hg : g ∈ G}| = |G/NG(H)|.
ii. If a ∈ G be such that CG(a) has finite index in G, then |{ag : g ∈ G}| =

|G/CG(a)|.
iii. A finite p-group has a nontrivial center.
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A permutation group (G, X) is called n-transitive if for any two pairs of
distinct n-tuples x1, . . . , xn and y1, . . . , yn of points from X there is a g ∈ G such
that gxi = yi for all i = 1, . . . , n. The action is called sharply n-transitive if
the above element g of G is unique. Sharply 1-transitive group actions are often
called regular actions.

Examples and Exercises.

1. Sym(n) acts on {1, . . . , n} in a natural way. Sym(n) is sharply n and
(n− 1)-transitive on {1, . . . , n}. Also Alt(n) is sharply (n− 2)-transitive
on {1, . . . , n}.

2. If G acts on X, then any subgroup of G acts on X. If Y ⊆ X is such that
gY ⊆ Y for all g ∈ G, then G acts on Y .

3. If G acts on X and Y ⊆ X, then G acts on {gY : g ∈ G}.
4. ¶ The group of homeomorphisms of a topological space acts on the space.

For any first order structure M , Aut(M) acts on M .

5. The group of rotations of R2 act on R2. Find the orbits of this action.
Similarly with translations.

6. GLn(K) acts on Kn naturally. This action is not transitive. The action of
GLn(K) on Kn\{0} is transitive but not doubly transitive unless K = F2.
The action of GLn(K) on Kn gives rise naturally to an action of GLn(K)
on the set of i-dimensional subspaces of Kn. Find the stabilizers of vectors
in GLn(K).

7. GLn(K) acts on the set πn−1(K) of lines through the origin 0. The kernel
of this action is Z(GLn(K)). Thus PGLn(K) acts on πn−1(K). The set
πn−1(K) is called the (n − 1)-dimensional projective space over the
field K. The 1 and 2-dimensional projective spaces are called projective
line and projective plane respectively. Find the cardinality of πn−1(Fq).
Find the stabilizers of a line of πn−1(K) in PGLn(K). If K = Fq what is
the index of the stabilizer of a line in PGLn(K)?

8. (Left coset action.) Let G be a group and H ≤ G. Consider the left
coset space G/H. Then the group G acts on G/H via g(xH) = gxH.
This action is transitive and its kernel is the core (see Theorem 3.2.3).

If H = 1, then this action is regular and is called the regular action of
G.

9. Let G be a group and A ⊆ G. Let X = {Ag : g ∈ G}. Then G acts on X
by conjugation. What is the kernel of this action if A ≤ G? If A = {a}?

10. Let G act on X. Then G acts on Xn componentwise. The group G also
acts on Xn := Xn \ {x ∈ Xn : xi 6= xj if i 6= j}. Then (G,X) is (sharply)
n-transitive if and only if (G,Xn) is transitive (regular).
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Two permutation groups (G, X) and (H, Y ) are called equivalent if there
is a group isomorphism φ : G −→ H and a bijection f : X −→ Y such that
f(gx) = φ(g)f(x) for all g ∈ G and x ∈ X, i.e. if f ◦ g̃ = φ̃(g) ◦ f for all g ∈ G.

Proposition 28.0.15 Let (G,X) be a transitive permutation group. Let x ∈
X. Then the permutation group (G,X) is equivalent to the permutation group
(G,G/Gx) given in Example 7 above.

Proposition 28.0.16 Let G act transitively on X and let n > 1. Then (G,X)
is (sharply) n-transitive on X if and only if for any (equivalently, for some)
x ∈ X, Gx acts (sharply) (n− 1)-transitive on X \ {x}.

Exercises

1. i. The permutation group (G, X) is doubly transitive (resp. sharply 2-
transitive) if and only if G = Hx t HxωHx for some (equivalently, any)
ω ∈ G \H (resp. and if the representation is unique).
ii. A group G acts double transitively (resp. sharply 2-transitive) on a
set if and only if it has a subgroup H such that G = H ∪HωH for some
(equivalently, any) ω ∈ G \H (resp. and if the representation is unique).

2. If n ≥ 3 then PGLn(K) is 2-transitive on πn−1 but not 3-transitive. On
the other hand PGL2(K) is sharply 3-transitive on π1(K).

3. How transitive is PSL2(K) on π1(K)?

4. Let K be a field. The group (called the affine group) of matrices of the
form (

x y
0 1

)

where x ∈ K∗ and y ∈ K acts sharply 2-transitively on the set of vectors
of the form (

x
1

)

where x ∈ K.

Let (G,X) be a permutation group. A subset Y of X is called a set of
imprimitivity if for all g, h ∈ G either gY ∩ hY = ∅ or gX = gY . Any
singleton set is a set of imprimitivity. The set X is a set of imprimitivity.
The permutation group (G, X) is called primitive if it has no other set of
imprimitivity.

Lemma 28.0.17 A transitive group (G,X) is primitive if and only if Gx is a
maximal subgroup for some (equivalently, for all) x ∈ X.

Lemma 28.0.18 A doubly transitive group is primitive.

Lemma 28.0.19 Let (G,X) be a doubly transitive permutation group and x ∈
X. Let D 6= 1 be a normal subset of G then G = DH if D ∩ H 6= ∅ and
G = DH ∪H if D ∩H = ∅.
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Exercises.

1. Find a maximal subgroup of GLn(K).

2. Show that a simple group with a subgroup of index n is isomorphic to a
subgroup of Sym(n).

3. Show that a simple group cannot have a subgroup of index ≤ 4.

4. Show that a simple group with a subgroup of index 5 is isomorphic to
Z/5Z or Alt(5).

5. Let H be a subgroup of index n in G. Show that there is an m ∈ N \ {0}
such that for every g ∈ G, gm ∈ H.

Proof: Take m = n! in Theorem 3.2.3.

6. Show that a divisible group cannot have a proper subgroup of finite index.

Proof: Let G be a divisible group and H ≤ G a subgroup of index n. Let
g ∈ G. Let h ∈ G be such that g = hn!. By Theorem 3.2.3, g = hn! ∈ H.
So G = H.

7. No group of order ≤ 59 is nonabelian and simple.

8. Show that Alt(5) ' SL2(F4).

9. Show that a simple group of order 60 is isomorphic to Alt(5) ' SL2(F4).

28.1 Frobenius Groups

Lemma 28.1.1 Let (G,X) be a transitive permutation group. Let x ∈ X. Then
no nontrivial element of G fixes two distinct elements of X if and only if for
any g ∈ G \Gx, Gg

x ∩Gx = 1.

Lemma 28.1.2 A group G acts transitively but not regularly on a set as in the
lemma above if and only if G has a proper nontrivial subgroup H such that for
any g ∈ G \H, Hg ∩Gx = 1.

A group as in the lemma above is called a Frobenius group. The subgroup
H is called a Frobenius complement.

Examples.

1. 〈x〉 < F2 where F2 is the free group generated by x and y is a Frobenius
group.

2. If F is a field and T ≤ F ∗, then F oT is a Frobenius group.

3. Any sharply 2-transitive group is a Frobenius group.
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Theorem 28.1.3 Let G be a finite Frobenius group with H < G as the Frobe-
nius complement. Assume that H has an involution. Then G = AoH for some
normal abelian subgroup A.

The splitting part of the theorem above also holds in case H has no involu-
tions (Frobenius), but the proof is much harder. Later Thompson proved that
the normal complement A is nilpotent (a very hard and important theorem).

In the theorem above we have A = I(G)2 = iI(G) = (G \⋃
g∈G Hg) ∪ {1}.

28.2 Sharply 2-Transitive Groups

In this subsection, we let (G,X) to be a sharply 2-transitive group. We fix
x ∈ X and we let H = Gx. The set of involutions of G is denoted by I(G) or
by I. Finally we let

N = (G \
⋃
g

Hg) ∪ {1} = {g ∈ G : gy 6= y all y ∈ X}.

Proposition 28.2.1 i. H is a maximal subgroup.
ii. H ∩ Hg 6= 1 if and only if g ∈ H. In particular NG(H) = H and

CG(h) ≤ H for any h ∈ H∗.
iii. G has involutions and they are all conjugate.
iv. H has at most one involution.

If Gx has an involution, we say that char(G) 6= 2. Otherwise we say that
char(G) = 2. When H has an involution, we denote it by i.

Proposition 28.2.2 i. If A C G is such that Z(A) 6= 1, then G = Z(A)oH.

ii. I(G) =
{

jH for any j ∈ I(G) if char(G) = 2
jH ∪ {i} for any j ∈ I(G) \ {i} if char(G) 6= 2

iii. If char(G) 6= 2, then I2 \ {1} is one conjugacy class.
iv. I2 \ {1} ⊆ N .
v. If a ∈ N∗ then CG(a) ⊆ N .

Theorem 28.2.3 If G is finite then G = AoH for some elementary abelian
p-subgroup A C G. In fact A = N = I2.

Theorem 28.2.4 If G = AoH for some subgroup A C G then A ⊆ N and is
abelian.

Theorem 28.2.5 If H is abelian, then (G,X) is equivalent to the example of
Exercise 4.

Conjecture 28.2.6 It is unknown whether or not G = AoH for some sub-
group A C G.
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Exercises.

1. Show that if G is solvable, then G = AoH for some A C G.

2. A group of the form G = AoH is doubly transitive on G/H if and only
if H acts (by conjugation) regularly on A∗.



Chapter 29

Miscellaneous Problems in
Group Theory

1. Find the isomorphism types of the additive groups R/Q, R/Z, Q/Z, C/R.

2. Find the isomorphism types of the multiplicative groups R∗/Q∗, C∗/R>0,
C∗/R∗.

3. Show that CSym(n)((12)) ' Z/2Z× Sym(n− 2).

4. Any two involutions of a finite group are either conjugate or commute
with a third one.

5. Show that a finite group with a fixed-point-free automorphism of order 2
is abelian.

6. Find a centerless group with a fixed-point-free automorphism of order 2.

7. Let G be a finite group and let H be a proper subgroup of G. Show that
G is not the set-theoretic union of all conjugates of H.

8. Find all groups that have exactly three subgroups.

9. Is it true that an infinite group cannot be a union of finitely many proper
subgroups?

10. Prove that Aut(D8) ' D8.

11. Let p, q be two distinct primes. Show that a group of order pq is solvable.

12. Let p, q, r be three distinct primes. Show that a group of order pqr cannot
be simple.
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33.1 First Semester

33.1.1 Fall 2002 Midterm

1. Let H, K ≤ G. Show that {HxK : x ∈ G} is a partition of G. (3 pts.)

Proof: The relation x ≡ y defined by “HxK = HyK” is certainly re-
flexive and symmetric. Let us prove the transitivity. It is clear that
HxK = HyK if and only if x ∈ HyK. Thus if x ∈ HyK and y ∈ HzK,
then x ∈ HHzKK ⊆ HzK.

2. Let H ≤ G. Show that there is a natural one to one correspondence
between the left coset space of H in G and the right coset space of H in
G. (3 pts.)

Proof: Consider the map xH 7→ Hx−1. This is well defined and one to
one because xH = yH if and only if y−1x ∈ H if and only if y−1 ∈ Hx−1

if and only if Hy−1 = Hx−1. It is also onto.

3. Let H, K ≤ G. Show that xH∩yK is either empty or of the form z(H∩K)
for some z ∈ G. (5 pts.)

Proof: Assume xH ∩ yK 6= ∅. Let z ∈ xH ∩ yK. Then xH = zH and
yK = zK. So xH ∩ yK = zH ∩ zK = z(H ∩K).

4. a) Show that the intersection of two subgroups of finite index is finite. (5
pts.)

b) If [G : H] = n and [G : K] = m, what can you say about [G : H ∩K]?
(7 pts.)

Proof: (a) Let H and K be two subgroups of index n and m of a group
G. Then for any x ∈ G, x(H ∩K) = xH ∩ xK and there are at most n
choices for xH and m choices for xK. Hence [G : H ∩K] ≤ nm.

(b) If C ≤ B ≤ A and if the indices are finite then [A : C] = [A : B][B : C]
because cosets of C partition B and cosets of B partition A, i.e. if B =
tr

i=1biC and A = ts
j=1ajB, then A = tr

i=1 ts
j=1 biajC.

Thus [G : K ∩ H] = [G : H][H : H ∩ K] = [G : K][K : H ∩ K]. It
follows that n and m both divide [G : K ∩ H], hence lcm(n,m) divides
[G : K ∩H]. Further in part (a) we have seen that [G : K ∩H] ≤ mn.

5. Let G be a group and H ≤ G a subgroup of index n. Let X = G/H be the
left coset space. For g ∈ G, define g̃ : G/H −→ G/H by g̃(xH) = gxH
for x ∈ G.

a) Show that g̃ ∈ Sym(X). (2 pts.)

b) Show that˜ : G −→ Sym(X) is a homomorphism of groups. (3 pts.)

c) Show that Ker(̃ ) is the largest normal subgroup of G contained in H.
(5 pts.)

d) Show that [G : Ker(̃ )] divides n!. (5 pts.)
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e) Conclude that there is an m ∈ N \ {0} such that for every g ∈ G,
gm ∈ H. (3 pts.)

f) Conclude that a divisible group1 cannot have a proper subgroup of finite
index. (7 pts.)

Proof: (a) g̃ is one to one because if g̃(xH) = g̃(x1H) then gxH = gx1H,
and so xH = x1H. g̃ is onto because if xH ∈ G/H, then g̃(g−1xH) = xH.

(b) Let g, h ∈ G be any two elements. Since (g̃ ◦ h̃)(xH) = g̃(h̃)(xH)) =
g̃(hxH) = ghxH = g̃h(xH) for all xH ∈ G/H, g̃ ◦ h̃g̃h. Hence˜is a group
homomorphism.

(c) Ker(̃ ) is certainly a normal subgroup of G. Also Ker(̃ ) = {g ∈ G :
g̃ = Id} = {g ∈ G : gxH = xH for all x ∈ G} = {g ∈ G : x−1gx ∈
H for all x ∈ G} = {g ∈ G : g ∈ xHx−1 for all x ∈ G} = ∩x∈GHx. It is
now clear that Ker(̃ ) is the largest normal subgroup of G contained in H.

(d) By above G/ Ker(̃ ) embeds in Sym(G/H) ' Sym(n).

(e) Take m = n!.

(f) Let G be a divisible group and H ≤ G a subgroup of index n. Let
g ∈ G. Let h ∈ G be such that g = hn!. By the above, g = hn! ∈ H. So
G = H.

6. Recall that Z(G) = {z ∈ G : zg = gz}.
a) Show that Z(G) C G. (3 pts.)

b) Assume that G/Z(G) is cyclic. Show that G is abelian. (7 pts.)

Proof: (a) If z, z1 ∈ Z(G), then for all g ∈ G, (zz1)g = z(z1g) = z(gz1) =
(zg)z1 = (gz)z1 = g(zz1, so that zz1 ∈ Z(G). Thus Z(G) is closed under
multiplication. Clearly 1 ∈ Z(G). Finally, if z ∈ Z(G), since for all g ∈ G,
gz = zg, multiplying by z−1 from left and right, we see that gz−1 = z−1g,
i.e. z−1 ∈ Z(G). Thus Z(G) is a subgroup.

If z ∈ Z(G) and g ∈ G, then g−1zg = z, so that g−1Z(G)g ⊆ Z(G). This
means exactly that Z(G) is a normal subgroup of G.

7. Let G′ be the subgroup generated by {xyx−1y−1 : x, y ∈ G}.
a) Show that G′ C G. (5 pts.)

b) Show that G/G′ is abelian. (5 pts.)

c) Let H C G. Show that if G/H is abelian then G′ ≤ H. (5 pts.)

d) Show that G′ is the smallest normal subgroup H of G such that G/H
is abelian. (3 pts.)

e) Let H = 〈g2 : g ∈ G〉. Show that H ≤ G′. (5 pts.)

Proof: (a) For x, y, g ∈ G, g−1(xy)g = (g−1xg)(g−1yg) and so g−1(xyx−1y−1)g =
(g−1xg)(g−1yg)(g−1xg)−1(g−1yg)−1. Hence g−1〈xyx−1y−1 : x, y ∈ G〉g ≤

1A group G is called divisible if for any g ∈ G and any integer n ≥ n there is an h ∈ G
such that g = hn.
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〈xyx−1y−1 : x, y ∈ G〉, i.e. G′ := 〈xyx−1y−1 : x, y ∈ G〉 is a normal sub-
group of G.

(b) For any x, y ∈ G, x−1y−1xy = x−1y−1xy = 1 because x−1y−1xy ∈ G′.

(c) For any x, y ∈ G, 1 = x−1y−1xy = x−1y−1xy, i.e. x−1y−1xy ∈ H. It
follows that G′ ≤ H.

(d) Follows directly from part (c)

(e) We first claim that if G is a group in which every element has order
2, then G is abelian. Indeed, for any g, h ∈ G, ghgh = (gh)2 = 1, so that
gh = h−1g−1 = hg.

Now we prove (e). Clearly, for any g ∈ G/H, g2 = 1. Such a group must
be abelian. Thus G′ ≤ H by part (c).

8. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ
define the relation αRβ if and only if α∩β = ∅. Then Γ becomes a graph
with this relation.

a) Calculate Aut(Γ) when |X| = 4. (5 pts.)

b) Draw the graph Γ when X = {1, 2, 3, 4, 5}. (3 pts.)

c) Show that Sym(5) imbeds in Aut(Γ) naturally. (5 pts.)

d) Show that Aut(Γ) ' Sym(5). (7 pts.)

Answer: (a) The graph Γ is just six vertices joined two by two. A group
isomorphic to (Z/2Z)3 preserves the edges. And Sym(3) permutes the
edges. Thus the group has 8× 3! = 48 elements.

More formally, one can prove this as follows. Let the points be {1, 2, 3, 4, 5, 6}
and the edges be v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6). We can embed
Sym(3) in Aut(Γ) ≤ Sym(6) via

Id3 7→ Id6

(12) 7→ (12)(45)
(13) 7→ (13)(46)
(23) 7→ (23)(56)
(123) 7→ (123)(456)
(132) 7→ (132)(465)

For any φ ∈ Aut(Γ) there is an element α in the image of Sym(3) such
that α−1φ preserves the three edges v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6).
Thus α−1φ ∈ Sym{1, 4} × Sym{2, 5} × Sym{3, 6} ' (Z/2Z)3. It follows
that Aut(Γ) ' (Z/2Z)3o Sym(3) (to be explained next year).

(b) There are ten points. Draw two pentagons one inside the other. Label
the outside points as {1, 2}, {3, 4}, {5, 1}, {2, 3}, {4, 5}. Complete the
graph.

(c and d) Clearly any element of σ ∈ Sym(5) gives rise to an automorphism
σ̃ of Γ via σ̃{a, b} = {σ(a), σ(b)}. The fact that this map preserves the
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incidence relation is clear. This map is one to one because if σ̃ = τ̃ ,
then for all distinct a, b, c, we have {σ(b)} = {σ(a), σ(b)} ∩ {σ(b), σ(c)} =
σ̃{a, b} ∩ σ̃{b, c} = τ̃{a, b} ∩ τ̃{b, c} = {τ(a), τ(b)} ∩ {τ(b), τ(c)} = {τ(b)}
and hence σ(b) = τ(b).

Let φ ∈ Aut(Γ). We will compose φ by elements of Sym(5) to obtain the
identity map. There is an σ ∈ Sym(5) such that φ{1, 2} = σ̃{1, 2} and
φ{3, 4} = σ̃{3, 4}. Thus, replacing φ by σ−1φ, we may assume that φ
fixes the vertices {1, 2} and {3, 4}. Now φ must preserve or exchange the
vertices {3, 5} and {4, 5}. By applying the element (34) of Sym(5) we may
assume that these two vertices are fixed as well. Now φ must preserve or
exchange the vertices {1, 3} and {2, 3}. By applying the element (12) of
Sym(5) we may assume that these two vertices are fixed as well. Now all
the vertices must be fixed.

33.1.2 Fall 2003 Resit

Throughout G stands for a group.

1. Let g ∈ G have order n and m an integer. What can you say about the
order of gm? (5 pts.)

2. Let H, K ≤ G. Show that {HxK : x ∈ G} is a partition of G. (3 pts.)

3. Let H ≤ G. Show that there is a natural one to one correspondence
between the left coset space of H in G and the right coset space of H in
G. (3 pts.)

4. Show that the product of two groups is divisible2 if and only if each factor
is divisible. (4 pts.)

5. Show that if G/Z(G) is cyclic then G is abelian. (5 pts.)

6. Find the torsion elements of

a) Q/Z. (5 pts.)

b) R/Q. (5 pts.)

7. Let H, K ≤ G. Assume that for all k ∈ K, Hk ≤ H. Show that Hk = H
for all k ∈ K. (5 pts.)

8. Find the isomorphism type of the group (Z/11Z)∗. (5 pts.)

9. Find the isomorphism type of the group Z/4Z× Z/2Z. (8 pts.)

10. Let p be a prime.

a. Find the group Aut(Z/pZ). (5 pts.)

b. Find |Aut(Z/pZ× Z/pZ)|. (5 pts.)
2A group G is called divisible if for any g ∈ G and any integer n ≥ n there is an h ∈ G

such that g = hn.



33.2. PHD EXAMS 171

11. Find Aut(Z). (5 pts.)

12. Find Aut(Q). (5 pts.)

13. Find Aut(Q∗). (10 pts.)

14. Find Aut(Z× Z). (15 pts.)

15. Show that if G is centerless then there is an imbedding of G in Aut(G)
(i.e. a one to one group homomorphism from G into Aut(G)). (7 pts.)

33.2 PhD Exams

Part I. Do three (3) of these problems.

1. If a subgroup G of the symmetric group Sn contains an odd permutation,
then |G| is even and exactly half the elements of G are odd permutations.

2. Let R be a commutative ring with no nonzero nilpotent elements (that is,
an = 0 implies a = 0). If the polynomial f(X) = a0+a1X+. . .+amXm in
R[X] is a zero-divisor (that is, g(X)f(X) = 0 for some nonzero polynomial
g(X) ∈ R[X]), prove that there is an element b 6= 0 in R such that
ba0 = ba1 = . . . bam = 0.

3. Let V be a finite-dimensional vector space over a field F . An endomor-
phism φ of V is called a pseudoreflection if φ − 1 has rank at most 1.
Prove:

a φ is a pseudoreflection precisely if there exists a basis of V such that the
matrix of φ has the form




∗ ∗ ∗ . . . ∗
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1




.

b Show that the Jordan canonical form of a pseudoreflection φ is




1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1




or




∗ 0 . . . 0
0 1 . . . 0
...

. . .
0 0 . . . 1


 .

I.4 Let F ⊇ K be an algebraic extension of fields and let R be a subring of
F with R ⊇ K. Show that R is a field.

Part II Do two (2) of these problems.



172

II.1 Let G be a finite group and let H be a proper subgroup of G. Show
that G is not the set-theoretic union of all conjugates of H.

II.2 Let K be the splitting field over the rationals Q for the polynomial
f(x). For each of the following examples, find the degree [K : Q], determine the
structure of the Galois group G(K/Q), describe its action on the roots of f(x)
and identify the group.

a) f(x) = x4 − 3
b) f(x) = x4 + x2 − 6
II.3Let G be a group of order 165 = 3 · 5 · 11. Prove:
a) G has a normal Sylow 11-subgroup, say C.
b) G/C is cyclic. (HINT: Show that every group of order 15 is cyclic.)
c) G has normal subgroups of orders 33 and 55.

Questions. 1. Assume F ≤ K is finite and Galois with G as the Galois
group. Is there an α ∈ K such that Gα is a basis of K/F (as a vector space)?

2. Let F ≤ K ≤ F where F is the algebraic closure of F and F ≤ K is finite
and Galois with G as the Galois group. For f =

∑m
i=1 α~iX

~i and σ ∈ G, define
σf =

∑m
i=1 σ(α~i)X

~i. For f1, . . . , fk ∈ K[X], define VF (f1, . . . , fk) = {x ∈ F
n

:
fj(x) = 0 for all j = 1, . . . , k}. Assume that VF (f1, . . . , fk) = VF (σf1, . . . , σfk).
Is it true that VF (f1, . . . , fk) = VF (g1, . . . , g`) for some g1, . . . , g` ∈ F [X]?

3. Let F ≤ K ≤ F be as above. Let τ1, . . . , τr be a basis of K/F . Let
f =

∑m
i=1 α~iX

~i. Write α~i =
∑r

`=1 a~i,`τ`. Then f =
∑m

i=1

∑r
`=1 a~i,`τ`X

~i =
∑r

`=1 τ`

(∑m
i=1 a~i,`X

~i
)

. For ` = 1, . . . , r, set (f)` =
∑m

i=1 a~i,`X
~i
. Thus f =

∑r
`=1 τ`(f)`.
Now let VF (f1, . . . , fk) be as above and assume that VF (f1, . . . , fk) = VF (σf1, . . . , σfk).

Is it true that VF (f1, . . . , fk) = VF ((fi)` : i = 1, . . . , k, ` = 1, . . . , r).
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End(A), 56
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endomorphism, 37
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f(X), 72
faithful action, 143
field, 67
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Frobenius groups, 146–147

generator, 29–31
graph, 19
graph, complete, 20
greatest common divisor, 31
group, 9
group action, 143
groups of prime order, 32

Hom(G,H), 37
homomorphism, 37
homomorphism of rings, 60

ideal, 61
ideal generated by, 63
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Ker, 38
kernel, 38, 60
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left coset, 31
left coset action., 144
left coset space, 31, 40
Lie ring, 56
local ring, 79

matrix, 96
maximal ideal, 67
minimal path, 19
Matm×n(R), 96
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multiplication by a scalar, 95

NG(H), 33
nilpotent element, 56, 62
noncommutative ring, 55
normal subgroup, 40–46
normalizer, 33, 46
n-transitive action, 144

o(g), 17
orbit, 143
order of a group, 32
order of an element, 17, 34

path, 19
permutation groups, 143–148
pointwise addition, 56
polynomials, 72
prime ideal, 65, 69
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primitive sets, 145∏
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product

∏
i∈I G, 10

projection map, 38
projective line, 144
projective plane, 144
projective space, 144
proper ideal, 61
proper subgroup, 25, 26

Q, 10
Q∗, 10
Q+, 10
Q>0, 10
quotient group, 40–46
quotient ring, 64

R∗, 56
R, 10
R∗, 10
R+, 56
R+, 10
R>0, 10
radical, 62
regular action, 144
related, 19
residue field, 79
right coset, 31
right coset space, 31, 40
ring homomorphism, 60
ring of polynomials, 71–73
ring with identity, 55
Rings of Matrices, 95–96
R[X], 72

set of imprimitivity, 145
sharply n-transitive action, 144
sharply 2-transitive action, 145
sharply 2-transitive groups, 147–148
simple group, 42
soft automorphism, 19
square-free graph, 19
stabilizer, 143
subgroup, 25–29
subgroup generated by, 29

subgroups of Z, 13, 27
Subgroups of G/H, 43
subring, 59
symmetric group, 10
Sym(N), 16, 17, 33
Sym(n), 10, 17, 30
Sym(X), 10, 15–18

transitive action, 144
triangle-free graph, 19
trivial subgroup, 26

ultrametric space, 82
unit, 56

valuation, 82
vertex, 19

x−1Hx, 40
xn, 12

Z, 10
Z+, 10
Z[
√

2], 57
zero-divisor, 56, 62
Z(G), 14
Z/nZ, 41


